
Two Glass Balls and a TowerAmihood Amir
1 IntrodutionFor many years, one of the favorite questions that interviewers for high-tehompanies in Israel asked prospetive job appliants was the following.Suppose a ompany developed a very resilient glass. They reated iden-tial glass balls and desire to �nd the height from whih a fall of the glassball will ause it to shatter. The tests are onduted by dropping glass ballsfrom various oors of an n-story building. We require the oor number ksuh that the glass breaks if dropped from it, but does not break from oork � 1.We would like to know what is the minimum number of tests (ball drops)neessary to �nd the number k, in the worst ase.Three situations are onsidered:1. One ball: The new appliant is presented with a single ball for thetests (due to the high ost of the new material).Clearly, the appliant has no hoie but to start from oor 1 and dropthe ball, if the ball breaks then the answer is 1. As long as the balldoes not break, the tester needs to sequentially move up oor by oor,and drop the ball from eah oor. When eventually the ball breaksupon the drop from oor k, that is the result. The number of tests isthen O(n).2. Unbounded number of balls: The tester gets as many balls as herrequires.Clearly, this is a ase for the divide-and-onquer approah. Binarysearh over the n oors of the building an guarantee the result intime O(log n).3. Two balls: The tester has exatly two balls.This is the intriguing ase. Super�ially, it seems like another ballan not improve the situation over the one-ball ase by more thana onstant. A seond look at the problem shows that divide-and-onquer an still be used, but only to depth 2. This is a bounded



2 Amihood Amirdepth divide-and-onquer. Simply divide the n oors to groups of pnsequential oors. This reates pn suh groups. Use the �rst ball to�nd the group where the ball breaks, in O(pn) tests. Then use theseond ball to \�ne tune" the result and �nd what oor within thegroup is the ritial one. Sine the group size is pn, the number oftests for this level is also O(pn), for a total of O(pn) tests.The above problem demonstrates in a very lear way the bounded-depthdivide-and-onquer tehnique. This tehnique has been playing a role inpattern mathing for over two deades.String mathing, the problem of �nding all ourrenes of a given patternin a given text, is a lassial problem in omputer siene. The problem haspleasing theoretial features and a number of diret appliations to \realworld" problems. The Boyer-Moore [Boyer and Moore, 1977℄ algorithm isdiretly implemented in the emas \s" and UNIX \grep" ommands.Advanes in Multimedia, Digital Libraries and Computational Biologyhave shown that a muh more generalized theoretial basis of string math-ing ould be of tremendous bene�t [Pentland, 1992; Olson, 1995℄. To thisend, string mathing has had to adapt itself to inreasingly broader def-initions of \mathing". Two types of problems need to be addressed {generalized mathing and approximate mathing. In generalized mathing,one still seeks all exat ourrenes of the pattern in the text, but the\mathing" relation is de�ned di�erently. The output is all loations inthe text where the pattern \mathes" under the new de�nition of math.The di�erent appliations de�ne the mathing relation. Examples an beseen in Amir and Farah's less-than mathing ([Amir and Farah, 1995℄)or Amir, Iliopoulos, Kapah and Porat's weighted mathing ([Amir et al.,2005℄). The seond model is that of approximate mathing. In approximatemathing, one de�nes a distane metri between the objets (e.g. strings,matries) and seeks all text loation where the pattern mathes the text bya pre-spei�ed \small" distane.One of the earliest and most natural metris is the Hamming distane,where the distane between two strings is the number of mismathing har-aters. Let n be the text length and m the pattern length. Abraham-son [Abrahamson, 1987℄ showed that the Hamming distane problem, alsoknown as the string mathing with mismathes problem an be solved intime O(npm logm), i.e. within these time bounds one an �nd the ham-ming distane of the pattern at every text loation. This is an asymptotiimprovement over the O(nm) bound even in the worst ase.All problems mentioned above, i.e. the less-than mathing, weightedmathing, and Hamming distane, were all solved by the bounded-depthdivide-and-onquer method. We will review these problems and point out



Two Glass Balls and a Tower 3the appliation of this method.2 Hamming Distane2.1 Problem De�nition and PreliminariesDEFINITION 1.1. Let a; b 2 �. De�neneq(a; b) =def � 1 if a 6= b;0 if a = b:2. LetX = x0x1:::xn�1 and Y = y0y1:::yn�1 be two strings over alphabet�. Then the Hamming distane between X and Y (ham(X;Y )) isde�ned as ham(X;Y ) =def n�1Xi=0 neq(xi; yi):3. The The Hamming Distane Problem is de�ned as follows:Input: Text T = t0:::tn�1, pattern P = p0:::pm�1, where ti; pj 2�; i = 0; :::n� 1; j = 0; :::;m� 1.Output: For every text loation i, output ham(P; T (i)), where T (i) =titi+1:::ti+m�1.Abrahamson [Abrahamson, 1987℄ developed a seminal algorithm that�nds ham(P; T (i)) 8i in total time O(npm logm), using bounded-depthdivide-and-onquer. We present a simpli�ed version of that algorithm.The two glass balls symbolize two di�erent tehniques to solve the prob-lem. One easily handles the ase of a small alphabet, and the other handlesthe ase of every alphabet symbol appearing a small number of times. Wewill make a slight hange in the problem requirements, though. We willount mathes rather than mismathes. The Hamming distane an be eas-ily alulated from the number of mathes sine it is simply the di�erenebetween the length of the pattern (m) and the number of mathes.2.2 Small alphabetWe onsider the ase where P has a small alphabet, e.g. less than pmdi�erent alphabet symbols. We will use onvolutions, as introdued byFisher and Paterson [Fisher and Paterson, 1974℄. Fisher and Patersonobserved that string mathing is a speial ase of a generalized onvolution.



4 Amihood AmirDEFINITION 2. Let X = hx0; :::; xmi ; Y = hy0; :::; yni be two given ve-tors, xi; yi 2 D. Let 
 and � be two given funtions where
 : D �D ! E;� : E �E ! E; � assoiative:Then the onvolution of X and Y with respet to 
 and � is:Xh
;�iY = hz0; :::; zn+miwhere zk = Mi+j=k xi 
 yj for k = 0; :::;m+ n:EXAMPLE 3.Boolean Produt: 
 is ^ and � is _.Polynomial produt: 
 is � and � is +.Exat string mathing: 
 is = and � is ^ but the pattern is transposed.For all mathes of pattern b a a in text b a a b a , do b a a b ah=;^ib a aR.b a a b aa a b� � � � � � �1 0 0 1 00 1 1 0 10 1 1 0 1� � � � � � �0 0 1 0 0 1 0� � �Note that (Xh=;^iY )k = 1 i� hxk�n; :::; xki = hyn; :::; y0i for n � k � m.We onlude that there is a math in position 2, i.e.b a a b a� � �h a a b iRThe problem is that most suh onvolutions require time O(nm) to om-pute. An exeption is polynomial multipliation that an be ahieved intime O(n logm) using the Fast Fourier Transform (FFT). Thus it is nees-sary to redue the desired onvolution to polynomial multipliation in theomplex �eld in order to take advantage of the FFT algorithm. We showhow this is done in the ounting mathes problem.



Two Glass Balls and a Tower 5We need some de�nitions �rst.DEFINITION 4. De�ne��(x) = � 1 if x = �0 if x 6= � ��(x) = � 1 if x 6= �0 if x = �If X = x0 : : : xn�1 then ��(X) = ��(x0) : : : ��(xn�1). Similarly de�ne��(X).For string S = s0:::sn�1, SR is the reversal of the string, i.e. sn�1:::s0.We return to the math problem for small alphabets. The produt ��(T )by ��(PR) is an array where the number in eah loation is the number ofmathes of a � text element with a � in the pattern. If we multiply ��(T )by ��(P )R, for every � 2 �, and add the results, we get the total number ofmathes. Sine polynomial multipliation an be done in time O(n logm)using FFT, and we do j�j multipliations, the total time for �nding allmathes using this sheme is O(j�jn logm).Time: Our alphabet size is O(pm), so the problem an be solved intime O(npm logm).Notie that this tehnique knows how to ount mathes for \groups" ofsymbol ourrenes, all those who are equal to the symbol being onsidered.2.3 Every Symbols ours only a Few Times in PatternConsider now the ase where the alphabet is large, but also where everyalphabet symbol appears in the pattern only a small number of times, e.g.no more than pm times.The most naive algorithm for ounting mathes is, for every text loationi, to ount all mathes of the pattern and text, and reord it in M [i℄, whereM is a number of mathes array. This an be implemented by the followingsimple algorithm.Naive Algorithm version Af Initialize M to 0 gM  0f Main Loop gFor i = 0 to n� 1 do:For j = 0 to m� 1 do:If ti+j = pj then M [i℄ M [i℄ + 1enfFor jendFor iend AlgorithmIt is lear that version A is equivalent to version B below, where we simply



6 Amihood Amirhek all pattern element versus the text element sanned at the momentand update the appropriate ounters.Naive Algorithm version Bf Initialize M to 0 gM  0f Main Loop gFor i = 0 to n� 1 do:For j = 0 to m� 1 do:If ti = pj then M [i� j℄ M [i� j℄ + 1enfFor jendFor iend AlgorithmThe time for both above algorithms is, naturally, O(nm). However, notethat in version B, we may make a slight improvement. We an pre-proessthe pattern and reate, for every alphabet symbol �, a list L�[0℄; :::; L�[`� ℄of loations where � ours in the pattern, i.e. all i suh that pi = �.EXAMPLE 5. Let 0 1 2 3 4 5 6 7 8 9P = A A B A C B A B C BThen A's list is: LA = 0; 1; 3; 6, B's list is: LB = 2; 5; 7; 9, and C's listis: LC = 4; 8.We an modify version B to only onsider ti's list in the omparison,rather than go through the entire pattern. This ahieves the following al-gorithm:Not-So-Naive Algorithm Cf Initialize M to 0 gM  0f Main Loop gFor i = 0 to n� 1 do:Let �  tiFor all j = 0 to `� do:M [i� L� [j℄℄ M [i� L�[j℄℄ + 1enfFor jendFor iend AlgorithmIn the worst ase, Algorithm C has exatly the same time as versionB. However, in the fortunate ase we are onsidering, where every symbolours at most pm times in the pattern, the lengths of the L lists never



Two Glass Balls and a Tower 7exeeds pm and algorithm C's running time is then O(npm).Notie that this seond glass ball ounts mathes within groups of equalsymbol ourrenes. We sequentially go through the entire list of indies ofevery symbol.2.4 General AlphabetsWe are now ready to present the general algorithm.DEFINITION 6. A symbol that appears in the pattern at least pm logmtimes is alled frequent. Otherwise, it is alled rare.It is lear from the de�nition that there are at most O(pm=plogm)frequent symbols, thus we an ount mathes of all frequent symbols intime O(npm= logm logm) = O(npm logm) as shown in Subsetion 2.2.The mathes of rare symbols are ounted as in Algorithm C of Subse-tion 2.3. Sine a rare symbol appears at most pm logm times, this stage isdone in time O(npm logm).3 Less-Than MathingThe Less-ThanMathing problem was introdued by Amir and Farah [Amirand Farah, 1995℄ as a tool for solving the approximate mathing problem innon-retangular two dimensional images. The problem is de�ned as follows.The less-than mathing problem is:Input: Text string T = t0; :::; tn�1 and pattern string P = p0; :::; pm�1where ti; pi 2 N (the set of natural numbers).Output: All loations i in T where ti+k�1 � pk; k = 1; :::;m.In words, every mathed element of the pattern is not greater than theorresponding text element. If the text and pattern are drawn shematially,we are interested in all position where the pattern lies ompletely below thetext. See Figure 1.The less-than mathing problem was also solved by the bounded-depthdivide-and onquer tehnique [Amir and Farah, 1995℄. As in the Hammingdistane ase, we also have two algorithms. The �rst handles small alpha-bets (groups of oors) and is solved by the FFT. The seond handles thesituation within the groups. This proess is trikier than in the mismathase that we saw in Setion 2.3.3.1 Small AlphabetAssume that there are g di�erent elements in the pattern.NOTATION 7. For �; x 2 N, let



8 Amihood Amir
Text

Pattern

Less−than
match

mismatchFigure 1. The �rst appearane of the pattern lies ompletely below the text,thus there is a math. The seond is a mismath.��(x) = � 1 if x = �0 if x 6= ��<�(x) = � 1 if x < �0 if x � � or x = �If X = x1; : : : ; xn then ��(X) = ��(x1); : : : ; ��(xn). Similarly de�ne�<�(X).We would like to know for eah element of the pattern, where it is linedup with something less than it. We an ahieve this by omputing, foreah � in P , �<�(T )
��(PR) (where 
 is polynomial multipliation), andonsidering all non-zero loations.Let � = f�1; �2; : : : ; �gg be the set of all di�erent numbers appearing inP . Let Mi = �<�i(T ) 
 ��i(PR) (where 
 is polynomial multipliation).Then Mi is non-zero at position t i� there is a �i in the pattern mathedwith something smaller than �i when the pattern is lined up at t. Theseases are exatly when we get a mismath. If we let M be the sum of allthe Mi's we get a non-zero if there was a mismath aused by any � 2 �.By using FFT we an alulate eah of the polynomial multipliations intime O(n logm), for a total of O(g n logm).3.2 The General CaseAs we had mentioned, dealing with the elements within groups is not im-mediate. We need to de�ne the groups in a somewhat di�erent manner.



Two Glass Balls and a Tower 9We therefore provide here the general framework and then show how toeÆiently \�ne tune" within groups.Our input is text T = t0; : : : ; tn�1 and pattern P = p0; : : : ; pm�1: With-out loss of generality we may assume that the text alphabet is the same asthe pattern alphabet. If this is not the ase, replae every text number bythe largest pattern number that does not exeed it.In this ase also frequent numbers are handled di�erently from rare num-bers. A number is frequent if it appears at least pm logm times, otherwiseit is rare. There are at most pm=plogm frequent numbers.We an use the FFT in the manner desribed in Subsetion 3.1 to disqual-ify all text loations where there is a text element smaller than a frequentelement. This an be done in time O(npm logm). Now in all remainingloations we just need to make sure that the text loation is at least as largeas the pattern element orresponding to it. This is done by splitting intogroups.Dividing into Groups:Let pj0 ; : : : ; pjg1 be the non-frequent elements of P .Consider every pattern element as a pair hs; di where s is a number andd is the loation of the number in the array P . We get a list L = hpj0 ; j0i,hpj1 ; j1i, : : :, hpjg1 ; jg1i.Sort L lexiographially. (There are no more than m elements in L.) Callthe sorted array L0.Divide L0 into g = O(pm= logm) bloks, eah ontaining no more than2pm logm elements, in a manner that no number appears in more than oneblok. We are assured that suh a division is possible beause all remainingnumbers are non-frequent.Possible Implementation: Put the �rst pm ourrenes in blok 1.Let � be the symbol of the last ourrene in blok 1. Make sure all our-renes of � are added to blok 1 (sine � is rare it will not add more thanpm logm elements. Continue in a similar fashion to reate all bloks.EXAMPLE 8. Let the pattern P be:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15G A H A C B D E C B F F E G A Bp16 = 4.Sorting the ourrenes gives: hA; 1i; hA; 3i; hA; 14i; hB; 5i; hB; 9i; hB; 15i;hC; 4i; hC; 8i; hD; 6i; hE; 7i; hE; 12i; hF; 10i; hF; 11i; hG; 0i; hG; 13i; hH; 2i.The suggested implementation produes the bloks:blok 1: hA; 1i; hA; 3i; hA; 14i; hB; 5i; hB; 9i; hB; 15i.blok 2: hC; 4i; hC; 8i; hD; 6i; hE; 7i; hE; 12i.blok 3: hF; 10i; hF; 11i; hG; 0i; hG; 13i.blok 4: hH; 2i.



10 Amihood AmirNotie that we have 4 bloks, none larger than 6 elements.Construt the Text and Pattern of Representatives:For eah blok Bi; i = 0; : : : ; g � pm= logm let bi be the smallest(leftmost) element in the blok; all bi the representative of blok Bi.Let T 0 and P 0 be T and P suh that every ti and pi is replaed by therepresentative of the blok it is in. This step an be implemented by asequential san of L0.We now �nd all less-than mathes of P 0 in T 0, by the FFT. P 0 and T 0an be onsidered \attened out" versions of P an T . When we seek allless-than mathes of P 0 in T 0 we only detet the \large" mismathes, i.e.,those between elements that are so di�erent that they are in di�erent bloks.However, mismathes between elements of the same blok are undeteted.At this stage we must \�ne tune" our approximate solution. We now ometo the seond level of our bounded divide-and-onquer. The one that needsto adjust for the mismathes that may exist but were not reorded. Theseare preisely the ases where a text number is smaller than a pattern numberthat is in the same blok as the text number.3.3 Cheking Elements within BloksSan T and for every element ti of T only ompare it to the O(pm logm))elements of P that are in ti's blok. The subroutine is very similar toalgorithm C in Setion 2.3.Fine Tuning AlgorithmFor i = 0 to n� 1 do:Let Bti be the blok of L0 that ti is in,Let PBti  fhs; dijhs; di 2 BtigFor every element hs; di in PBti f at most 2pm logm elements gif ti < s then M [i� d℄ M [i� d℄ + 1endForendFor iend AlgorithmThe vetorM is now orret sine the �rst part of the algorithm inludedall the errors between bloks and the last part found all the errors within ablok.Time: O(m logm) for sorting and O(n logm) for reduing to alphabetof pattern.O(npm logm) for less-than mathing of the representativesO(npm logm) for orreting mismathes within bloks



Two Glass Balls and a Tower 11Total: O(npm logm)4 Approximate Mathing in Weighted SequenesWeighted sequenes have been reently introdued by Iliopoulos et al. [Il-iopoulos et al., 2003℄ as a tool to handle a set of sequenes that are notidential but have many loal similarities. The weighted sequene is a \sta-tistial image" of this set, where the probability of every symbol's ourreneat every text loation is given.DEFINITION 9. A weighted sequene T = t0; :::; tn over alphabet � is asequene of sets ti; i = 0; :::; n. Every ti is a set of pairs (sj ; �i(sj)), wheresj 2 � and �i(sj) is the probability of having symbol sj in loation i.Formally,ti = f(si; �i(sj)) j sj 6= s` for j 6= `; and Xj �i(sj) = 1g:For a �nite alphabet � = fa1; :::; aj�jg we an view a weighted sequeneas a j�j � n matrix T of numbers in [0; 1℄, where T [j; i℄ = �i(aj). For therest of this paper we assume a �nite �xed alphabet �.EXAMPLE 10. Let � = fA;B;C;Dg, then an example of a text of length7 is: A 1/2 1/3 1/4 1 1/6 1/4 0B 1/4 1/3 1/4 0 1/6 0 1/5C 1/4 0 1/4 0 1/6 1/2 3/5D 0 1/3 1/4 0 1/2 1/4 1/5DEFINITION 11. P = p0; :::; pm is a solid sequene over alphabet � ifpi 2 �; i = 0; :::;m.We say that solid pattern P (or simply pattern P ) ours in loation i ofweighted text T with probability at least � if Qmj=0 �j(pj) � �.EXAMPLE 12. Let T be the weighted text in the previous example, P =ADCC, and � = 0:1. Then P ours at loation 3 with probability at least�, sine the probability of P at loation 3 is 32�2�5 = 320 = 0:15 > 0:1, butP does not appear in loations 0; 1 and 2 sine the probability at eah ofthese loations is 0.DEFINITION 13. The exat weighted mathing problem is de�ned as fol-lows:Input: Weighted text T over alphabet �, solid pattern P over alphabet �,and probability � 2 [0; 1℄.Output: All loations i in T where pattern P ours with probability atleast �.



12 Amihood AmirThe following is a straightforward eÆient algorithm for exat weightedmathing.Algorithm1. Convert all values of T to their logarithms.2. For eah � 2 � do:f Denote by T� the �-th row of T , i.e. the list of probabilities of �in all loations. gS�  T� 
 ��(P ).endFor3. Sum P�2� T�4. For i = 0 to n � m do: if Sum[i℄ � log� then there is a math atloation iend AlgorithmAlgorithm Time: Steps 1., 3. and 4. are trivially done in timeO(j�jn) = O(n) (sine � is a �xed �nite alphabet). Step 2. is done intime O(j�jn logm) = O(n logm). Total time: O(n logm).What interests us in the ontext of our bounded-depth divide-and-onquermethod is the Hamming distane in weighted sequenes problem.Computing the Hamming distane between two (solid) strings assumesthat a number of symbols were replaed. The Hamming distane is thenumber of these replaed symbols. In the ase of weighted subsequenes itmakes a di�erene where these symbols were replaed. The simpler ase,whih we onsider in this setion, assumes replaement in the text. Theassumption is that some text symbols are erroneous and, in fat, thereshould have been a probability 1 for the symbol that happens to math thepattern, rather than the probabilities that appear in the text.EXAMPLE 14. For the text in example 10, onsider pattern P = BADCand � = 0:25. There is no exat math. However, if we allow one mismath,there is a math in loation 2. Simply assume that the probability of havinga B in loation 2 is 1. At that point, the total probability at loation 2 is1 � 1 � 1 � 12 � 12 = 14 . In loation 0 even with one mismath the probabilityis still 148 . In loation 1 and one mismath the probability is 172 , and inloation 3 with one mismath the probability is 140 .Note that by this de�nition, allowing enough mismathes an guaranteea math at every loation, no matter how lose to 1 we hoose �.DEFINITION 15. The Weighted Hamming Distane with Mismathes inthe Text problem is the following:Input: Weighted text T over alphabet �, solid pattern P over alphabet �,



Two Glass Balls and a Tower 13and probability � 2 [0; 1℄.Output: For every loation i in T , the minimum k suh that if k textprobabilities were hanged to 1 then pattern P would our at loation iwith probability at least �.There does not seem to be a natural way to use the powerful onstraintthat the numbers in the weighted text are probabilities. However, it seemslike we an solve the problem without it. We redue the weighted Hammingdistane with mismathes in the text problem to the minimum ignored maskbits problem. The idea is to onsider a text whose elements are non-positivenumbers, and a pattern whih is a mask, i.e. its symbols are 0's and 1's.Suppose we are interested in �nding out, for eah text loation i, the sumof the text numbers that are aligned with 1's in the pattern.EXAMPLE 16. T = �1;�3;�17; 0;�5;�6;�1, P = 1001. Then the resultat loation 0 is �1, at loation 1 is �8, at loation 2 is �23 and at loation3 is �1.Clearly this is a simple onvolution of the pattern and text. However, weadd a ompliation, we also have a non-positive integer � and for every textloation i we seek the smallest number of mask bits that, if set to 0, wouldmake the sum of text numbers that are aligned with (the remaining) 1's inthe pattern, be no less than �.EXAMPLE 17. In the example above, if � = �5 then the result at loation0 is �1, with 0 dropped 1 bits from the mask, at loation 1 it is �3 if thelast mask bit is 0-ed, i.e. the mask beomes 1000, or �5 if the �rst mask is0-ed, i.e. the mask beomes 0001. At loation 2 we need to 0 two 1 bits inthe mask to make the mask 0000 and the result 0. At loation 3 the resultis �1 with 0 mask bits altered.We formally de�ne the problem.DEFINITION 18. The Minimum Ignored Mask Bits problem is the follow-ing:Input: Solid text T of length n + 1 whose elements are non-positive in-tegers, solid pattern P of length m + 1 over alphabet f0; 1g, and integer� � 0.Output: For every loation i in T , the minimum k suh that if k patternbits are hanged from 1 to 0, and M 0 is the pattern resulting from those khanges, then Pmj=0 T [i+ j℄M [j℄ � �.CLAIM 19. The weighted Hamming distane with mismathes in the textproblem is linearly reduible to the minimum ignored mask bits problem.Proof: Given weighted text T in matrix format, where the value in T [i; j℄



14 Amihood Amiris log�j(si), let solid text T 0 be a linear listing of matrix T in olumn-majororder, i.e. T 0 = T [1; 0℄; T [2; 0℄; T [3; 0℄; :::; T [j�j; 0℄;T [1; 1℄; T [2; 1℄; T [3; 1℄; :::; T [j�j; 1℄; :::;T [1; n℄; T [2; n℄; T [3; n℄; :::; T [j�j; n℄. Let M be a string of length j�j(m + 1)over f0; 1g whereM is the onatenation of strings B(p0); B(p1); :::; B(pm).B(a) is de�nes as follows. Let a = s`, where � = fs1; s2; :::; sj�jg. ThenB(a) is a bit string of length �, where the `-th element is 1 and all otherelements are 0.EXAMPLE: If � = fA;B;C;Dg and P = BBAD,then M = 0100 0100 1000 0001.Clearly, the redution is linear. It is also lear that turning a 1 bit in themask M to 0, is equivalent to hanging the probability in the text positionorresponding to it to 1. Thus a solution to the minimum ignored mask bitsproblem will provide the solution to the weighted Hamming distane withmismathes in the text problem. 2Algorithm's Idea:We onsider the two ases and show an easy eÆient solution for eah ofthem. Subsequently, we use the bounded-depth divide-and-onquer strat-egy, that splits a general input into the two straightforward ases, and thussolves eah separately.4.1 Bounded AlphabetThe �rst speial ase is one where the domain of numbers appearing in thetext is bounded, i.e. there are only r di�erent numbers that an appear astext elements. Formally, let R = fn1; :::; nrg � Z� [ f0g, and let T be atext over R. Assume that n1; :::; nr are sorted in desending order. One weknow that the only possibilities for text values are from R, we an alulate,for every loation i the r sums Si;j ; j = 1; :::; r, where Si;j is the sum ofnj 's that are mathed to 1's in the mask at loation i.Sine we are interested in �nding the smallest number k of mask 1 bitsthat, when turned to 0 will make the sum greater than �, and sine allnumbers are non-positive, the following observation is ruial to thealgorithm:OBSERVATION 20. For any loation i where Prj=1 Si;j < �, the solutionto the minimum ignored mask bits problem an be found by sequentiallyadding numbers that partiipate in the sum starting from the ones thatontribute least to dereasing it, i.e. the largest (n1). Stop adding themwhen the remaining sum is no longer less than �.This elimination would normally require O(m) work per loation. How-ever, sine there are only r di�erent values, and we know howmany instanesof eah value partiipate in the sum at loation i (Si;j=nj), we an do this



Two Glass Balls and a Tower 15in time O(r) per loation.This gives rise to the following algorithm:Algorithm Bounded Alphabet1. For j = 1 to r do:f Denote by Sj the array whose elements are S0;j ; S1;j ; :::; Sn;j ,i.e. Sj [i℄ = Si;j :gSj  �nj (T )
MendFor2. For i = 0 to n�m do:S; j  0While S � � do:j  j + 1S  S + Sj [i℄endWhilef The situation is S < � but S � Sj [i℄ � �:gki   j�1X̀=1 S`[i℄n` !+� (S � �)nj �endForend AlgorithmAlgorithm's Time: O(rn logm) for step 1. and O(rn) for step 2. fora total of O(rn logm). Note that step 2. ould be done faster by binarysearh, but sine it is dominated by the time of step 1., we wrote the simplerpseudoode.4.2 Bounded Number of Large NumbersA seond speial ase we onsider is when there is no bound on the numberof di�erent text elements, but we do know that for every text substring oflength m there are at most r elements greater than �. This means that forloation i, there is no point in even onsidering all elements exept those r.Here the algorithm is muh simpler. Assume the r elements are sortedin non-inreasing order. For every text loation i, it suÆes to onsiderthe r elements from largest to smallest. For eah element hek whether itorrespond to a 1 bit in the mask. If so, add it to the sum and hek if itis still above �. When all elements are onsidered, or when the sum dropsbelow �, if ` elements were added to the sum and if the mask has s 1 bits,then k is s� `.Formally, let Bi = fhbi;1; `i;1i; hbi;2; `i;2i; ::::; hbi;r; `i;rig be the set of pairs



16 Amihood Amirsuh that bi;1; bi;2; :::; bi;r are the values of fT [i℄; T [i+ 1℄; :::; T [i+m℄g thatare greater than �, sorted in non-inreasing order, and `i;j is the index ofbi;j in T; j = 1; :::; r, i.e. T [`i;j ℄ = bi;j .The algorithm is as follows:Algorithm Bounded Relevant NumbersFor i = 0 to n�m do:S  0 f S is the masked sum at loation i: gj  0 f j is a ounter of the relevant text elements. gx  0 f x is a ounter of the number of elements in the maskedsum. gWhile S � � and j < r do:j  j + 1If M [`i;j ℄ = 1 then S  S + bi;jx x+ 1endWhileki  s� x+ 1endForend AlgorithmAlgorithm's Time: O(nr).4.3 Divide and ConquerWe are now ready to present our divide-and-onquer algorithm. Assume�rst, that the text length is at most 2m. This is a standard assumption andan be made without loss of generality beause of the following lemma.LEMMA 21. Assume that there exists an algorithm that solves the less-than mathing problem in time O(mf(m)) for n � 2m, then there exists analgorithm that solves the less-than mathing problem in time O(nf(m)) forany n-length text.Proof: Simply divide the text into 2 n2m overlapping 2m-length segments(see Fig. 2) and solve the mathing problem separately for eah. Clearly, ifthere is a math in any loation of T it will appear in one of the segments.2 We now have a situation where the text is of size 2m, the pattern of sizem. Sort all text elements and split them into r bloks of size at most 2j�jmreah.The idea is to use Algorithm Bounded Alphabet on the bloks, and Al-gorithm Bounded Relevant Numbers to �nd the border of the numberspartiipating in the sum within the blok that tips under �.
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Figure 2. Sliing problem to smaller problems.Sine the greatest ontribution to the masked sum lies with the largernumbers, it is lear that for the mismathes, our strategy should be replaingthe smaller numbers where neessary. Therefore, we go blok by blok, fromthe largest down, and ompute the following two sets of values for everyloation:1. How many numbers from eah blok partiipate in the masked sumfor that loation.2. What is the sum of eah blok for that loation.Given the above two values, we an ompute in time O(r) for everyloation, within the granularity of bloks, what is the Hamming distane.Note that there will be one blok at the \seam" where some values ouldpossibly partiipate in the produt and yet still not plunge below �. Weneed to adjust for these values. This will be done by Algorithm BoundedRelevant Numbers and take time O(mr ) per text loation.Algorithm's Time: The time for this algorithm is O(rf(m))+O(mmr ),where f(m) is the time it takes to ompute the blok information. We doit by onvolutions, as in Algorithm Bounded Alphabet so f(m) = m logm.The optimal r is then the one whererm logm = mmrr2 = mlogmr =r mlogm:Thus the algorithm's time is O(npm logm).



18 Amihood Amir5 ConlusionWe onsidered three problems, the Hamming distane problem, the less-than mathing problem and the Hamming distane problem in weightedsequenes. Muthukrishnan [Muthukrishnan and Palem, 1994℄ showed thatthose problems an not be solved by onvolutions alone in time faster thanO(nm). Nevertheless the bounded-depth divide-and-onquer tehnique al-lows them all to be solved in time O(npm logm).6 AknowledgementsProfessor Dov Gabbay was my instrutor in undergraduate logi and thenin a number of advaned logi ourses and seminars. He was also my Ph.D.advisor and my thesis was on funtional ompleteness in temporal logis.Sine then I have taken some other turns, to omplexity, omputationalbiology, and algorithms. This paper is a purely algorithmi paper, butProfessor Gabbay's inuene on it is apparent to all who know him.One of the traits that made taking ourses with Professor Gabbay funwas the anedotal examples aompanying the mathematis. This ertainlyhelped garner a better intuitive understanding of the material and this iswhat I try to employ in my lasses, and in this \glass balls and tower" expo-sition. I would like to point out several examples from Professor Gabbay'sundergraduate logi lass that illustrate this onept.When explaining to the lass the di�erene between inlusive or andexlusive or Professor Gabbay gave the following two examples:\Suppose there was a sign on a movie theater saying that the entraneosts 2 Liras or show a soldier's ID. If a simple soldier went and bought atiket, he would ertainly not be denied entrane.On the other hand, if you walk in the street and see a mother followedby a wailing hild who then threatens the hild: \stop rying or I willsmak you". If the terri�ed hild shuts up we will look unkindly at themother if she will hit the hild and triumphantly delare: \inlusive or!!!.Therefore," onluded Gabbay, \if you ever �nd yourself in a bank when aharater in a sky mask and brandishing an Uzi barges in and shouts: \yourmoney or your life!", be sure that you asertain whether he means inlusiveor exlusive or."Another monumental statement of Professor Gabbay was the following.When he de�ned tautology, Professor Gabbay explained that it is a state-ment that is always true. \Therefore," he said, \if you are a politiian, youshould attempt to always say tautologies."The next day (and you will soon �nd out how dated this story is) thefollowing headline appeared in the newspaper:Kissinger: There may or may not be important developments.
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