Two Glass Balls and a Tower
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1 Introduction

For many years, one of the favorite questions that interviewers for high-tech
companies in Israel asked prospective job applicants was the following.

Suppose a company developed a very resilient glass. They created iden-
tical glass balls and desire to find the height from which a fall of the glass
ball will cause it to shatter. The tests are conducted by dropping glass balls
from various floors of an n-story building. We require the floor number &
such that the glass breaks if dropped from it, but does not break from floor
k—1.

We would like to know what is the minimum number of tests (ball drops)
necessary to find the number &, in the worst case.

Three situations are considered:

1. One ball: The new applicant is presented with a single ball for the
tests (due to the high cost of the new material).
Clearly, the applicant has no choice but to start from floor 1 and drop
the ball, if the ball breaks then the answer is 1. As long as the ball
does not break, the tester needs to sequentially move up floor by floor,
and drop the ball from each floor. When eventually the ball breaks
upon the drop from floor k, that is the result. The number of tests is
then O(n).

2. Unbounded number of balls: The tester gets as many balls as her
requires.
Clearly, this is a case for the divide-and-conquer approach. Binary
search over the n floors of the building can guarantee the result in
time O(logn).

3. Two balls: The tester has exactly two balls.
This is the intriguing case. Superficially, it seems like another ball
can not improve the situation over the one-ball case by more than
a constant. A second look at the problem shows that divide-and-
conquer can still be used, but only to depth 2. This is a bounded
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depth divide-and-conquer. Simply divide the n floors to groups of v/n
sequential floors. This creates v/n such groups. Use the first ball to
find the group where the ball breaks, in O(y/n) tests. Then use the
second ball to “fine tune” the result and find what floor within the
group is the critical one. Since the group size is /n, the number of
tests for this level is also O(y/n), for a total of O(y/n) tests.

The above problem demonstrates in a very clear way the bounded-depth
divide-and-conquer technique. This technique has been playing a role in
pattern matching for over two decades.

String matching, the problem of finding all occurrences of a given pattern
in a given text, is a classical problem in computer science. The problem has
pleasing theoretical features and a number of direct applications to “real
world” problems. The Boyer-Moore [Boyer and Moore, 1977] algorithm is
directly implemented in the emacs “s” and UNIX “grep” commands.

Advances in Multimedia, Digital Libraries and Computational Biology
have shown that a much more generalized theoretical basis of string match-
ing could be of tremendous benefit [Pentland, 1992; Olson, 1995]. To this
end, string matching has had to adapt itself to increasingly broader def-
initions of “matching”. Two types of problems need to be addressed —
generalized matching and approzimate matching. In generalized matching,
one still seeks all exact occurrences of the pattern in the text, but the
“matching” relation is defined differently. The output is all locations in
the text where the pattern “matches” under the new definition of match.
The different applications define the matching relation. Examples can be
seen in Amir and Farach’s less-than matching ([Amir and Farach, 1995])
or Amir, Iliopoulos, Kapah and Porat’s weighted matching ([Amir et al.,
2005]). The second model is that of approximate matching. In approximate
matching, one defines a distance metric between the objects (e.g. strings,
matrices) and seeks all text location where the pattern matches the text by
a pre-specified “small” distance.

One of the earliest and most natural metrics is the Hamming distance,
where the distance between two strings is the number of mismatching char-
acters. Let n be the text length and m the pattern length. Abraham-
son [Abrahamson, 1987] showed that the Hamming distance problem, also
known as the string matching with mismatches problem can be solved in
time O(ny/mlogm), i.e. within these time bounds one can find the ham-
ming distance of the pattern at every text location. This is an asymptotic
improvement over the O(nm) bound even in the worst case.

All problems mentioned above, i.e. the less-than matching, weighted
matching, and Hamming distance, were all solved by the bounded-depth
divide-and-conquer method. We will review these problems and point out
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the application of this method.

2 Hamming Distance

2.1 Problem Definition and Preliminaries

DEFINITION 1.
1. Let a,b € ¥. Define

. 1 if a # b;
neq(a,b) :df{ 0 ifaib.

2. Let X = zgw1.--tp—1 and Y = yoy1...yn—1 be two strings over alphabet
Y. Then the Hamming distance between X and Y (ham(X,Y)) is
defined as

n—1

ham(X,Y) =%7 Y " neq(x;, yi)-
i=0

3. The The Hamming Distance Problem is defined as follows:

Input: Text T = tg...t,—1, pattern P = pg...p;—1, Where t;,p; €
¥,i=0,.n—1; 7=0,....m— 1.

Output: For every text location i, output ham(P,T(®), where T() =
titist o tipm_1-

Abrahamson [Abrahamson, 1987] developed a seminal algorithm that
finds ham(P,T%) Vi in total time O(ny/mlogm), using bounded-depth
divide-and-conquer. We present a simplified version of that algorithm.

The two glass balls symbolize two different techniques to solve the prob-
lem. One easily handles the case of a small alphabet, and the other handles
the case of every alphabet symbol appearing a small number of times. We
will make a slight change in the problem requirements, though. We will
count matches rather than mismatches. The Hamming distance can be eas-
ily calculated from the number of matches since it is simply the difference
between the length of the pattern (m) and the number of matches.

2.2 Small alphabet

We consider the case where P has a small alphabet, e.g. less than /m
different alphabet symbols. We will use convolutions, as introduced by
Fischer and Paterson [Fischer and Paterson, 1974]. Fischer and Paterson
observed that string matching is a special case of a generalized convolution.
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DEFINITION 2. Let X = (xg,-.-,Zm) , Y = (Yo, .--, Yn) be two given vec-
tors, z;,y; € D. Let ® and & be two given functions where

®:DxD—E,

®:ExE—E, © associative.

Then the convolution of X and Y with respect to ® and & is:
X(®,®)Y = {(z0,--, 2n+m)

where
zZE = @ T @ Yj for k=0,...,m+n.
i+j=k

EXAMPLE 3.
Boolean Product: ® is A and @ is V.
Polynomial product: ® is X and & is +.
Ezact string matching: ® is = and @ is A but the pattern is transposed.
For all matches of pattern baa intextbaaba,do baaba(=,A)baa’.

b a a b a
a a b
1 0 0 1 O
0 1 1 0 1
0O 1 1 0 1
0O 0 1 0 O 1 O

Note that (X (=,A)Y)g = 1 iff (xx—n,-.-, Tx) = {Yn, -, yo) for n < k < m.
We conclude that there is a match in position 2, i.e.

The problem is that most such convolutions require time O(nm) to com-
pute. An exception is polynomial multiplication that can be achieved in
time O(nlogm) using the Fast Fourier Transform (FFT). Thus it is neces-
sary to reduce the desired convolution to polynomial multiplication in the
complex field in order to take advantage of the FFT algorithm. We show
how this is done in the counting matches problem.
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We need some definitions first.
DEFINITION 4. Define

|1 ifa=0 |1 ifa#o
X”(w)_{() ife#o0 X”(w)_{() ife=0
If X =x...2-1 then x,(X) = xo(z0)...Xo(Tn—1). Similarly define

X (X).
For string S = s¢...5,,_1, S is the reversal of the string, i.e. 5,,_;...50.

We return to the match problem for small alphabets. The product x, (T')
by xo (P) is an array where the number in each location is the number of
matches of a o text element with a o in the pattern. If we multiply x,(T)
by x.(P)%, for every o € ¥, and add the results, we get the total number of
matches. Since polynomial multiplication can be done in time O(nlogm)
using FFT, and we do |¥| multiplications, the total time for finding all
matches using this scheme is O(|X|n logm).

Time: Our alphabet size is O(y/m), so the problem can be solved in
time O(ny/mlogm).

Notice that this technique knows how to count matches for “groups” of
symbol occurrences, all those who are equal to the symbol being considered.

2.3 Every Symbols occurs only a Few Times in Pattern

Consider now the case where the alphabet is large, but also where every
alphabet symbol appears in the pattern only a small number of times, e.g.
no more than /m times.

The most naive algorithm for counting matches is, for every text location
i, to count all matches of the pattern and text, and record it in M[i], where
M is a number of matches array. This can be implemented by the following
simple algorithm.

Naive Algorithm version A
{ Initialize M to 0 }
M+ 0
{ Main Loop }
Fori=0ton — 1 do:
For 5 =0 tom — 1 do:
If titj = Dj then M[’L] — M[Z] +1
enfFor j
endFor 4
end Algorithm

It is clear that version A is equivalent to version B below, where we simply
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check all pattern element versus the text element scanned at the moment
and update the appropriate counters.

Naive Algorithm version B

{ Initialize M to 0 }

M <0

{ Main Loop }

Fori=0ton —1do:
For 7 =0 tom — 1 do:
|fti=pj then M[l—]] FM[Z—]]—F].
enfFor j

endFor 4

end Algorithm

The time for both above algorithms is, naturally, O(nm). However, note
that in version B, we may make a slight improvement. We can pre-process
the pattern and create, for every alphabet symbol o, a list L,[0], ..., Ly [¢5]
of locations where o occurs in the pattern, i.e. all 7 such that p; = o.

o 1 2 3 4 5 6 T 8 9
EXAMPLES'LetP:AABACBABCB

Then A’s list is: Ly = 0,1,3,6, B’s list is: Ly = 2,5,7,9, and C’s list
is: Lo = 4,8.

We can modify version B to only consider t;’s list in the comparison,
rather than go through the entire pattern. This achieves the following al-
gorithm:

Not-So-Naive Algorithm C
{ Initialize M to 0 }
M<+0
{ Main Loop }
Fori=0ton — 1 do:
Let o < ¢;
For all 5 =0 to ¢, do:
M[l - La[]]] A M[Z - La[]]] +1
enfFor j
endFor i
end Algorithm

In the worst case, Algorithm C' has exactly the same time as version
B. However, in the fortunate case we are considering, where every symbol
occurs at most /m times in the pattern, the lengths of the L lists never
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exceeds v/m and algorithm C’s running time is then O(n\/m).

Notice that this second glass ball counts matches within groups of equal
symbol occurrences. We sequentially go through the entire list of indices of
every symbol.

2.4 General Alphabets
We are now ready to present the general algorithm.

DEFINITION 6. A symbol that appears in the pattern at least v/mlogm
times is called frequent. Otherwise, it is called rare.

It is clear from the definition that there are at most O(y/m/+/logm)
frequent symbols, thus we can count matches of all frequent symbols in
time O(n+/m/logmlogm) = O(ny/mlogm) as shown in Subsection 2.2.

The matches of rare symbols are counted as in Algorithm C of Subsec-
tion 2.3. Since a rare symbol appears at most \/m logm times, this stage is

done in time O(ny/mlogm).

3 Less-Than Matching

The Less-Than Matching problem was introduced by Amir and Farach [Amir

and Farach, 1995] as a tool for solving the approximate matching problem in

non-rectangular two dimensional images. The problem is defined as follows.
The less-than matching problem is:

Input: Text string T = tg,...,t,—1 and pattern string P = py, ..., Dm—1
where t;,p; € N (the set of natural numbers).

Output: All locations ¢ in 7" where t;yr—1 > pr, k=1,...,m.

In words, every matched element of the pattern is not greater than the
corresponding text element. If the text and pattern are drawn schematically,
we are interested in all position where the pattern lies completely below the
text. See Figure 1.

The less-than matching problem was also solved by the bounded-depth
divide-and conquer technique [Amir and Farach, 1995]. As in the Hamming
distance case, we also have two algorithms. The first handles small alpha-
bets (groups of floors) and is solved by the FFT. The second handles the
situation within the groups. This process is trickier than in the mismatch
case that we saw in Section 2.3.

3.1 Small Alphabet
Assume that there are g different elements in the pattern.

NOTATION 7. For o,z € N, let
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Less—than
L match

ﬁ

mismatch

Pattern

Figure 1. The first appearance of the pattern lies completely below the text,
thus there is a match. The second is a mismatch.

1 ife=0

XU(m)Z{ 0 ifto

(2) = 1 ifz<o
X<elT) =19 0 ifr>corxz=4¢

If X =ua,...,z, then xo(X) = xo(z1),...,Xs(xy). Similarly define
X<o (X) .

We would like to know for each element of the pattern, where it is lined
up with something less than it. We can achieve this by computing, for
each o in P, x<,(T) ® x,(P?) (where ® is polynomial multiplication), and
considering all non-zero locations.

Let ¥ = {01,02,...,0,} be the set of all different numbers appearing in
P. Let M; = x<o,(T) ® X0, (P®) (where ® is polynomial multiplication).
Then M; is non-zero at position ¢ iff there is a o; in the pattern matched
with something smaller than o; when the pattern is lined up at ¢. These
cases are exactly when we get a mismatch. If we let M be the sum of all
the M;’s we get a non-zero if there was a mismatch caused by any o € X.
By using FFT we can calculate each of the polynomial multiplications in
time O(nlogm), for a total of O(g nlogm).

3.2 The General Case

As we had mentioned, dealing with the elements within groups is not im-
mediate. We need to define the groups in a somewhat different manner.
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We therefore provide here the general framework and then show how to
efficiently “fine tune” within groups.

Our input is text T' = ty,...,t,—1 and pattern P = pg,...,pm_1. With-
out loss of generality we may assume that the text alphabet is the same as
the pattern alphabet. If this is not the case, replace every text number by
the largest pattern number that does not exceed it.

In this case also frequent numbers are handled differently from rare num-
bers. A number is frequent if it appears at least v/m logm times, otherwise
it is rare. There are at most y/m/+/logm frequent numbers.

We can use the FFT in the manner described in Subsection 3.1 to disqual-
ify all text locations where there is a text element smaller than a frequent
element. This can be done in time O(ny/mlogm). Now in all remaining
locations we just need to make sure that the text location is at least as large
as the pattern element corresponding to it. This is done by splitting into

groups.
Dividing into Groups:
Let pj,...,pj,, be the non-frequent elements of P.

Consider every pattern element as a pair (s,d) where s is a number and
d is the location of the number in the array P. We get a list L = (pj,, jo),
(pj1;j1>; teey <pjgl 7jgl>'

Sort L lexicographically. (There are no more than m elements in L.) Call
the sorted array L’.

Divide L' into g = O(y/m/logm) blocks, each containing no more than
2y/mlogm elements, in a manner that no number appears in more than one
block. We are assured that such a division is possible because all remaining
numbers are non-frequent.

Possible Implementation: Put the first \/m occurrences in block 1.
Let o be the symbol of the last occurrence in block 1. Make sure all occur-
rences of o are added to block 1 (since o is rare it will not add more than
vmlogm elements. Continue in a similar fashion to create all blocks.

EXAMPLE 8. Let the pattern P be:

o 1 2 3 4 5 6 T 8 9 10 11
G A H A CDBUDECB F F

V16 = 4.
Sorting the occurrences gives: (4,1),(A4,3),(A4,14),(B,5),(B,9), (B, 15),
(C,4),(C,8),(D. 6), (E,7), (E,12), (F, 10, (F,11), (G, 0), (G, 13), {H, 2).
The suggested implementation produces the blocks:
block 1: (A,1),(A4,3),(A4,14),(B,5),(B,9),(B,15).
block 2: <07 4)) <C7 8)) <D76>7 <E7 7>7 <E7 ]-2>
block 3: (F,10), (F,11),(G,0), (G, 13).
block 4: (H,2).

13

G

15
B

el
S
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Notice that we have 4 blocks, none larger than 6 elements.

Construct the Text and Pattern of Representatives:

For each block B;, i = 0,...,9 < y/m/logm let b; be the smallest
(leftmost) element in the block; call b; the representative of block B;.

Let 7' and P’ be T and P such that every ¢; and p; is replaced by the
representative of the block it is in. This step can be implemented by a
sequential scan of L'.

We now find all less-than matches of P’ in 7', by the FFT. P’ and 1"
can be considered “flattened out” versions of P an 7. When we seek all
less-than matches of P’ in 7" we only detect the “large” mismatches, i.e.,
those between elements that are so different that they are in different blocks.
However, mismatches between elements of the same block are undetected.
At this stage we must “fine tune” our approximate solution. We now come
to the second level of our bounded divide-and-conquer. The one that needs
to adjust for the mismatches that may exist but were not recorded. These
are precisely the cases where a text number is smaller than a pattern number
that is in the same block as the text number.

3.3 Checking Elements within Blocks

Scan T and for every element ¢; of T' only compare it to the O(y/mlogm))
elements of P that are in ¢;’s block. The subroutine is very similar to
algorithm C in Section 2.3.

Fine Tuning Algorithm

Fori=0ton —1do:
Let By, be the block of L' that ¢; is in,
Let PBu « {(s,d)|(s,d) € By}
For every element (s, d) in PB4 { at most 2¢/mlogm elements }
if t; < s then M[i—d] <+ M[i—d]+1
endFor
endFor ¢

end Algorithm

The vector M is now correct since the first part of the algorithm included
all the errors between blocks and the last part found all the errors within a
block.

Time: O(mlogm) for sorting and O(nlogm) for reducing to alphabet
of pattern.
O(nv/mlogm) for less-than matching of the representatives
O(nv/mlogm) for correcting mismatches within blocks
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Total: O(ny/mlogm)
4 Approximate Matching in Weighted Sequences

Weighted sequences have been recently introduced by Iliopoulos et al. [II-
iopoulos et al., 2003] as a tool to handle a set of sequences that are not
identical but have many local similarities. The weighted sequence is a “sta-
tistical image” of this set, where the probability of every symbol’s occurrence
at every text location is given.

DEFINITION 9. A weighted sequence T' = ty, ..., t, over alphabet X is a
sequence of sets ¢;, ¢ =0,...,n. Every t; is a set of pairs (s;,m;(s;)), where
sj € ¥ and m;(s;) is the probability of having symbol s; in location i.
Formally,

t; = {(si,mi(s5)) | sj # s¢ for j # ¢, and Zm(sj) =1}

J

For a finite alphabet ¥ = {ay,...,a;y|} we can view a weighted sequence
as a || x n matrix T of numbers in [0, 1], where T'[j,i] = m;(a;). For the
rest of this paper we assume a finite fixed alphabet X.

EXAMPLE 10. Let ¥ = {A, B,C, D}, then an example of a text of length
7 is:

A1/2]1/3[1/4[1]1/6]1/4]0

B|[1/4a|1/3[1/4|0]1/6 |0 |1/5
C1/a]o [1/a[o0]1/6|1/2]3/5
D0 |1/3[1/4|0]|1/2]1/4|1/5

DEFINITION 11. P = pg,...,pm 1S a solid sequence over alphabet X if
pi€X, 1=0,..,m.

We say that solid pattern P (or simply pattern P) occurs in location i of
weighted text T with probability at least « if H;nzo 7i(pj) > a.

EXAMPLE 12. Let T be the weighted text in the previous example, P =
ADCC, and a = 0.1. Then P occurs at location 3 with probability at least
a, since the probability of P at location 3 is 23? = % = 0.15 > 0.1, but
P does not appear in locations 0,1 and 2 since the probability at each of

these locations is 0.

DEFINITION 13. The ezact weighted matching problem is defined as fol-
lows:

Input: Weighted text T" over alphabet X, solid pattern P over alphabet X,
and probability « € [0,1].

Output: All locations ¢ in T where pattern P occurs with probability at
least a.
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The following is a straightforward efficient algorithm for exact weighted
matching.

Algorithm
1. Convert all values of T to their logarithms.
2. For each ¢ € ¥ do:

{ Denote by T, the o-th row of T', i.e. the list of probabilities of o
in all locations. }

Se +— T, ® xo(P).

endFor

3. Sum 3 v Ty
4. Fori =0 to n —m do: if Sum[i] > loga then there is a match at
location ¢
end Algorithm

Algorithm Time: Steps 1., 3. and 4. are trivially done in time
O(]Z|n) = O(n) (since X is a fixed finite alphabet). Step 2. is done in
time O(|X|nlogm) = O(nlogm). Total time: O(nlogm).

What interests us in the context of our bounded-depth divide-and-conquer
method is the Hamming distance in weighted sequences problem.

Computing the Hamming distance between two (solid) strings assumes
that a number of symbols were replaced. The Hamming distance is the
number of these replaced symbols. In the case of weighted subsequences it
makes a difference where these symbols were replaced. The simpler case,
which we consider in this section, assumes replacement in the text. The
assumption is that some text symbols are erroneous and, in fact, there
should have been a probability 1 for the symbol that happens to match the
pattern, rather than the probabilities that appear in the text.

EXAMPLE 14. For the text in example 10, consider pattern P = BADC
and a = 0.25. There is no exact match. However, if we allow one mismatch,
there is a match in location 2. Simply assume that the probability of having

a B in location 2 is 1. At that point, the total probability at location 2 is

1-1-1- % . % = %. In location 0 even with one mismatch the probability
is still ﬁ. In location 1 and one mismatch the probability is and in
1

location 3 with one mismatch the probability is ;5.

L
727

Note that by this definition, allowing enough mismatches can guarantee
a match at every location, no matter how close to 1 we choose a.

DEFINITION 15. The Weighted Hamming Distance with Mismatches in
the Text problem is the following:
Input: Weighted text T over alphabet X, solid pattern P over alphabet ¥,
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and probability « € [0,1].

Output: For every location ¢ in 7', the minimum k such that if & text
probabilities were changed to 1 then pattern P would occur at location ¢
with probability at least a.

There does not seem to be a natural way to use the powerful constraint
that the numbers in the weighted text are probabilities. However, it seems
like we can solve the problem without it. We reduce the weighted Hamming
distance with mismatches in the text problem to the minimum ignored mask
bits problem. The idea is to consider a text whose elements are non-positive
numbers, and a pattern which is a mask, i.e. its symbols are 0’s and 1’s.
Suppose we are interested in finding out, for each text location i, the sum
of the text numbers that are aligned with 1’s in the pattern.

EXAMPLE 16. T = -1,-3,-17,0,—5,—6,—1, P = 1001. Then the result
at location 0 is —1, at location 1 is —8, at location 2 is —23 and at location
3is —1.

Clearly this is a simple convolution of the pattern and text. However, we
add a complication, we also have a non-positive integer o and for every text
location ¢ we seek the smallest number of mask bits that, if set to 0, would
make the sum of text numbers that are aligned with (the remaining) 1’s in
the pattern, be no less than a.

EXAMPLE 17. In the example above, if & = —5 then the result at location
0 is —1, with O dropped 1 bits from the mask, at location 1 it is —3 if the
last mask bit is 0-ed, i.e. the mask becomes 1000, or —5 if the first mask is
0-ed, i.e. the mask becomes 0001. At location 2 we need to 0 two 1 bits in
the mask to make the mask 0000 and the result 0. At location 3 the result
is —1 with 0 mask bits altered.

We formally define the problem.

DEFINITION 18. The Minimum Ignored Mask Bits problem is the follow-
ing:

Input: Solid text T of length n + 1 whose elements are non-positive in-
tegers, solid pattern P of length m + 1 over alphabet {0,1}, and integer
a <0.

Output: For every location ¢ in 7', the minimum k& such that if k& pattern
bits are changed from 1 to 0, and M’ is the pattern resulting from those k
changes, then 377" T[i + j]M[j] > c.

CLAIM 19. The weighted Hamming distance with mismatches in the text
problem is linearly reducible to the minimum ignored mask bits problem.

Proof: Given weighted text T in matrix format, where the value in T'[7, j]
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is logm;(s;), let solid text T" be a linear listing of matrix 7" in column-major
order, i.e. T' =1T11,0],T[2,0],7[3,0], ..., T[|X], 0],

T[1,1], T[2,1], T[3,1], ., T[|Z], 1],

T[1,n],T[2,n],T[3,n],...,T[|X],n]. Let M be a string of length |X|(m + 1)
over {0, 1} where M is the concatenation of strings B(po), B(p1), -., B(Pm)-
B(a) is defines as follows. Let a = sy, where ¥ = {s1,52,...,5x}. Then
B(a) is a bit string of length ¥, where the ¢-th element is 1 and all other
elements are 0.

EXAMPLE: If ¥ = {A,B,C,D} and P = BBAD,
then M = 0100 0100 1000 0001.

Clearly, the reduction is linear. It is also clear that turning a 1 bit in the
mask M to 0, is equivalent to changing the probability in the text position
corresponding to it to 1. Thus a solution to the minimum ignored mask bits
problem will provide the solution to the weighted Hamming distance with
mismatches in the text problem. O

Algorithm’s Idea:

We consider the two cases and show an easy efficient solution for each of
them. Subsequently, we use the bounded-depth divide-and-conquer strat-
egy, that splits a general input into the two straightforward cases, and thus
solves each separately.

4.1 Bounded Alphabet

The first special case is one where the domain of numbers appearing in the
text is bounded, i.e. there are only r different numbers that can appear as
text elements. Formally, let R = {ny,...,n,.} C Z~ U {0}, and let T be a
text over R. Assume that ny,...,n, are sorted in descending order. Once we
know that the only possibilities for text values are from R, we can calculate,
for every location ¢ the r sums S;;, j = 1,...,r, where S; ; is the sum of
n;’s that are matched to 1’s in the mask at location ¢.

Since we are interested in finding the smallest number k of mask 1 bits
that, when turned to 0 will make the sum greater than a, and since all
numbers are non-positive, the following observation is crucial to the
algorithm:

OBSERVATION 20. For any location i where >7_, S; ; < a, the solution
to the minimum ignored mask bits problem can be found by sequentially
adding numbers that participate in the sum starting from the ones that
contribute least to decreasing it, i.e. the largest (n1). Stop adding them
when the remaining sum is no longer less than «.

This elimination would normally require O(m) work per location. How-
ever, since there are only r different values, and we know how many instances
of each value participate in the sum at location i (S; j/n;), we can do this
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in time O(r) per location.
This gives rise to the following algorithm:

Algorithm Bounded Alphabet
1. For j =1 to r do:
{ Denote by S; the array whose elements are Sg j, S1,j, .., Sn,j,
i.e. S][l] = S@j.}
S; Xn, (TYeo M
endFor
2. For i =0 to n —m do:
S,7«0
While S > «a do:
j<Jj+1
S« S+ 5;[i]
endWhile
{ The situation is S < a but S — S;[i] > a.}

e (S )4 o

(=1

endFor
end Algorithm

Algorithm’s Time: O(rnlogm) for step 1. and O(rn) for step 2. for
a total of O(rnlogm). Note that step 2. could be done faster by binary
search, but since it is dominated by the time of step 1., we wrote the simpler
pseudocode.

4.2 Bounded Number of Large Numbers

A second special case we consider is when there is no bound on the number
of different text elements, but we do know that for every text substring of
length m there are at most r elements greater than «. This means that for
location ¢, there is no point in even considering all elements except those r.

Here the algorithm is much simpler. Assume the r elements are sorted
in non-increasing order. For every text location 7, it suffices to consider
the r elements from largest to smallest. For each element check whether it
correspond to a 1 bit in the mask. If so, add it to the sum and check if it
is still above . When all elements are considered, or when the sum drops
below «, if ¢ elements were added to the sum and if the mask has s 1 bits,
then k is s — £.

Formally, let B; = {(bi,1,4i.1), (bi2,li2), ..., (bi,r, Ci r) } De the set of pairs
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such that b;1,0;2,...,b;, are the values of {T'[i], T[i +1],...,T[¢ + m]} that
are greater than o, sorted in non-increasing order, and ¢; ; is the index of
biJ' in T, ] = ]., YT A i.e. T[&J] = bi7]’.

The algorithm is as follows:

Algorithm Bounded Relevant Numbers
For i =0 to n — m do:
S < 0{ S is the masked sum at location ¢. }
j < 0 {jis a counter of the relevant text elements. }
x < 0 { z is a counter of the number of elements in the masked

sum. }

While S > « and j < r do:
je—j+1
If M[Ei,j] =1then S+ S+ b@j

z+—x+1
endWhile
kit s—z+1
endFor

end Algorithm

Algorithm’s Time: O(nr).

4.3 Divide and Conquer

We are now ready to present our divide-and-conquer algorithm. Assume
first, that the text length is at most 2m. This is a standard assumption and
can be made without loss of generality because of the following lemma.

LEMMA 21. Assume that there exists an algorithm that solves the less-
than matching problem in time O(mf(m)) for n < 2m, then there exists an
algorithm that solves the less-than matching problem in time O(nf(m)) for
any n-length text.

Proof: Simply divide the text into 25 overlapping 2m-length segments
(see Fig. 2) and solve the matching problem separately for each. Clearly, if
there is a match in any location of T' it will appear in one of the segments.
O

We now have a situation where the text is of size 2m, the pattern of size
m. Sort all text elements and split them into r blocks of size at most 2|X| 2
each.

The idea is to use Algorithm Bounded Alphabet on the blocks, and Al-
gorithm Bounded Relevant Numbers to find the border of the numbers
participating in the sum within the block that tips under a.
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I
)

Figure 2. Slicing problem to smaller problems.

Since the greatest contribution to the masked sum lies with the larger
numbers, it is clear that for the mismatches, our strategy should be replacing
the smaller numbers where necessary. Therefore, we go block by block, from
the largest down, and compute the following two sets of values for every
location:

1. How many numbers from each block participate in the masked sum
for that location.

2. What is the sum of each block for that location.

Given the above two values, we can compute in time O(r) for every
location, within the granularity of blocks, what is the Hamming distance.
Note that there will be one block at the “seam” where some values could
possibly participate in the product and yet still not plunge below a. We
need to adjust for these values. This will be done by Algorithm Bounded
Relevant Numbers and take time O(™*) per text location.

Algorithm’s Time: The time for this algorithm is O(r f(m))+O(m2),
where f(m) is the time it takes to compute the block information. We do
it by convolutions, as in Algorithm Bounded Alphabet so f(m) = mlogm.
The optimal r is then the one where

m
rmlogm =m—
r

P g——
log

3

T =

R

logm’
Thus the algorithm’s time is O(nv/mlogm).

~—
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5 Conclusion

We considered three problems, the Hamming distance problem, the less-
than matching problem and the Hamming distance problem in weighted
sequences. Muthukrishnan [Muthukrishnan and Palem, 1994] showed that
those problems can not be solved by convolutions alone in time faster than
O(nm). Nevertheless the bounded-depth divide-and-conquer technique al-
lows them all to be solved in time O(n+/mlogm).
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Professor Gabbay’s influence on it is apparent to all who know him.

One of the traits that made taking courses with Professor Gabbay fun
was the anecdotal examples accompanying the mathematics. This certainly
helped garner a better intuitive understanding of the material and this is
what I try to employ in my classes, and in this “glass balls and tower” expo-
sition. I would like to point out several examples from Professor Gabbay’s
undergraduate logic class that illustrate this concept.

When explaining to the class the difference between inclusive or and
exclusive or Professor Gabbay gave the following two examples:

“Suppose there was a sign on a movie theater saying that the entrance
costs 2 Liras or show a soldier’s ID. If a simple soldier went and bought a
ticket, he would certainly not be denied entrance.

On the other hand, if you walk in the street and see a mother followed
by a wailing child who then threatens the child: “stop crying or I will
smack you”. If the terrified child shuts up we will look unkindly at the
mother if she will hit the child and triumphantly declare: “inclusive or!!!.
Therefore,” concluded Gabbay, “if you ever find yourself in a bank when a
character in a sky mask and brandishing an Uzi barges in and shouts: “your
money or your life!”, be sure that you ascertain whether he means inclusive
or exclusive or.”

Another monumental statement of Professor Gabbay was the following.
When he defined tautology, Professor Gabbay explained that it is a state-
ment that is always true. “Therefore,” he said, “if you are a politician, you
should attempt to always say tautologies.”

The next day (and you will soon find out how dated this story is) the
following headline appeared in the newspaper:

Kissinger: There may or may not be important developments.
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I prepared a sign with both above statements and it hung on my walls
for many years:

Gabbay: If you are a politician, you should attempt to always say tautologies.

Kissinger: There may or may not be important developments.

For teaching me to do research, and for showing me that it should be fun
- Thanks.
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