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 Deterministic Sampling 

The deterministic sampling Idea 

If a non-periodic pattern is given and a small deterministic sample (DS) is 

generated such that if sample positions do not match with Text positions then there 

is no occurrence of Pattern in Text. 

The sample DS with size s  is an ordered set where l<=(logm -1). And 

Deterministic sample is  DS =[ds(1), ds(2), d(3),…d(j),…, ds(l)]. 

Pattern  

       1   2 3     4     5     6      7      8 

 

DS       

                                        1     2    

In Example, the pattern has length 8, hence size of DS<= 2 i.e. (log8-1) 

In Text matching, for every location 1<=i<=n-m+1, occurrence of DS is checked.  

Case 1: No occurrence of DS found 

 Result: No occurrence of Pattern in Text 

Case 2: Occurrence of DS found for candidate location i 

 Result: Let x be the index of sample’s start position in Pattern. Then based 

on the candidacy of location i, candidates in the locations x-1 preceding i and m/2 –

x locations succeeding i can be eliminated. This property is known as Ricochet 

property of Deterministic samples. 

The location i-x+1 through i-1 and i+1 through i +m/2 –x constitutes dead zone. 

Pattern    

Text 

 

 

        i 



 Every occurrence of DS guarantees a dead zone of length = m/c where c 

depends on x. 

Hence characteristics of good DS: 

1. Length of DS is small. |DS| = O(logm) 

2. There exists an integer k such that if DS occurs at position i in the text then 

no occurrence of pattern starts in section [i-k…… i+m/2 -k] except i.  This 

section [i-k ……. i+m/2 -k] except i is dead zone  

 

 

 

 

 

 

Pattern Matching Algorithm 

STEP 1: Get candidate positions using DS 

count        0     / /maintains the count of candidates 

for  i       1 to n-m+1 

 match       true 

for  j      1 to s 

  if T[i+j+x] ≠ DS[j] 

   match       false 

  end 

 end 

if match = true 

  count =count+1 

  Candidate[count] = i  

 end 

end 

 

 

 

k 
i m/2-k 

Dead zone 



STEP 2: Remove Candidates from the list which lie in dead zone 

 n        1 

RemainingCandidates[1] = Candidates[1] 

for m       1 to Length[Candidates] -1 

 if Candidates[m+1] – Candidates[m] >x 

  n =n+1 

  RemainingCandidates[n] = Candidates[m+1]  

 end 

end 

 

STEP 3: Use naïve based pattern matching approach for RemainingCandidates. 

 Time complexity  

Step 1 takes O(n*s) or O(nlogm) 

Step 3 verification of remaining candidates (n/(m/c)) takes O(m* (nc/m)) or O(nc) 

Hence the total Time complexity is O(nlogm). 

 

VISHKIN (1990) 

For non-periodic pattern s a DS of size logm can be constructed in linear time. 

Periodicity 

A String P= U^kU’ is said to be periodic if k>1 and U’  is a prefix of U. So U is the 

period of P. 

Example: 

ABABABA is periodic because it can be represented as (AB)^3A 

ABA is not periodic as in representation (AB)1A  K=1 

 

 

 

 

 



Let us take an example of a periodic String  

 P= ABCDABCDABCDABCDABCDABCDABCDABCDAB 

P can be represented as : 

 P = (ABCDABCDABCDABCD)2AB 

  Period is (ABCDABCDABCDABCD) 

 

Or 

 P = (ABCDABCD)4AB 

  Period is (ABCDABCD) 

 Or 

P = (ABCD)8AB 

 Period is (ABCD) 

All the above representations are valid periodic representations. 

 

Alternate view of Periodicity 

Let length of P is m and length of U is x then for P =UkU’ 

 P[i] = P[i+x] 

  Where 1<=i<=m-x 

 

 

 

 

 

 

 

 



Periodicity Lemma 

 

 

 

 

 

 

 

Let U1, U2 be periods of P and let |U1| = x1 and |U2|= x2 

Then,  P has a period U3 where |U3|= gcd(x1, x2) 

 

Claim : If two numbers b and c are co-prime and b>c then b-c and c are co-prime 

Proof : Let us assume that b-c and c are not co-prime, hence they have a common 

factor x besides 1 

Therefore, b-c = x .w 

and  c = x.z 

On adding b-c and c, we get 

b = x.w +x.z =x.(w+z) 

This implies that b and c share a common factor x, which contradicts our 

assumption that b and c are co-prime. 
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Proof of Periodicity lemma by Induction 

For |P| = 1 is obvious 

Let us assume that periodicity lemma hold for all the strings of length < n    

For |P| = n 

 

 

 

 

Consider U1, x1> x2 , hence U1[i] = U1[i+x2] where 1<=i <= x1-x2 

As U2  is also a period of P  

Hence, P[i] = P[i+x1] = P[i+x1 –x2] where 1<=i<=m-x1  

This concludes that U1 has a period of length (x1 – x2). 

From Induction hypothesis we can say U1 has a period of length   

gcd(x1 – x2, x2). But as per the claim, this is equal to gcd(x1, x2), hence P 

also has a peiod of length gcd(x1, x2) 

 

 

Sample construction 

Assume that we have the witness table WIT for the pattern. Let us consider P 

shifted and stacked m/2 times. If a line is drawn at a position j then it can intersect 

i-th row or not. If the line intersects i-th row then symbol (i,j) is present at the 

intersection. 

 

 

 

  

 

U1 U1 

U2 U2 U2 U2 U2 

m/2 



 

Claim 1: If i1 and i2 be two different elements of P[1….m/2] then there exists an 

integer j such that j-th column intersects both i1 and i2 with symbol(i1, j) ≠ 

symbol(i2, j). j can be obtained from WIT in constant time. 

Due to non-periodicity, for occurrences of pattern placed at i1 and i2, there is a 

mismatch at position j given by j = i2 + WIT[i2-i1] 

 

Claim2: If J is a set of rows and if a vertical colum intersects the first and the last 

row of J then it intersects all the rows of J. 

Procedure:  

1. Choose column j where symbol a occurs less than half times 

2. Discard all the rows in which symbol a isn’t present at column j 

3. Repeat until only one row is left 

 

Example- 

    

    A B A B B A A B A B 

         A B A B B A A B A B 

      A B A B B A A B A B 

           A B A B B A A B A B 

        A B A B B A A B A B 

                 

                                     A B A B B A A B A B 

A B A B B A A B A B 

1 2 3 4 5 6 7 8 9 10 

Sample : 7, A 

      8, B 

 



Pattern matching in periodic patterns 

Step 1: Find the smallest period of the pattern 

Step2: Partition the text into windows of m/2 . For each window, if there are more 

than 2 occurrences of sample then consider just first and last occurrences as 

possible candidates for occurrence of pattern.  

Step 3: Check all the possible candidates in naïve way.    

 


