Algorithms II 89-322-01, 89-322-02, FINAL EXAM MOED B

Instructor: Prof. Amihood Amir
Length of Exam: 2 hours
Time: September 14, 2008, 08:30
NO OUTSIDE MATERIAL ALLOWED!!!

1. The algorithm we saw for finding the maximum agreement homeomorphic subtree of two evolutionary trees, the dynamic programming considered subtrees. We saw that there are $O(n)$ subtrees for an n-leaf tree. Write the exact number of subtrees for a binary evolutionary tree with n leaves. Prove your claim.
Answer:
The number is $4 n-6$. Since every edge in the tree has precisely two subtrees (one on each side) and the number of edges is $2 n-3$, because this is an unrooted full binary tree. See the proof for that in moed alef.

Errors:

2. Consider the following integer program:

Objective function: $\max 4 x_{1}-5 x_{2}$.

Constraints:

$$
\begin{aligned}
& \text { quad } x_{1}-x_{2} \geq 0 \\
& \text { quad } x_{1}<3 \\
& \text { quad } x_{1} \geq 0 \\
& \text { quad } x_{2} \geq 0
\end{aligned}
$$

Does the above $I P$ have a solution? What is it?

Answer:

For illustration purposes, take $x_{1}=x$ and $x_{2}=y$. The constraints give us the domain:

The function $4 x-5 y$ in this domain gets the maximum value when x is largest and y is smallest. We are looking at integers which means $x=2$ and $y=0$.

Errors:
3. Let P be a pattern of length m. If you are given the KMP automaton, can you deduce from it the locations in the witness table that have a "*"? How?

Answer:

The fail link from the accepting state of the KMP automaton points to the first location where there is a "*" (assume it points to state k, then there is a "*" in location $m-k+1$ of the witness table). Following the failure link from state k, say to state ℓ, means putting a "*" in location $m-\ell+1$ of the witness table. We continue in this fashion until the failure link points to state 0 .

Errors:

