
CS 663: Pattern Matching Algorithms

Scribe: Chen Jiang 11/29/2010

PTAS for Bin-Packing

1. Introduction

 The Bin-Packing problem is NP-hard. If we use approximation algorithms, the Bin-Packing

problem could be solved in polynomial time. For example, the simplest approximation algorithm

is the First-fit algorithm, which solves the Bin-Packing problem in time)log(nnO .

 We use the approximation factor to determine how good our approximation algorithm is.

Let)(IA be the number of bins required by the approximation algorithm, and let)(IOPT be

the optimal number of required bins for input I. We say that algorithm A has approximation factor

C if for every input I:

)1()()(≥⋅≤ CIOPTCIA

This inequality means that the approximation algorithm would not use more than C times the

optimal number of bins, which is also the upper bound of the approximation algorithm.

Obviously, the closer C is to 1, the better the approximation.

 Claim: The Bin-Packing problem has a PTAS (Polynomial Time Approximation Scheme).

I.e., Given 0>∀ε , one can always produce approximation algorithm whose (1) time is

polynomial in n and ε ; and (2) whose approximation factor is,

)()1()(IOPTIA ε+≤

2. Special Cases for Bin-Packing

 Before proving that the Bin-Packing problem has a PTAS, first consider two Special Cases

for Bin-Packing to get some interesting conclusions.

2.1 Case 1: All item sizes less than δ

Claim 1:

If item size δ<iu for i=1 to n, then

 1)()21()(++≤ IOPTIFF δ

)(IFF = the number of bins of First-fit algorithm.

Proof

① if 2/1≥δ

 1)(2)(+≤ IOPTIFFQ (Proved by First-fit)

 and δδ 2122/1 +≤⇒≥

 1)()21(1)(2)(++≤+≤∴ IOPTIOPTIFF δ

② if 2/1<δ

 The above figure shows the situation at the end of running the First-fit. Since all item sizes

are less than δ , there would be less then δ empty space in each bin (except, possibly, for the

last bin).

 So, the filled part (blue) =)1)(1)((
1

δ−−≥∑
=

IFFu
n

i

i , 1)(−IFF is the number of bins,

δ−1 is the smallest empty space within any bin.

 Another way of thinking ∑
=

n

i

iu
1

 is that suppose we could smash all the items & blend them,

and then put them into bins without leaving any spare space. 






∑
=

n

i

iu
1

 can not be more than

)(IOPT .

 Therefore, ∑
=

≤≤−−
n

i

i IOPTuIFF
1

)()1)(1)((δ

)1/()(1)(δ−≤−⇒ IOPTIFF

 But δδ 21)1/(1 +≤− ,

)21(1)1)(21(δδδδ −+=−+Q

 and 2/1<δ ⇒ δ210 −< ⇒ 1)1)(21(≥−+ δδ

 1)()21()()()21()1/()(1)(++≤⇒+≤−≤−∴ IOPTIFFIOPTIOPTIFF δδδ

 Claim 1 proved.

2.2 Case 2: There are only k different sizes of items

Claim 2:

If there are only k different sizes of items,

)(IOPT could be found deterministically in time)(12 +knO without using approximation

algorithm.

Proof

① Observation: The number of subsets of n elements is exponential)2(n
 in the general case,

while the number of subset is polynomial)(knO in the case where k is fixed.

 Why?

 Sort the items by size, then divide the n items into k groups.

 Denote a subset by a k-tuple of the number of elements of each size in the subset.

kiii ..., 21

 Example

 Suppose n items {1/2, 1/4, 1/3, 1/7, 1/9, 1/2, 1/3, 1/4, 1/9}

 k(=5) groups {1/2, 1/4, 1/3, 1/7, 1/9}

 We could denote subset {1/2, 1/4, 1/3, 1/9, 1/9} by <1, 1, 1, 0, 2>, where 2 represents the

number of times 1/9 appeared. Obviously, all of these numbers cannot greater than n. So we have

)(knO subsets.

② Compute)(IOPT

 Using dynamic programming.

 Find the subsets that can be packed in 1 bin

 Find the subsets that can be packed in 2 bins ⇒ Observation: each of these subsets

 must be composed of two subsets,

 … each of which can be packed in 1 bin

 …

 Find the subsets that can be packed in OPT(I) bins

 Since nIOPT ≤)(. There are n iterations at most, and each iterations has)(knO subsets.

 Implementation

 Step 1. Sort the subsets by the sum of their sizes. Those with sum not exceeding 1 can be

packed in a single bin. Call them 1-bin subsets.

 Step 2. For all pairs of 1-bin subsets, consider their union. Every union that is not a 1-bin

subset is a 2-bin subset.

 …

 Step i+1. For all pairs consisting of a 1-bin subset and an i-bin subset, consider their union. If

it is not an i-bin subset or less, then it is an (i+1)-bin subset.

 If the entire set is packed – done, else continue to next step.

 Time

 We consider all pairs in each iteration, thus time is))((2knO =)(2knO per iteration.

Since there are no more than n iterations, total time is)(12 +knO .

 Claim 2 proved.

3. Prove PTAS for Bin-Packing

3.1 Special cases

 To prove PTAS for Bin-Packing problem, first consider two special cases.

Given { }nsssI ..., 21= andε

3.1.1 Case 1: all item sizes are no more then 2/ε

Claim 3:

If item size 2/ε≤iu for i=1 to n,

 1)()1()(++≤ IOPTIA ε

Proof

Using Claim 1 directly.

3.1.2 Case 2: all item sizes are more then 2/ε

Claim 4:

If item size 2/ε>iu for i=1 to n,

 There exists a packing algorithm PA with approximation factor

PA(I)≤(1+ε)OPT(I)+1

Proof

① Fix k (we will later see how to choose it), then consider the following approximation

algorithm.

 Step 1. Sort I in non-decreasing order. Split into 





k

n
 groups of k elements each.

 Step 2. Pack the first group G1 in at most k bins, because we have k elements in G1

 Step 3. Construct set I`. Discard G1 first, and then change all numbers in each group to largest

 number in group.

 Step 4. Find `)(IOPT by using the method in 2.2.

 Time

 1. Sorting:)log(nnO

 2. Packing first group:)(nO

 3. Constructing I`:)(nO

 4. Finding OPT(I`):  )(1/2 +knnO . Since we divide I into 





k

n
 groups, there are no more

than 





k

n
-1 different sizes of items in I`, so that we could use Claim 2.

 Conclude: Time  )(1/2 +knnO

 Approximation Factor

 Since we used k bins to pack the first group and OPT(I`) bins to pack the rest of groups, we

have approximation factor:

kIOPTIPA += `)()(

② Lemma:)(`)(IOPTIOPT ≤

 Proof

 Construct set I``. Discard the last group  knG / first, and then change all numbers in each

group to the smallest number in group.

 Example

 G1 G2 G3 G4

 I 10 9 8 7 7 6 6 6 5 3 2

 I`` 8 8 8 6 6 6 5 5 5 discarded

 I` discarded 7 7 7 6 6 6 3 3

 Clearly)(``)(IOPTIOPT ≤ , because there are less elements in I`` and the size of

elements are smaller. Also ``)(`)(IOPTIOPT ≤ , because if compare Gi in set I`` with Gi+1 in

set I` (showed in red arrow), we see that (1) all the size of elements in I`s group are no more

than those in I``s group; and (2) the number of elements in I`s group is no more than those in I``s

group.

 Conclude,)(``)(`)(IOPTIOPTIOPT ≤≤

③ Choose k

 Approximation Factor

 Q kIOPTIPA += `)()(

 And)(`)(IOPTIOPT ≤

 kIOPTIPA +≤∴)()(

 Now choose 







= ∑

=

n

i

iSk
1

ε

 Since)(
1

IOPTu
n

i

i ≤∑
=

is proved in 2.1,

 1)()(
1

+⋅≤⇒≤∑
=

IOPTkIOPTu
n

i

i ε

 1)()1()()(++≤+≤⇒ IOPTkIOPTIA ε

 Therefore,

1)()1()(++≤ IOPTIPA ε

 Time

k

n
 =








 ∑
=

n

i

iS

n

1

ε
 ≤

∑
=

n

i

iS

n

1

ε

 But 2/ε>is for i=1 to n , so:

k

n
 ≤

∑
=

n

i

iS

n

1

ε
 ≤

∑
=

n

i

n

1 2

ε
ε

 =
2

2

ε

 Therefore, Running Time)(
1

2
2

2
+

εnO =)(
1

4
2
+

εnO

 Since ε is given (fixed), this packing algorithm is polynomial.

 Claim 4 proved.

3.2 General case

 Implementation

 Step 1. Split items into two sets: small (2/ε≤is) and large (2/ε>is).

 Step 2. Handle large items as in Claim 4.

 Step 3. Use FF to pack small items into remaining spaces of large item bins. When all such

space is used, open new bins using FF.

 Time

 Obviously Polynomial)(
1

4
2
+

εnO

 Approximation Factor

 Case 1: All large item bins are filled, and new ones opened.

 This is the same case as Claim 1, because we are using FF to pack the small elements of the

set (2/ε≤is). So the Approximation Factor is 1)()1()(++≤ IOPTIA ε

 Case 2: Not all large item bins are filled.

 Use conclusion of Claim 4, 1)()1(1)'()1()()(++≤++≤= IOPTIOPTIPAIA εε

3.3 Conclusion

 For Bin-Packing problem, Given ε∀ , we could always propose a Polynomial Time

Approximation Scheme whose approximation factor is)()1(IOPTε+ , time is)(
1

4
2
+

εnO .

 This conclusion also shows that if we want to get more close to optimal number of bins, we

need to pay more time. For example, if we choose ε =1/100, time)(40001nO would be awful

although it is polynomial.

