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1 Introdu
tionFor many years, one of the favorite questions that interviewers for high-te
h
ompanies in Israel asked prospe
tive job appli
ants was the following.Suppose a 
ompany developed a very resilient glass. They 
reated iden-ti
al glass balls and desire to �nd the height from whi
h a fall of the glassball will 
ause it to shatter. The tests are 
ondu
ted by dropping glass ballsfrom various 
oors of an n-story building. We require the 
oor number ksu
h that the glass breaks if dropped from it, but does not break from 
oork � 1.We would like to know what is the minimum number of tests (ball drops)ne
essary to �nd the number k, in the worst 
ase.Three situations are 
onsidered:1. One ball: The new appli
ant is presented with a single ball for thetests (due to the high 
ost of the new material).Clearly, the appli
ant has no 
hoi
e but to start from 
oor 1 and dropthe ball, if the ball breaks then the answer is 1. As long as the balldoes not break, the tester needs to sequentially move up 
oor by 
oor,and drop the ball from ea
h 
oor. When eventually the ball breaksupon the drop from 
oor k, that is the result. The number of tests isthen O(n).2. Unbounded number of balls: The tester gets as many balls as herrequires.Clearly, this is a 
ase for the divide-and-
onquer approa
h. Binarysear
h over the n 
oors of the building 
an guarantee the result intime O(log n).3. Two balls: The tester has exa
tly two balls.This is the intriguing 
ase. Super�
ially, it seems like another ball
an not improve the situation over the one-ball 
ase by more thana 
onstant. A se
ond look at the problem shows that divide-and-
onquer 
an still be used, but only to depth 2. This is a bounded



2 Amihood Amirdepth divide-and-
onquer. Simply divide the n 
oors to groups of pnsequential 
oors. This 
reates pn su
h groups. Use the �rst ball to�nd the group where the ball breaks, in O(pn) tests. Then use these
ond ball to \�ne tune" the result and �nd what 
oor within thegroup is the 
riti
al one. Sin
e the group size is pn, the number oftests for this level is also O(pn), for a total of O(pn) tests.The above problem demonstrates in a very 
lear way the bounded-depthdivide-and-
onquer te
hnique. This te
hnique has been playing a role inpattern mat
hing for over two de
ades.String mat
hing, the problem of �nding all o

urren
es of a given patternin a given text, is a 
lassi
al problem in 
omputer s
ien
e. The problem haspleasing theoreti
al features and a number of dire
t appli
ations to \realworld" problems. The Boyer-Moore [Boyer and Moore, 1977℄ algorithm isdire
tly implemented in the ema
s \s" and UNIX \grep" 
ommands.Advan
es in Multimedia, Digital Libraries and Computational Biologyhave shown that a mu
h more generalized theoreti
al basis of string mat
h-ing 
ould be of tremendous bene�t [Pentland, 1992; Olson, 1995℄. To thisend, string mat
hing has had to adapt itself to in
reasingly broader def-initions of \mat
hing". Two types of problems need to be addressed {generalized mat
hing and approximate mat
hing. In generalized mat
hing,one still seeks all exa
t o

urren
es of the pattern in the text, but the\mat
hing" relation is de�ned di�erently. The output is all lo
ations inthe text where the pattern \mat
hes" under the new de�nition of mat
h.The di�erent appli
ations de�ne the mat
hing relation. Examples 
an beseen in Amir and Fara
h's less-than mat
hing ([Amir and Fara
h, 1995℄)or Amir, Iliopoulos, Kapah and Porat's weighted mat
hing ([Amir et al.,2005℄). The se
ond model is that of approximate mat
hing. In approximatemat
hing, one de�nes a distan
e metri
 between the obje
ts (e.g. strings,matri
es) and seeks all text lo
ation where the pattern mat
hes the text bya pre-spe
i�ed \small" distan
e.One of the earliest and most natural metri
s is the Hamming distan
e,where the distan
e between two strings is the number of mismat
hing 
har-a
ters. Let n be the text length and m the pattern length. Abraham-son [Abrahamson, 1987℄ showed that the Hamming distan
e problem, alsoknown as the string mat
hing with mismat
hes problem 
an be solved intime O(npm logm), i.e. within these time bounds one 
an �nd the ham-ming distan
e of the pattern at every text lo
ation. This is an asymptoti
improvement over the O(nm) bound even in the worst 
ase.All problems mentioned above, i.e. the less-than mat
hing, weightedmat
hing, and Hamming distan
e, were all solved by the bounded-depthdivide-and-
onquer method. We will review these problems and point out



Two Glass Balls and a Tower 3the appli
ation of this method.2 Hamming Distan
e2.1 Problem De�nition and PreliminariesDEFINITION 1.1. Let a; b 2 �. De�neneq(a; b) =def � 1 if a 6= b;0 if a = b:2. LetX = x0x1:::xn�1 and Y = y0y1:::yn�1 be two strings over alphabet�. Then the Hamming distan
e between X and Y (ham(X;Y )) isde�ned as ham(X;Y ) =def n�1Xi=0 neq(xi; yi):3. The The Hamming Distan
e Problem is de�ned as follows:Input: Text T = t0:::tn�1, pattern P = p0:::pm�1, where ti; pj 2�; i = 0; :::n� 1; j = 0; :::;m� 1.Output: For every text lo
ation i, output ham(P; T (i)), where T (i) =titi+1:::ti+m�1.Abrahamson [Abrahamson, 1987℄ developed a seminal algorithm that�nds ham(P; T (i)) 8i in total time O(npm logm), using bounded-depthdivide-and-
onquer. We present a simpli�ed version of that algorithm.The two glass balls symbolize two di�erent te
hniques to solve the prob-lem. One easily handles the 
ase of a small alphabet, and the other handlesthe 
ase of every alphabet symbol appearing a small number of times. Wewill make a slight 
hange in the problem requirements, though. We will
ount mat
hes rather than mismat
hes. The Hamming distan
e 
an be eas-ily 
al
ulated from the number of mat
hes sin
e it is simply the di�eren
ebetween the length of the pattern (m) and the number of mat
hes.2.2 Small alphabetWe 
onsider the 
ase where P has a small alphabet, e.g. less than pmdi�erent alphabet symbols. We will use 
onvolutions, as introdu
ed byFis
her and Paterson [Fis
her and Paterson, 1974℄. Fis
her and Patersonobserved that string mat
hing is a spe
ial 
ase of a generalized 
onvolution.



4 Amihood AmirDEFINITION 2. Let X = hx0; :::; xmi ; Y = hy0; :::; yni be two given ve
-tors, xi; yi 2 D. Let 
 and � be two given fun
tions where
 : D �D ! E;� : E �E ! E; � asso
iative:Then the 
onvolution of X and Y with respe
t to 
 and � is:Xh
;�iY = hz0; :::; zn+miwhere zk = Mi+j=k xi 
 yj for k = 0; :::;m+ n:EXAMPLE 3.Boolean Produ
t: 
 is ^ and � is _.Polynomial produ
t: 
 is � and � is +.Exa
t string mat
hing: 
 is = and � is ^ but the pattern is transposed.For all mat
hes of pattern b a a in text b a a b a , do b a a b ah=;^ib a aR.b a a b aa a b� � � � � � �1 0 0 1 00 1 1 0 10 1 1 0 1� � � � � � �0 0 1 0 0 1 0� � �Note that (Xh=;^iY )k = 1 i� hxk�n; :::; xki = hyn; :::; y0i for n � k � m.We 
on
lude that there is a mat
h in position 2, i.e.b a a b a� � �h a a b iRThe problem is that most su
h 
onvolutions require time O(nm) to 
om-pute. An ex
eption is polynomial multipli
ation that 
an be a
hieved intime O(n logm) using the Fast Fourier Transform (FFT). Thus it is ne
es-sary to redu
e the desired 
onvolution to polynomial multipli
ation in the
omplex �eld in order to take advantage of the FFT algorithm. We showhow this is done in the 
ounting mat
hes problem.



Two Glass Balls and a Tower 5We need some de�nitions �rst.DEFINITION 4. De�ne��(x) = � 1 if x = �0 if x 6= � ��(x) = � 1 if x 6= �0 if x = �If X = x0 : : : xn�1 then ��(X) = ��(x0) : : : ��(xn�1). Similarly de�ne��(X).For string S = s0:::sn�1, SR is the reversal of the string, i.e. sn�1:::s0.We return to the mat
h problem for small alphabets. The produ
t ��(T )by ��(PR) is an array where the number in ea
h lo
ation is the number ofmat
hes of a � text element with a � in the pattern. If we multiply ��(T )by ��(P )R, for every � 2 �, and add the results, we get the total number ofmat
hes. Sin
e polynomial multipli
ation 
an be done in time O(n logm)using FFT, and we do j�j multipli
ations, the total time for �nding allmat
hes using this s
heme is O(j�jn logm).Time: Our alphabet size is O(pm), so the problem 
an be solved intime O(npm logm).Noti
e that this te
hnique knows how to 
ount mat
hes for \groups" ofsymbol o

urren
es, all those who are equal to the symbol being 
onsidered.2.3 Every Symbols o

urs only a Few Times in PatternConsider now the 
ase where the alphabet is large, but also where everyalphabet symbol appears in the pattern only a small number of times, e.g.no more than pm times.The most naive algorithm for 
ounting mat
hes is, for every text lo
ationi, to 
ount all mat
hes of the pattern and text, and re
ord it in M [i℄, whereM is a number of mat
hes array. This 
an be implemented by the followingsimple algorithm.Naive Algorithm version Af Initialize M to 0 gM  0f Main Loop gFor i = 0 to n� 1 do:For j = 0 to m� 1 do:If ti+j = pj then M [i℄ M [i℄ + 1enfFor jendFor iend AlgorithmIt is 
lear that version A is equivalent to version B below, where we simply
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he
k all pattern element versus the text element s
anned at the momentand update the appropriate 
ounters.Naive Algorithm version Bf Initialize M to 0 gM  0f Main Loop gFor i = 0 to n� 1 do:For j = 0 to m� 1 do:If ti = pj then M [i� j℄ M [i� j℄ + 1enfFor jendFor iend AlgorithmThe time for both above algorithms is, naturally, O(nm). However, notethat in version B, we may make a slight improvement. We 
an pre-pro
essthe pattern and 
reate, for every alphabet symbol �, a list L�[0℄; :::; L�[`� ℄of lo
ations where � o

urs in the pattern, i.e. all i su
h that pi = �.EXAMPLE 5. Let 0 1 2 3 4 5 6 7 8 9P = A A B A C B A B C BThen A's list is: LA = 0; 1; 3; 6, B's list is: LB = 2; 5; 7; 9, and C's listis: LC = 4; 8.We 
an modify version B to only 
onsider ti's list in the 
omparison,rather than go through the entire pattern. This a
hieves the following al-gorithm:Not-So-Naive Algorithm Cf Initialize M to 0 gM  0f Main Loop gFor i = 0 to n� 1 do:Let �  tiFor all j = 0 to `� do:M [i� L� [j℄℄ M [i� L�[j℄℄ + 1enfFor jendFor iend AlgorithmIn the worst 
ase, Algorithm C has exa
tly the same time as versionB. However, in the fortunate 
ase we are 
onsidering, where every symbolo

urs at most pm times in the pattern, the lengths of the L lists never



Two Glass Balls and a Tower 7ex
eeds pm and algorithm C's running time is then O(npm).Noti
e that this se
ond glass ball 
ounts mat
hes within groups of equalsymbol o

urren
es. We sequentially go through the entire list of indi
es ofevery symbol.2.4 General AlphabetsWe are now ready to present the general algorithm.DEFINITION 6. A symbol that appears in the pattern at least pm logmtimes is 
alled frequent. Otherwise, it is 
alled rare.It is 
lear from the de�nition that there are at most O(pm=plogm)frequent symbols, thus we 
an 
ount mat
hes of all frequent symbols intime O(npm= logm logm) = O(npm logm) as shown in Subse
tion 2.2.The mat
hes of rare symbols are 
ounted as in Algorithm C of Subse
-tion 2.3. Sin
e a rare symbol appears at most pm logm times, this stage isdone in time O(npm logm).3 Less-Than Mat
hingThe Less-ThanMat
hing problem was introdu
ed by Amir and Fara
h [Amirand Fara
h, 1995℄ as a tool for solving the approximate mat
hing problem innon-re
tangular two dimensional images. The problem is de�ned as follows.The less-than mat
hing problem is:Input: Text string T = t0; :::; tn�1 and pattern string P = p0; :::; pm�1where ti; pi 2 N (the set of natural numbers).Output: All lo
ations i in T where ti+k�1 � pk; k = 1; :::;m.In words, every mat
hed element of the pattern is not greater than the
orresponding text element. If the text and pattern are drawn s
hemati
ally,we are interested in all position where the pattern lies 
ompletely below thetext. See Figure 1.The less-than mat
hing problem was also solved by the bounded-depthdivide-and 
onquer te
hnique [Amir and Fara
h, 1995℄. As in the Hammingdistan
e 
ase, we also have two algorithms. The �rst handles small alpha-bets (groups of 
oors) and is solved by the FFT. The se
ond handles thesituation within the groups. This pro
ess is tri
kier than in the mismat
h
ase that we saw in Se
tion 2.3.3.1 Small AlphabetAssume that there are g di�erent elements in the pattern.NOTATION 7. For �; x 2 N, let
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Text

Pattern

Less−than
match

mismatchFigure 1. The �rst appearan
e of the pattern lies 
ompletely below the text,thus there is a mat
h. The se
ond is a mismat
h.��(x) = � 1 if x = �0 if x 6= ��<�(x) = � 1 if x < �0 if x � � or x = �If X = x1; : : : ; xn then ��(X) = ��(x1); : : : ; ��(xn). Similarly de�ne�<�(X).We would like to know for ea
h element of the pattern, where it is linedup with something less than it. We 
an a
hieve this by 
omputing, forea
h � in P , �<�(T )
��(PR) (where 
 is polynomial multipli
ation), and
onsidering all non-zero lo
ations.Let � = f�1; �2; : : : ; �gg be the set of all di�erent numbers appearing inP . Let Mi = �<�i(T ) 
 ��i(PR) (where 
 is polynomial multipli
ation).Then Mi is non-zero at position t i� there is a �i in the pattern mat
hedwith something smaller than �i when the pattern is lined up at t. These
ases are exa
tly when we get a mismat
h. If we let M be the sum of allthe Mi's we get a non-zero if there was a mismat
h 
aused by any � 2 �.By using FFT we 
an 
al
ulate ea
h of the polynomial multipli
ations intime O(n logm), for a total of O(g n logm).3.2 The General CaseAs we had mentioned, dealing with the elements within groups is not im-mediate. We need to de�ne the groups in a somewhat di�erent manner.



Two Glass Balls and a Tower 9We therefore provide here the general framework and then show how toeÆ
iently \�ne tune" within groups.Our input is text T = t0; : : : ; tn�1 and pattern P = p0; : : : ; pm�1: With-out loss of generality we may assume that the text alphabet is the same asthe pattern alphabet. If this is not the 
ase, repla
e every text number bythe largest pattern number that does not ex
eed it.In this 
ase also frequent numbers are handled di�erently from rare num-bers. A number is frequent if it appears at least pm logm times, otherwiseit is rare. There are at most pm=plogm frequent numbers.We 
an use the FFT in the manner des
ribed in Subse
tion 3.1 to disqual-ify all text lo
ations where there is a text element smaller than a frequentelement. This 
an be done in time O(npm logm). Now in all remaininglo
ations we just need to make sure that the text lo
ation is at least as largeas the pattern element 
orresponding to it. This is done by splitting intogroups.Dividing into Groups:Let pj0 ; : : : ; pjg1 be the non-frequent elements of P .Consider every pattern element as a pair hs; di where s is a number andd is the lo
ation of the number in the array P . We get a list L = hpj0 ; j0i,hpj1 ; j1i, : : :, hpjg1 ; jg1i.Sort L lexi
ographi
ally. (There are no more than m elements in L.) Callthe sorted array L0.Divide L0 into g = O(pm= logm) blo
ks, ea
h 
ontaining no more than2pm logm elements, in a manner that no number appears in more than oneblo
k. We are assured that su
h a division is possible be
ause all remainingnumbers are non-frequent.Possible Implementation: Put the �rst pm o

urren
es in blo
k 1.Let � be the symbol of the last o

urren
e in blo
k 1. Make sure all o

ur-ren
es of � are added to blo
k 1 (sin
e � is rare it will not add more thanpm logm elements. Continue in a similar fashion to 
reate all blo
ks.EXAMPLE 8. Let the pattern P be:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15G A H A C B D E C B F F E G A Bp16 = 4.Sorting the o

urren
es gives: hA; 1i; hA; 3i; hA; 14i; hB; 5i; hB; 9i; hB; 15i;hC; 4i; hC; 8i; hD; 6i; hE; 7i; hE; 12i; hF; 10i; hF; 11i; hG; 0i; hG; 13i; hH; 2i.The suggested implementation produ
es the blo
ks:blo
k 1: hA; 1i; hA; 3i; hA; 14i; hB; 5i; hB; 9i; hB; 15i.blo
k 2: hC; 4i; hC; 8i; hD; 6i; hE; 7i; hE; 12i.blo
k 3: hF; 10i; hF; 11i; hG; 0i; hG; 13i.blo
k 4: hH; 2i.



10 Amihood AmirNoti
e that we have 4 blo
ks, none larger than 6 elements.Constru
t the Text and Pattern of Representatives:For ea
h blo
k Bi; i = 0; : : : ; g � pm= logm let bi be the smallest(leftmost) element in the blo
k; 
all bi the representative of blo
k Bi.Let T 0 and P 0 be T and P su
h that every ti and pi is repla
ed by therepresentative of the blo
k it is in. This step 
an be implemented by asequential s
an of L0.We now �nd all less-than mat
hes of P 0 in T 0, by the FFT. P 0 and T 0
an be 
onsidered \
attened out" versions of P an T . When we seek allless-than mat
hes of P 0 in T 0 we only dete
t the \large" mismat
hes, i.e.,those between elements that are so di�erent that they are in di�erent blo
ks.However, mismat
hes between elements of the same blo
k are undete
ted.At this stage we must \�ne tune" our approximate solution. We now 
ometo the se
ond level of our bounded divide-and-
onquer. The one that needsto adjust for the mismat
hes that may exist but were not re
orded. Theseare pre
isely the 
ases where a text number is smaller than a pattern numberthat is in the same blo
k as the text number.3.3 Che
king Elements within Blo
ksS
an T and for every element ti of T only 
ompare it to the O(pm logm))elements of P that are in ti's blo
k. The subroutine is very similar toalgorithm C in Se
tion 2.3.Fine Tuning AlgorithmFor i = 0 to n� 1 do:Let Bti be the blo
k of L0 that ti is in,Let PBti  fhs; dijhs; di 2 BtigFor every element hs; di in PBti f at most 2pm logm elements gif ti < s then M [i� d℄ M [i� d℄ + 1endForendFor iend AlgorithmThe ve
torM is now 
orre
t sin
e the �rst part of the algorithm in
ludedall the errors between blo
ks and the last part found all the errors within ablo
k.Time: O(m logm) for sorting and O(n logm) for redu
ing to alphabetof pattern.O(npm logm) for less-than mat
hing of the representativesO(npm logm) for 
orre
ting mismat
hes within blo
ks



Two Glass Balls and a Tower 11Total: O(npm logm)4 Approximate Mat
hing in Weighted Sequen
esWeighted sequen
es have been re
ently introdu
ed by Iliopoulos et al. [Il-iopoulos et al., 2003℄ as a tool to handle a set of sequen
es that are notidenti
al but have many lo
al similarities. The weighted sequen
e is a \sta-tisti
al image" of this set, where the probability of every symbol's o

urren
eat every text lo
ation is given.DEFINITION 9. A weighted sequen
e T = t0; :::; tn over alphabet � is asequen
e of sets ti; i = 0; :::; n. Every ti is a set of pairs (sj ; �i(sj)), wheresj 2 � and �i(sj) is the probability of having symbol sj in lo
ation i.Formally,ti = f(si; �i(sj)) j sj 6= s` for j 6= `; and Xj �i(sj) = 1g:For a �nite alphabet � = fa1; :::; aj�jg we 
an view a weighted sequen
eas a j�j � n matrix T of numbers in [0; 1℄, where T [j; i℄ = �i(aj). For therest of this paper we assume a �nite �xed alphabet �.EXAMPLE 10. Let � = fA;B;C;Dg, then an example of a text of length7 is: A 1/2 1/3 1/4 1 1/6 1/4 0B 1/4 1/3 1/4 0 1/6 0 1/5C 1/4 0 1/4 0 1/6 1/2 3/5D 0 1/3 1/4 0 1/2 1/4 1/5DEFINITION 11. P = p0; :::; pm is a solid sequen
e over alphabet � ifpi 2 �; i = 0; :::;m.We say that solid pattern P (or simply pattern P ) o

urs in lo
ation i ofweighted text T with probability at least � if Qmj=0 �j(pj) � �.EXAMPLE 12. Let T be the weighted text in the previous example, P =ADCC, and � = 0:1. Then P o

urs at lo
ation 3 with probability at least�, sin
e the probability of P at lo
ation 3 is 32�2�5 = 320 = 0:15 > 0:1, butP does not appear in lo
ations 0; 1 and 2 sin
e the probability at ea
h ofthese lo
ations is 0.DEFINITION 13. The exa
t weighted mat
hing problem is de�ned as fol-lows:Input: Weighted text T over alphabet �, solid pattern P over alphabet �,and probability � 2 [0; 1℄.Output: All lo
ations i in T where pattern P o

urs with probability atleast �.



12 Amihood AmirThe following is a straightforward eÆ
ient algorithm for exa
t weightedmat
hing.Algorithm1. Convert all values of T to their logarithms.2. For ea
h � 2 � do:f Denote by T� the �-th row of T , i.e. the list of probabilities of �in all lo
ations. gS�  T� 
 ��(P ).endFor3. Sum P�2� T�4. For i = 0 to n � m do: if Sum[i℄ � log� then there is a mat
h atlo
ation iend AlgorithmAlgorithm Time: Steps 1., 3. and 4. are trivially done in timeO(j�jn) = O(n) (sin
e � is a �xed �nite alphabet). Step 2. is done intime O(j�jn logm) = O(n logm). Total time: O(n logm).What interests us in the 
ontext of our bounded-depth divide-and-
onquermethod is the Hamming distan
e in weighted sequen
es problem.Computing the Hamming distan
e between two (solid) strings assumesthat a number of symbols were repla
ed. The Hamming distan
e is thenumber of these repla
ed symbols. In the 
ase of weighted subsequen
es itmakes a di�eren
e where these symbols were repla
ed. The simpler 
ase,whi
h we 
onsider in this se
tion, assumes repla
ement in the text. Theassumption is that some text symbols are erroneous and, in fa
t, thereshould have been a probability 1 for the symbol that happens to mat
h thepattern, rather than the probabilities that appear in the text.EXAMPLE 14. For the text in example 10, 
onsider pattern P = BADCand � = 0:25. There is no exa
t mat
h. However, if we allow one mismat
h,there is a mat
h in lo
ation 2. Simply assume that the probability of havinga B in lo
ation 2 is 1. At that point, the total probability at lo
ation 2 is1 � 1 � 1 � 12 � 12 = 14 . In lo
ation 0 even with one mismat
h the probabilityis still 148 . In lo
ation 1 and one mismat
h the probability is 172 , and inlo
ation 3 with one mismat
h the probability is 140 .Note that by this de�nition, allowing enough mismat
hes 
an guaranteea mat
h at every lo
ation, no matter how 
lose to 1 we 
hoose �.DEFINITION 15. The Weighted Hamming Distan
e with Mismat
hes inthe Text problem is the following:Input: Weighted text T over alphabet �, solid pattern P over alphabet �,



Two Glass Balls and a Tower 13and probability � 2 [0; 1℄.Output: For every lo
ation i in T , the minimum k su
h that if k textprobabilities were 
hanged to 1 then pattern P would o

ur at lo
ation iwith probability at least �.There does not seem to be a natural way to use the powerful 
onstraintthat the numbers in the weighted text are probabilities. However, it seemslike we 
an solve the problem without it. We redu
e the weighted Hammingdistan
e with mismat
hes in the text problem to the minimum ignored maskbits problem. The idea is to 
onsider a text whose elements are non-positivenumbers, and a pattern whi
h is a mask, i.e. its symbols are 0's and 1's.Suppose we are interested in �nding out, for ea
h text lo
ation i, the sumof the text numbers that are aligned with 1's in the pattern.EXAMPLE 16. T = �1;�3;�17; 0;�5;�6;�1, P = 1001. Then the resultat lo
ation 0 is �1, at lo
ation 1 is �8, at lo
ation 2 is �23 and at lo
ation3 is �1.Clearly this is a simple 
onvolution of the pattern and text. However, weadd a 
ompli
ation, we also have a non-positive integer � and for every textlo
ation i we seek the smallest number of mask bits that, if set to 0, wouldmake the sum of text numbers that are aligned with (the remaining) 1's inthe pattern, be no less than �.EXAMPLE 17. In the example above, if � = �5 then the result at lo
ation0 is �1, with 0 dropped 1 bits from the mask, at lo
ation 1 it is �3 if thelast mask bit is 0-ed, i.e. the mask be
omes 1000, or �5 if the �rst mask is0-ed, i.e. the mask be
omes 0001. At lo
ation 2 we need to 0 two 1 bits inthe mask to make the mask 0000 and the result 0. At lo
ation 3 the resultis �1 with 0 mask bits altered.We formally de�ne the problem.DEFINITION 18. The Minimum Ignored Mask Bits problem is the follow-ing:Input: Solid text T of length n + 1 whose elements are non-positive in-tegers, solid pattern P of length m + 1 over alphabet f0; 1g, and integer� � 0.Output: For every lo
ation i in T , the minimum k su
h that if k patternbits are 
hanged from 1 to 0, and M 0 is the pattern resulting from those k
hanges, then Pmj=0 T [i+ j℄M [j℄ � �.CLAIM 19. The weighted Hamming distan
e with mismat
hes in the textproblem is linearly redu
ible to the minimum ignored mask bits problem.Proof: Given weighted text T in matrix format, where the value in T [i; j℄



14 Amihood Amiris log�j(si), let solid text T 0 be a linear listing of matrix T in 
olumn-majororder, i.e. T 0 = T [1; 0℄; T [2; 0℄; T [3; 0℄; :::; T [j�j; 0℄;T [1; 1℄; T [2; 1℄; T [3; 1℄; :::; T [j�j; 1℄; :::;T [1; n℄; T [2; n℄; T [3; n℄; :::; T [j�j; n℄. Let M be a string of length j�j(m + 1)over f0; 1g whereM is the 
on
atenation of strings B(p0); B(p1); :::; B(pm).B(a) is de�nes as follows. Let a = s`, where � = fs1; s2; :::; sj�jg. ThenB(a) is a bit string of length �, where the `-th element is 1 and all otherelements are 0.EXAMPLE: If � = fA;B;C;Dg and P = BBAD,then M = 0100 0100 1000 0001.Clearly, the redu
tion is linear. It is also 
lear that turning a 1 bit in themask M to 0, is equivalent to 
hanging the probability in the text position
orresponding to it to 1. Thus a solution to the minimum ignored mask bitsproblem will provide the solution to the weighted Hamming distan
e withmismat
hes in the text problem. 2Algorithm's Idea:We 
onsider the two 
ases and show an easy eÆ
ient solution for ea
h ofthem. Subsequently, we use the bounded-depth divide-and-
onquer strat-egy, that splits a general input into the two straightforward 
ases, and thussolves ea
h separately.4.1 Bounded AlphabetThe �rst spe
ial 
ase is one where the domain of numbers appearing in thetext is bounded, i.e. there are only r di�erent numbers that 
an appear astext elements. Formally, let R = fn1; :::; nrg � Z� [ f0g, and let T be atext over R. Assume that n1; :::; nr are sorted in des
ending order. On
e weknow that the only possibilities for text values are from R, we 
an 
al
ulate,for every lo
ation i the r sums Si;j ; j = 1; :::; r, where Si;j is the sum ofnj 's that are mat
hed to 1's in the mask at lo
ation i.Sin
e we are interested in �nding the smallest number k of mask 1 bitsthat, when turned to 0 will make the sum greater than �, and sin
e allnumbers are non-positive, the following observation is 
ru
ial to thealgorithm:OBSERVATION 20. For any lo
ation i where Prj=1 Si;j < �, the solutionto the minimum ignored mask bits problem 
an be found by sequentiallyadding numbers that parti
ipate in the sum starting from the ones that
ontribute least to de
reasing it, i.e. the largest (n1). Stop adding themwhen the remaining sum is no longer less than �.This elimination would normally require O(m) work per lo
ation. How-ever, sin
e there are only r di�erent values, and we know howmany instan
esof ea
h value parti
ipate in the sum at lo
ation i (Si;j=nj), we 
an do this
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ation.This gives rise to the following algorithm:Algorithm Bounded Alphabet1. For j = 1 to r do:f Denote by Sj the array whose elements are S0;j ; S1;j ; :::; Sn;j ,i.e. Sj [i℄ = Si;j :gSj  �nj (T )
MendFor2. For i = 0 to n�m do:S; j  0While S � � do:j  j + 1S  S + Sj [i℄endWhilef The situation is S < � but S � Sj [i℄ � �:gki   j�1X̀=1 S`[i℄n` !+� (S � �)nj �endForend AlgorithmAlgorithm's Time: O(rn logm) for step 1. and O(rn) for step 2. fora total of O(rn logm). Note that step 2. 
ould be done faster by binarysear
h, but sin
e it is dominated by the time of step 1., we wrote the simplerpseudo
ode.4.2 Bounded Number of Large NumbersA se
ond spe
ial 
ase we 
onsider is when there is no bound on the numberof di�erent text elements, but we do know that for every text substring oflength m there are at most r elements greater than �. This means that forlo
ation i, there is no point in even 
onsidering all elements ex
ept those r.Here the algorithm is mu
h simpler. Assume the r elements are sortedin non-in
reasing order. For every text lo
ation i, it suÆ
es to 
onsiderthe r elements from largest to smallest. For ea
h element 
he
k whether it
orrespond to a 1 bit in the mask. If so, add it to the sum and 
he
k if itis still above �. When all elements are 
onsidered, or when the sum dropsbelow �, if ` elements were added to the sum and if the mask has s 1 bits,then k is s� `.Formally, let Bi = fhbi;1; `i;1i; hbi;2; `i;2i; ::::; hbi;r; `i;rig be the set of pairs
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h that bi;1; bi;2; :::; bi;r are the values of fT [i℄; T [i+ 1℄; :::; T [i+m℄g thatare greater than �, sorted in non-in
reasing order, and `i;j is the index ofbi;j in T; j = 1; :::; r, i.e. T [`i;j ℄ = bi;j .The algorithm is as follows:Algorithm Bounded Relevant NumbersFor i = 0 to n�m do:S  0 f S is the masked sum at lo
ation i: gj  0 f j is a 
ounter of the relevant text elements. gx  0 f x is a 
ounter of the number of elements in the maskedsum. gWhile S � � and j < r do:j  j + 1If M [`i;j ℄ = 1 then S  S + bi;jx x+ 1endWhileki  s� x+ 1endForend AlgorithmAlgorithm's Time: O(nr).4.3 Divide and ConquerWe are now ready to present our divide-and-
onquer algorithm. Assume�rst, that the text length is at most 2m. This is a standard assumption and
an be made without loss of generality be
ause of the following lemma.LEMMA 21. Assume that there exists an algorithm that solves the less-than mat
hing problem in time O(mf(m)) for n � 2m, then there exists analgorithm that solves the less-than mat
hing problem in time O(nf(m)) forany n-length text.Proof: Simply divide the text into 2 n2m overlapping 2m-length segments(see Fig. 2) and solve the mat
hing problem separately for ea
h. Clearly, ifthere is a mat
h in any lo
ation of T it will appear in one of the segments.2 We now have a situation where the text is of size 2m, the pattern of sizem. Sort all text elements and split them into r blo
ks of size at most 2j�jmrea
h.The idea is to use Algorithm Bounded Alphabet on the blo
ks, and Al-gorithm Bounded Relevant Numbers to �nd the border of the numbersparti
ipating in the sum within the blo
k that tips under �.
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Figure 2. Sli
ing problem to smaller problems.Sin
e the greatest 
ontribution to the masked sum lies with the largernumbers, it is 
lear that for the mismat
hes, our strategy should be repla
ingthe smaller numbers where ne
essary. Therefore, we go blo
k by blo
k, fromthe largest down, and 
ompute the following two sets of values for everylo
ation:1. How many numbers from ea
h blo
k parti
ipate in the masked sumfor that lo
ation.2. What is the sum of ea
h blo
k for that lo
ation.Given the above two values, we 
an 
ompute in time O(r) for everylo
ation, within the granularity of blo
ks, what is the Hamming distan
e.Note that there will be one blo
k at the \seam" where some values 
ouldpossibly parti
ipate in the produ
t and yet still not plunge below �. Weneed to adjust for these values. This will be done by Algorithm BoundedRelevant Numbers and take time O(mr ) per text lo
ation.Algorithm's Time: The time for this algorithm is O(rf(m))+O(mmr ),where f(m) is the time it takes to 
ompute the blo
k information. We doit by 
onvolutions, as in Algorithm Bounded Alphabet so f(m) = m logm.The optimal r is then the one whererm logm = mmrr2 = mlogmr =r mlogm:Thus the algorithm's time is O(npm logm).



18 Amihood Amir5 Con
lusionWe 
onsidered three problems, the Hamming distan
e problem, the less-than mat
hing problem and the Hamming distan
e problem in weightedsequen
es. Muthukrishnan [Muthukrishnan and Palem, 1994℄ showed thatthose problems 
an not be solved by 
onvolutions alone in time faster thanO(nm). Nevertheless the bounded-depth divide-and-
onquer te
hnique al-lows them all to be solved in time O(npm logm).6 A
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hild who then threatens the 
hild: \stop 
rying or I willsma
k you". If the terri�ed 
hild shuts up we will look unkindly at themother if she will hit the 
hild and triumphantly de
lare: \in
lusive or!!!.Therefore," 
on
luded Gabbay, \if you ever �nd yourself in a bank when a
hara
ter in a sky mask and brandishing an Uzi barges in and shouts: \yourmoney or your life!", be sure that you as
ertain whether he means in
lusiveor ex
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