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PTAS for Bin-Packing 

1. Introduction 

 

 The Bin-Packing problem is NP-hard. If we use approximation algorithms, the Bin-Packing 

problem could be solved in polynomial time. For example, the simplest approximation algorithm 

is the First-fit algorithm, which solves the Bin-Packing problem in time )log( nnO . 

 

 We use the approximation factor to determine how good our approximation algorithm is. 

Let )(IA  be the number of bins required by the approximation algorithm, and let )(IOPT  be 

the optimal number of required bins for input I. We say that algorithm A has approximation factor 

C  if for every input I: 

)1()()( ≥⋅≤ CIOPTCIA  

This inequality means that the approximation algorithm would not use more than C  times the 

optimal number of bins, which is also the upper bound of  the approximation algorithm. 

Obviously, the closer C  is to 1, the better the approximation. 

  

 Claim: The Bin-Packing problem has a PTAS (Polynomial Time Approximation Scheme). 

I.e., Given 0>∀ε , one can always produce approximation algorithm whose (1) time is 

polynomial in n  and ε ; and  (2) whose  approximation factor is, 

)()1()( IOPTIA ε+≤  

 

2. Special Cases for Bin-Packing 

  

 Before proving that the Bin-Packing problem has a PTAS, first consider two Special Cases 

for Bin-Packing to get some interesting conclusions. 

 

2.1 Case 1: All item sizes less than δ  

 

Claim 1:  

If item size δ<iu  for i=1 to n, then 

 1)()21()( ++≤ IOPTIFF δ  

)(IFF = the number of bins of First-fit algorithm. 

 



Proof 

① if 2/1≥δ  

 1)(2)( +≤ IOPTIFFQ   (Proved by First-fit) 

 and δδ 2122/1 +≤⇒≥  

 1)()21(1)(2)( ++≤+≤∴ IOPTIOPTIFF δ  

② if 2/1<δ   

 

 The above figure shows the situation at the end of running the First-fit. Since all item sizes 

are less than δ , there would be less then δ  empty space in each bin (except, possibly, for the 

last bin).  
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 1)()21()()()21()1/()(1)( ++≤⇒+≤−≤−∴ IOPTIFFIOPTIOPTIFF δδδ  



                Claim 1 proved. 

 

2.2 Case 2: There are only k different sizes of items 

 

Claim 2:  

If there are only k different sizes of items, 

 )(IOPT  could be found deterministically in time )( 12 +knO  without using approximation 

algorithm. 

 

Proof 

① Observation: The number of subsets of n elements is exponential )2( n
 in the general case, 

while the number of subset is polynomial )( knO  in the case where k is fixed. 

 Why? 

 

 Sort the items by size, then divide the n items into k groups.  

 Denote a subset by a k-tuple of the number of elements of each size in the subset. 

kiii ..., 21  

 Example 

 Suppose n items {1/2, 1/4, 1/3, 1/7, 1/9, 1/2, 1/3, 1/4, 1/9} 

 k(=5) groups {1/2, 1/4, 1/3, 1/7, 1/9} 

 We could denote subset {1/2, 1/4, 1/3, 1/9, 1/9} by <1, 1, 1, 0, 2>, where 2 represents the 

number of times 1/9 appeared. Obviously, all of these numbers cannot greater than n. So we have 

)( knO  subsets.  

② Compute )(IOPT  

 Using dynamic programming. 

  Find the subsets that can be packed in 1 bin 

  Find the subsets that can be packed in 2 bins ⇒  Observation: each of these subsets    

                                                 must be composed of two subsets, 

      …            each of which can be packed in 1 bin

      …         

  Find the subsets that can be packed in OPT(I) bins 



 Since nIOPT ≤)( . There are n iterations at most, and each iterations has )( knO subsets. 

 

 Implementation 

 Step 1. Sort the subsets by the sum of their sizes. Those with sum not exceeding 1 can be 

packed in a single bin. Call them 1-bin subsets. 

 Step 2. For all pairs of 1-bin subsets, consider their union. Every union that is not a 1-bin 

subset is a 2-bin subset.      

 … 

 Step i+1. For all pairs consisting of a 1-bin subset and an i-bin subset, consider their union. If 

it is not an i-bin subset or less, then it is an (i+1)-bin subset.  

 If the entire set is packed – done, else continue to next step. 

 

 Time 

 We consider all pairs in each iteration, thus time is ))(( 2knO = )( 2knO  per iteration. 

Since there are no more than n iterations, total time is )( 12 +knO .       

                Claim 2 proved. 

 

3. Prove PTAS for Bin-Packing 

 

3.1 Special cases 

 To prove PTAS for Bin-Packing problem, first consider two special cases. 

Given { }nsssI ..., 21=  andε  

3.1.1 Case 1: all item sizes are no more then 2/ε   

 

Claim 3:  

If item size 2/ε≤iu  for i=1 to n, 

 1)()1()( ++≤ IOPTIA ε  

 

Proof  

Using Claim 1 directly. 

 

3.1.2 Case 2: all item sizes are more then 2/ε  

 

Claim 4: 

If item size 2/ε>iu  for i=1 to n, 

 There exists a packing algorithm PA with approximation factor 

PA(I)≤(1+ε)OPT(I)+1 



 

Proof 

① Fix k (we will later see how to choose it), then consider the following approximation 

algorithm. 

 Step 1. Sort I in non-decreasing order. Split into 


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n
 groups of k elements each. 

 

 Step 2. Pack the first group G1 in at most k bins, because we have k elements in G1 

 Step 3. Construct set I`. Discard G1 first, and then change all numbers in each group to largest 

   number in group. 

 Step 4. Find `)(IOPT  by using the method in 2.2. 

 

 Time  

 1. Sorting: )log( nnO  

 2. Packing first group: )(nO  

 3. Constructing I`: )(nO  

 4. Finding OPT(I`):   )( 1/2 +knnO . Since we divide I into 
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 groups, there are no more 
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-1 different sizes of items in I`, so that we could use Claim 2. 

 Conclude: Time   )( 1/2 +knnO  

 

 Approximation Factor 

 Since we used k bins to pack the first group and OPT(I`) bins to pack the rest of groups, we 

have approximation factor: 

kIOPTIPA += `)()(  

② Lemma: )(`)( IOPTIOPT ≤  

 Proof 

 Construct set I``. Discard the last group  knG / first, and then change all numbers in each 



group to the smallest number in group. 

 

 Example 

  G1   G2   G3   G4 

 I 10  9  8 7  7  6  6  6  5  3  2 

 I`` 8  8  8  6  6  6  5  5  5  discarded 

 I` discarded  7  7  7  6  6  6  3  3 

 

 Clearly )(``)( IOPTIOPT ≤ , because there are less elements in I`` and the size of 

elements are smaller. Also ``)(`)( IOPTIOPT ≤ , because if compare Gi in set I`` with Gi+1 in 

set I` (showed in red arrow), we see that  (1) all the size of elements in I`s group are no more 

than those in I``s group; and (2) the number of elements in I`s group is no more than those in I``s 

group. 

 Conclude, )(``)(`)( IOPTIOPTIOPT ≤≤  

③ Choose k 

 Approximation Factor 

 Q kIOPTIPA += `)()(  

 And )(`)( IOPTIOPT ≤  

 kIOPTIPA +≤∴ )()(  

 Now choose 







= ∑

=

n

i

iSk
1

ε  

 Since )(
1

IOPTu
n

i

i ≤∑
=

is proved in 2.1, 

 1)()(
1

+⋅≤⇒≤∑
=

IOPTkIOPTu
n

i

i ε   
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 Therefore,  

1)()1()( ++≤ IOPTIPA ε  

 

 Time 
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 But  2/ε>is  for i=1 to n , so: 
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 Since ε  is given (fixed), this packing algorithm is polynomial.  

                Claim 4 proved.     

3.2 General case 

 Implementation 

 Step 1. Split items into two sets: small ( 2/ε≤is ) and large ( 2/ε>is ). 

 Step 2. Handle large items as in Claim 4. 

 Step 3. Use FF to pack small items into remaining spaces of large item bins. When all such 

space is used, open new bins using FF. 

 

 Time 

 Obviously Polynomial )(
1

4
2
+

εnO  

 

 Approximation Factor 

 Case 1: All large item bins are filled, and new ones opened. 

 

 This is the same case as Claim 1, because we are using FF to pack the small elements of the 

set ( 2/ε≤is ). So the Approximation Factor is  1)()1()( ++≤ IOPTIA ε  

 Case 2: Not all large item bins are filled. 

 Use conclusion of Claim 4,  1)()1(1)'()1()()( ++≤++≤= IOPTIOPTIPAIA εε   

 

3.3 Conclusion 

 

 For Bin-Packing problem, Given ε∀ , we could always propose a Polynomial Time 



Approximation Scheme whose approximation factor is )()1( IOPTε+ , time is )(
1

4
2
+

εnO . 

 This conclusion also shows that if we want to get more close to optimal number of bins, we 

need to pay more time. For example, if we choose ε =1/100, time )( 40001nO  would be awful 

although it is polynomial. 

               


