7

Fast Parallel and Serial Approximate
String Matching

Consider the string matching problem, where differences between charac-
ters of the pattern and characters of the text are allowed. Each difference
is due to either a mismatch between a character of the text and a character
of the pattern, or a superfluous character in the text, or a superfluous char-
acter in the pattern. Given a text of length n, a pattern of length m and
an integer k, serial and parallel algorithms for finding all occurrences of
the pattern in the text with at most k& differences are presented. For com-
pleteness we also describe an efficient algorithm for preprocessing a rooted
tree, so that queries requesting the lowest common ancestor of every pair
of vertices in the tree can be processed quickly.

Problems:
Input form. Two arrays: A = ay, ..., a,, - the pattern, 7' = ¢y, ..., f, - the
text and an integer k& (> 1).

In the present chapter we will be interested in finding all occurrences
of the pattern string in the text string with at most k differences.

Three types of differences are distinguished:
(a) A character of the pattern corresponds to a different character of the
text - a mismatch between the two characters. (Item 2 in Example 1,

below.)

(b) A character of the pattern corresponds to "no character” in the text.
(Ttem 4).

(¢) A character of the text corresponds to "no character” in the pattern.
(Ttem 6).

Ezample 1. Let the text be abedefght | the pattern badyegh and k = 3.
Let us see whether there is an occurrence with < k differences that ends
at the eighth location of the text. For this the following correspondence
between bede fgh and bxdyegh is proposed. 1. b (of the text) corresponds
to b (of the pattern). 2. ¢ to #. 3. d to d. 4. Nothing to y. 5. e to e. 6. f
to nothing. 7. g to g. 8. h to h. The correspondence can be illustrated as

2 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHING

brdye gh
bcd ef gh

In only three places the correspondence is between non-equal characters.
This implies that there is an occurrence of the pattern that ends at the
eighth location of the text with 3 differences as required.

So, the main problem we consider is:

String matching with k differences (the k—dif ferences problem, for short):
Find all occurrences of the pattern in the text with at most & differences
of type (a),(b) and (c).

The case & = 0 in the both problems is the string matching problem,
which 1s discussed in Chapter 2. In this Chapter algorithms for the &
differences problem are given. The “k mismatches problem” is simpler than
the k differences problem (there, occurrences of the pattern in the text with
at most k differences of type (a) only are allowed); however, there are no
known algorithms for the & mismatches problem that are faster than the
algorithms for the k differences problem, on the other hand the algorithms
for the k differences problem solve the & mismatches problem as well.

The model of computation used in this chapter is the random-
access-machine (RAM) for the serial algorithms, and the concurrent-read
concurrent-write (CRCW) parallel random access machine (PRAM) for the
parallel algorithms. A PRAM employs p synchronous processors, all hav-
ing access to a common memory. A CRCW PRAM allows simultaneous
access by more than one processor to the same memory location for read
and write purposes. In case several processor seek to write simultaneously
at the same memory location, one of them succeeds and it is not known in
advance which one.

The k-differences problem is not only a basic theoretical problem. It
also has a strong pragmatic flavor. In practice, one often needs to analyze
situations where the data is not completely reliable. Specifically, consider
a situation where the strings that are the input for the problem contain
errors, as in reality, and one still needs to find all possible occurrences of
the pattern in the text. The errors may include a character being replaced
by another character, a character being omitted, or a superfluous charac-
ter being inserted. Assuming some bound on the number of errors would
clearly yield the k-differences problem.

Note that the measure of the quality of a match between the pattern
and a substring of the text depends on the application. The k differences
problem defines one possible measure. In many applications in molecular
biology a penalty table is given. This table assigns a penalty value for the
deletion and insertion of each letter of the alphabet, as well as a value for
matching any pair of characters. In the simplest case the score of a match
is simply the sum of the corresponding values in the penalty matrix. In
some cases however gaps (successive insertions or deletions) get penalties

THE SERIAL ALGORITHM 3

that are different from the sum of the penalties of each insertion (deletion).

The serial algorithm is given in Section 7.1. The parallel algorithm is
described in Section 7.2. Both, the serial and parallel, algorithms use, as
a procedure, an algorithm for the LCA problem. The problem and the
algorithm are given in Section 7.3.

7.1 The serial algorithm

In this section, an efficient algorithm for the k-differences problem is pre-
sented. As a warm-up, the section starts with two serial O(mn) time algo-
rithms for this problem. The first one is a simple dynamic programming
algorithm. The second algorithm follows the same dynamic programming
computation in a slightly different way, that will help explain the efficient
algorithm. Subsection 7.1.3 gives the efficient serial algorithm.

7.1.1 THE DYNAMIC PROGRAMMING ALGORITHM.

A matrix Dyg . ms0,...n] is constructed, where Dy, is the minimum number
of differences between ay,...,a; and any contiguous substring of the text
ending at ¢,.

If Dy, o < k then there must be an occurrence of the pattern in the text
with at most k& differences that ends at ¢,.
Ezample 2.

Let the text be GGGTCT A, the pattern GTTC' and k£ = 2. The matrix
Do, .ap0,...,71 (Table 7.1) is computed to check whether there are occurrences
of the pattern in the text with < & differences.

G|G|G|T|C|T]|A

0OjojJoO0OjJO0OjO0O|0O]0]O

G|1]0|O0O]O]1]1]1]1

T(2(1 110|112

T3 |2 |2 |2|1]1|1]|2

Cl4(3 |3 (3|2]1|2]|2
Table 7.1.

There are occurrences of the pattern in the text with < k differences
ending at t4, t5, tg and t7.
The following algorithm computes the matrix Dy .. m;0,...,n]

Inttialization
forall £,0< ¢ <n, Dye:=0
forall e,1 <+ <m, D;p:=1
for 1 :=1 tom do
for £:=1 ton do

4 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHING

Di¢g:=min (Dj_1¢ +1, Djgy + 1, Di_y oy if a; =1, or
D;_14-1 + 1 otherwise)

(D; ¢ is the minimum of three numbers. These three numbers
are obtained from the predecessors of D); , on its column,
row and diagonal, respectively.)

Complezity. The algorithm clearly runs in O(mn) time.

7.1.2 AN ALTERNATIVE DYNAMIC PROGRAMMING COMPUTATION

The algorithm computes the same information as in the matrix D of the
dynamic programming algorithm, using the diagonals of the matrix. A
diagonal d of the matrix consists of all D; ,’s such that £ —¢ = d.

For a number of differences e and a diagonal d, let L. denote the
largest row ¢ such that D; ; = e and D; ; is on diagonal d. The definition of
Lg . clearly implies that e is the minimum number of differences between
ai,...,ar, ., and any substring of the text ending at 7, 4. It also implies
that ar, .41 # tr, .+at+1. For the k-differences problem one needs only the
values of Lg.’s, where e satisfies e < k.

FErample 2 (continued)
Let us demonstrate the Ly . values for diagonal 3 (Table 7.2).

G|G|G|T|C|T]|A
0
G 1
T 1
T 1
C 2
Table 7.2.

Lso=0,Ls1 =3 and L3y =4.

If one of the Lg.’s equals m, for e < k, it means that there is an
occurrence of the pattern in the text with at most &k differences that ends
at td+m~

The Lj.’s are computed by induction on e. Given d and e it will be
shown how to compute L. using its definition. Suppose that for all z < e
and all diagonals y, Ly . was already computed. Suppose Lg. should get
the value ¢. That is, 7 is the largest row such that D; , = ¢, and D, is on
the diagonal d. The algorithm of the previous subsection reveals that D; ,
could have been assigned its value e using one (or more) of the following
data:

(a) D;j_14-1 (which is the predecessor of D;, on the diagonal d) is e — 1
and a; # t;. Or, D; 1 (the predecessor of D; ¢ on row ¢ which is also on

THE SERIAL ALGORITHM 5

the diagonal "below” d) is e — 1. Or, D;_1 ¢ (the predecessor of D;, on
column ¢ which is also on the diagonal "above” d) is e — 1.
(b) D;_1,4-1 is also e and a; = t,.

This implies that one can start from I); , and follow its predecessors on
diagonal d by possibility (b) till the first time possibility (a) occurs.

The following algorithm ”inverts” this description in order to compute
the Lac’s. Lge—1, La—1,e—1, and Lgt1 .—1 are used to initialize the variable
row, which is then increased by one at a time till it hits the correct value
of Ld,e~

The following algorithm computes the L’dyes

Inttialization

foralld, 0 <d<n, Lg_1:=-1

foralld, —(k+1) < d < =1, Lgjg—1 = |d| =1, Lg|q—2 := |d| -2

foralle,—1 <e<k, Lpyi,:=—1

2. for e:=0to k do
for d:=-e to n do
3. row:=max [Lge—1 +1, Lg—1,e—1, Lay1,e-1 + 1]
row := min(row, m)

4. while row < m and row+d < n and Grow+1 = trow+i+d

do
row = row + 1
5. Lg. = row

6. if Lg. = mthen
print *THERE 1S AN OCCURRENCE ENDING AT
td+m>'<

Remarks. (a) For every i,£, D; s — D;_1 ¢_1 is either zero or one.
(b) The values of the matrix D on diagonals d, such that d > n—m+k+1
or d < —k will be useless for the solution of the k-differences problem.
(¢) The Initialization step is given for completeness of this presentation.
The values entered in this step are meaningless. It is easy to check that
these values properly initialize the Lg . values on the boundary of the ma-
trix.
Correctness of the algorithm
Claim. Lg. gets its correct value.
Proof. By induction on e. Let e = 0. Consider the computation of Lg,
(d > 0). Instruction 3 starts by initializing row to 0. Instructions 4 and 5
find that ay,...,ar,, is equal to ta41,....,ta1L0,,0, and ar, 41 # tatLq 041
Therefore, Lg o gets its correct value. To finish the base of the induction
the reader can see that for d < 0, Lg g1 and Lg|q—-2 get correct values
in the Initialization.

Let e = {. Assume that all L4 ,_1 are correct. Consider the computation
of Lge, (d > —e). Following Instruction 3, row is the largest row on

6 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHING

diagonal d such that D,oy d4row can get value e by possibility (a). Then
Instruction 4 finds Lg.. O

Complexity. The Lg.’s for n + k + 1 diagonals are evaluated. For each
diagonal the variable row can get at most m different values. Therefore,
the computation takes O(mn) time.

7.1.3 THE EFFICIENT ALGORITHM

The efficient algorithm has two steps:

Step I. Concatenate the text and the pattern to one string ¢1,...,¢,
ai, ..., am. Compute the ”suffix tree” of this string.

Step II. Find all occurrences of the pattern in the text with at most &
differences.

Step I. The construction of the suffix tree is given in Section 4.

Upon construction of the suffix tree the following is required. For each

node v of the tree, a contiguous substring c;41, ..., ¢;4; that defines it will
be stored as follows: START(v) :=¢ and LENGTH (v) := f.
Complezity. The computation of the suffix tree is done in O(n) time when
the size of the alphabet is fixed. This is also the running time of Step I for
fixed size alphabet. If the alphabet of the pattern contains z letters then it
is easy to adapt the algorithm (and thus Step I) to run in time O(nlogz).
In both cases the space requirement of Step I'is O(n).

Step II. The matrix [and the L;.’s are exactly as in the alternative
dynamic programming algorithm. This alternative algorithm is used with
a very substantial change. The change is in Instruction 4, where instead
of increasing variable row by one at a time until it reaches Lg ., one finds
Lg. in O(1) time!

For a diagonal d, the situation following Instruction 3 is that a1, ..., Gpow
of the pattern is matched (with e differences) with some substring of
the text that ends at ¢,,,44. One wants to find the largest ¢ for
which @rowt1, .. Growtq €qUAlS trowtdtt, s trowtdsq. Let LCApqy g be
the lowest common ancestor (in short LCA) of the leaves of the suffixes
trow+dtly .- and drows1,... in the suffix tree. The desired ¢ 1s simply
LENGTH(LCA;ow q). Thus, the problem of finding this ¢ is reduced
to finding LC'A,w,a. An algorithm for the LCA problem is described in
Section 7.3.

Frample 2 (continued).

Let us explain how one computes Lz (Table 7.3). For this, L2 o, Lso

and L4 are used. Specifically Log =2, Lzo=0and Ls o= 0.
The algorithm (Instruction 3) initializes row to max(Ls g, Lao +1, Lag +1)
= 2. This is reflected in the box in which ”Initially row = 2”7 is written.
From the suffix tree one gets that ¢ = 1. (Since ag =t = T and a4 # t7.)
Therefore, L3, := 3.

THE PARALLEL ALGORITHM 7

G|G G T C T A
0 0
(Ls,0) | (Lay0)
G
T 0 (Initially
(Lag) | row=2)
T 1
(L31)
C
Table 7.3.

Complexity. In this section we are interested in the static lowest common
ancestors problem; where the tree is static, but queries for lowest common
ancestors of pair of vertices are given on line. That is, each query must be
answered before the next one is known. The suffix tree has O(n) nodes. In
Section 7.3 an algorithm for the LCA problem is described. It computes
LCA queries as follows. First it preprocesses the suffix tree in O(n) time.
Then, given an LCA query it responds in O(1) time. For each of the
n+k+ 1 diagonals, k + 1 Ly .’s are evaluated. Therefore, there are O(nk)
LCA Queries. Tt will take O(nk) time to process them. This time dominates
the running time of Step II.

Complezity of the serial algorithm. The total time for the serial algorithm
is O(nk) time for an alphabet whose size is fixed and O(n(logm+k)) time
for general input.

7.2 The parallel algorithm

The parallel algorithm described below runs in O(logn + k) time. At the
end of this section, an explanation how to modify it to run in O(logm+ k)
time is given. The parallel algorithm has the same two steps as the efficient
serial algorithm. Specifically:

Step I Concatenate the text and the pattern to one string
(t1,...,thai, ..., am). Then, compute, in parallel, the suffix tree of this string
(see Chapter 4).

Step II. Find all occurrences of the pattern in the text with at most &
differences. This step is done in a similar way to Step II in the serial
algorithm.

The matrix D and the Lg.’s are exactly as in the serial algorithm. The
parallel algorithm employs n+ &k + 1 processors. Each processor is assigned
to a diagonal d, —k < d < n. The parallel treatment of the diagonals is the
source of parallelism in the algorithm.

8 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHING

For a diagonal d the situation following Instruction 3 is that a1, ..., Gpoyw
of the pattern is matched (with e differences) with some substring of
the text that ends at #,op4+q4. One wants to find the largest ¢ for which
Qrow+1) s Grow+q €qUAIS trowdt1; .- trow+dtq- As in the serial algorithm
one gets this ¢ from the suffix tree. Let LCA,,w,a be the lowest com-
mon ancestor (in short LCA) of the leaves of the suffixes t,ou 4441, ... and
Urow+1, - in the suffix tree. The desired ¢ is simply LENGTH(LC Ayow a)-
Thus, the problem of finding this ¢ is reduced to finding LC' A,y a-

The parameter d is used and the pardo command for the purpose of
guiding each processor to its instruction.

The parallel algorithm

1. Initialization (as in Subsection 7.1.2)
2. fore:=0to k do
for d := —e to n pardo

3. row := max [(Lge—1 + 1), (La—1,e—1), (Lag1,e—1 + 1)]
row = min (row, m)

4. Ly :=row+ LENGTH(LCA,ow,4)

5. if L. =m and d +m < n then
print *THERE IS AN OCCURRENCE ENDING AT

td+m>'<

Complezity. In Chapter 4 1t is shown how one may compute the suffix tree
in O(log n) time using n processors. This suffix tree algorithm has the same
time complexity for fixed alphabet and for general alphabet. This is also the
running time of Step I. As in the serial case, one is interested in the static
lowest common ancestors problem: where the tree is static, but queries
for lowest common ancestors of pair of vertices are given on line. That
18, each query must be answered before the next one is known. The suffix
tree has O(n) nodes. The parallel version of the serial algorithm, which is
given in Section 7.3, for the LCA problem works as follows. It preprocesses
the suffix tree in O(logn) time using n/logn processors. Then, an LCA
query can be processed in O(1) time using a single processor. Therefore, »
parallel queries can be processed in O(1) time using # processors. In the
second step n 4+ k + 1 processors (one per diagonal) are employed. Each
processor computes at most k+ 1 Lq.’s. Computing each Lg . takes O(1)
time. Therefore, the second step takes O(k) time using n+k+1 processors.
Simulating the algorithm by n processors, instead of n + k + 1 still gives
O(k) time. The total time for the parallel algorithm is O(logn + k) time,
using n processors.

Lastly, an explanation how one can modify the algorithm to get
O(logm + k) time using O(n) processors is given. Instead of the above
problem [n/m] smaller problems will be solved, in parallel. The first sub-
problem will be as follows. Find all occurrences of the pattern that end
in locations t1, ..., 1y, of the text. Subproblem ¢,1 < ¢ < [n/m] will be:

AN ALGORITHM FOR THE LCA PROBLEM 9

Find all occurrences of the pattern that end in locations ¢(;_1ym41, .-, tim
of the text. The input for the first subproblem will consist of the sub-
string 1, ..., %, of the text and the pattern. The input for subproblem
will consist of the substring ¢(;_2)m_r 42, -, tim of the text and the pattern.
Clearly, the solution for all these subproblems give a solution for the above
problem. Finally, note that one can apply the parallel algorithm of this sec-
tion to solve each subproblem in O(logm+ k) time using O(m) processors,
and all [n/m] subproblems in O(logm + k) time using O(n) processors.
Simulating this algorithm by n processors still gives O(logm + k) time.

7.3 An algorithm for the LCA problem

The lowest-common-ancestor (LCA)} problem

Suppose a rooted tree 7T is given for preprocessing. The preprocessing

should enable to process quickly queries of the following form. Given two
vertices u and v, find their lowest common ancestor in 7'.
The input to this problem is a rooted tree T'= (V| E), whose root is some
vertex r. The Fuler tour technique enables efficient parallel computation of
several problems on trees. We summarize only those elements of the tech-
nique which are needed for presenting the serial lowest common ancestor
algorithm below. Let H be a graph which is obtained from T as follows:
For each edge (v — u) in T we add its anti-parallel edge (v — v). Since the
in-degree and out-degree of each vertex in H are the same, H has an FEuler
path that starts and ends in the root r of 1. This path can be computed,
in linear time, into a vector of pointers D of size 2|F|, where for each edge
e of H, D(e) gives the successor edge of e in the Euler path.

Let n = 2|V]—1. We assume that we are given a sequence of n vertices
A = [ay,...,a,], which is a slightly different representation of the Euler
tour of T, and that we know for each vertex v its level, LEV EL(v), in the
tree.

The range-minima problem is defined as follows:

Given an array A of n real numbers, preprocess the array so that for any
interval [a;, aiy1, ..., a;], the minimum over the interval can be retrieved
in constant time.

Below we give a simple reduction from the LCA problem to a restricted-
domain range-minima problem, which is an instance of the range-minima
problem where the difference between each two successive numbers for the
range-minima problem is exactly one. The reduction takes O(n) time. An
algorithm for the restricted-domain range-minima problem is given later,
implying an algorithm for the LCA problem.

10 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHING

7.3.1 REDUCING THE LCA PROBLEM TO A RESTRICTED-DOMAIN
RANGE-MINIMA PROBLEM

Let v be a vertex in T. Denote by {(v) the index of the leftmost appearance
of vin A and by r(v) the index of its rightmost appearance. For each vertex
v in T, it is easy to find I(v) and r(v) in O(n) time using the following
(trivial) observation:

I(v) is where aj,y = v and LEV EL(ayy)-1) = LEV EL(v) — 1.

r(v) is where a,(,) = v and LEV EL(ap(y)41) = LEV EL(v) — 1.

The claims and corollaries below provide guidelines for the reduction.

Claim 1: Vertex u is an ancestor of vertex v iff {(u) < {(v) < r(u).

Corollary 1: Given two vertices u and v, one can find in constant time
whether v is an ancestor of v.

Vertices u and v are unrelated (namely, neither u is an ancestor of v
nor v is an ancestor of u) iff either r(u) < I(v) or r(v) < I(u).

Claim 2 . Let uw and v be two unrelated vertices. (By Corollary 2, we
may assume without loss of generality that r(u) < I(v).) Then, the LCA
of u and v is the vertex whose level is minimal over the interval [r(u), {(v)]
in A.

The reduction. Let LEVEL(A) = [LEVEL(ay), LEVEL(a2), ...,

LEV EL(ay)]. Claim 2 shows that after performing the range-minima pre-
processing algorithm with respect to LEV EL(A), a query of the form
LCA(u,v) becomes a range minimum query. Observe that the difference
between the level of each pair of successive vertices in the Euler tour (and
thus each pair of successive entries in LEV EL(A)) is exactly one and there-
fore the reduction is to the restricted-domain range-minima problem as
required.
Remark. The observation that the problem of preprocessing an array so
that each range-minimum query can be answered in constant time is equiv-
alent to the LCA problem was known. This observation has led to a linear
time algorithm for the former problem using an algorithm for the latter.
This does not look very helpful: we know to solve the range-minima prob-
lem based on the LCA problem, and conversely, we know to solve the LCA
problem based on the range-minima problem. Nevertheless, using the re-
stricted domain properties of our range-minima problem we show that this
cyclic relationship between the two problems can be broken and thereby,
lead to a new algorithm.

7.3.2 A SIMPLE SEQUENTIAL LCA ALGORITHM

In this subsection we outline a sequential variant of the restricted-domain
range-minima problem where &, the difference between adjacent elements,
is one. Together with the reduction of Section 7.3.1, this gives a sequential
algorithm for the LCA problem.

We first describe two preprocessing procedures for the range-minima

AN ALGORITHM FOR THE LCA PROBLEM 11

problem: (i) Procedure I takes O(nlogn) time, for an input array of length
n. No assumptions are needed regarding the difference between adjacent
elements. (ii) Procedure II takes exponential time. Following each of these
preprocessing procedures, query retrieval takes constant-time. Second, the
sequential linear-time range-minima preprocessing algorithm is described.
Finally, we show how to retrieve a range-minimum query in constant time.
Procedure 1. Build a complete binary tree whose leaves are the elements of
the input array A. Compute (and keep) for each internal node all prefix
minima and all suffix minima with respect to its leaves.

Procedure T clearly runs in O(nlogn) time. Given any range [¢, j], the

range-minimum query with respect to [é,j] can be processed in constant
time, as follows. (1) Find the lowest node u of the binary tree such that
the range [7, j] falls within its leaves. This range is the union of a suffix of
the left child of u and a prefix of the right child of u. The minima over
these suffix and prefix was computed by Procedure I. (2) The answer to
the query is the minimum among these two minima.
Procedure II. We use the assumption that the difference between any two
adjacent elements of the input array A is exactly one. A table is built as
follows. We assume without loss of generality that the value of the first
element of A is zero (since, otherwise, we can subtract from every element
in A the value of the first element without affecting the answers to range-
minima queries). Then, the number of different possible input arrays A is
27~1. The table will have a subtable for each of these 2" ! possible arrays.
For each possible array, the subtable will store the answer to each of the
n(n — 1)/2 possible range queries. The time to build the table is O(2"n?)
and O(2"n?) space is needed.

The linear-time range-minima preprocessing algorithm follows.

e For each of the subsets a;105n+1, - - -, @(i41)10gn for 0 <@ < n/logn—1
find its minimum and apply Procedure I to an array of these n/logn
minima.

o Separately for each of the subsets @;1ogn+1,- -+, @(i41)10gn for 0 < i <
n/logn —1 do the following. Partition such subset to smaller subsets
of size loglogn each, and find the minimum in each smaller subset;
apply Procedure T to these logn/loglogn minima.

e Run Procedure II to build the table required for an (any) array of
size loglogn. For each of the subsets @;loglogn+1;- -+, @(i41)loglogn
for 0 <7 < n/loglogn — 1 identify its subtable.

The time (and space) for each step of the preprocessing algorithm is
O(n).

Consider a query requesting the minimum over a range [i, j]. We show
how to process it in constant time. The range [, j] can easily be presented
as the union of the following (at most) five ranges: [¢,#1], [z1+ 1, y1], [11 +
1, y2], [y2+1, 22] and [x2+1,]; where: (1) [¢, 1] (and [z2+1, j]) falls within

12 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHING

a single subset of size loglogn — its minimum is available in its subtable,
(2) [x1+ 1, y1] (and [y2 + 1, 23]) is the union of subsets of size loglogn and
falls within a single subset of size log n — its minimum is available from the
application of Procedure T to the subset of size logn, and (3) [y1 + 1, y2] is
the union of subsets of size logn — its minimum is available from the first
application of Procedure I. So, the minimum over range [4, j] is simply the
minimum of these five minima.

7.4 Bibliographic notes

Levenshtein [1966] was the first to define the three types of differences.
The random-access-machine (RAM)is described in Aho et al. [1974]. Sev-
eral books, AKL [1989], Gibbons and Rytter [1988], JaJ4 [1992], and Reif
[1992], and a few review papers, Eppstein and Galil [1988], Karp and Ra-
machandran [1990], Kruskal et al. [1990], Vishkin [1991], can be used as
references for PRAM algorithms. A discussion on gaps is given in Galil
and Giancarlo [1989] and Myers and Miller [1988].

The reader is referred to Sankoff and Kruskal [1983], a book which
is essentially devoted to various instances of the k-differences problem.
The book gives a comprehensive review of applications of the problem
in a variety of fields, including: computer science, molecular biology and
speech recognition. Quite a few problems in Molecular Biology are similar
to the k difference problem. Definitions of the problems and algorithms
that solve these problems can be found, for example, in Doolittle [1990]
and Waterman [1989].

The dynamic programming algorithm (Section 7.1.1) was given inde-
pendently by 9 different papers; a list of these papers can be found in
Sankoff and Kruskal [1983]. The algorithm given in Section 7.1.2 was pre-
sented by Ukkonen [1983]. The algorithms given in Sections 7.1.3 and 7.2
were presented in Landau and Vishkin [1989].

The serial algorithm of Harel and Tarjan [1984] was the first to solve the
LCA problem. It preprocesses the tree in linear time and then responses
to each query in O(1) time. The algorithms of Schieber and Vishkin [1988]
and Berkman and Vishkin [1989] compute it in parallel; these algorithms
can be used in the serial case, as well, and are simpler than the one of
Harel and Tarjan [1984]. The serial algorithm in Section 7.3 was presented
in Berkman and Vishkin [1989] where one can find the parallel version
of it. The remark in Section 7.3 was observed in Gabow et al. [1984].
A procedure similar to Procedure I in Section 7.3 was used in Alon and
Schieber [1987]. For more on the Euler tour technique see Tarjan and
Vishkin [1985] and Vishkin [1985].

Other algorithms for the k mismatches problem were given in Galil
and Giancarlo [1986], Galil and Giancarlo [1987] and Landau and Vishkin
[1986], and for the k-differences problem in Galil and Park [1990], Landau,

BIBLIOGRAPHY 13

Myers and Schmidt [1996], Landau and Vishkin [1988], Ukkonen [1985] and
Wu and Manber [1992]. In Galil and Giancarlo [1988] a survey was given.
Algorithms for approximate multi-dimensional array matching are given in
Amir and Landau [1991].

7.5 Bibliography

AHo, AV., J.E. HorcROFT AND J.D. ULLMAN [1974], The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, MA.

AKL, S.G. [1989], The Design and Analysis of Parallel Algorithms, Pren-
tice Hall, Engelwood Cliffs, New Jersey.

AMIR, A., AND G.M. LanDaU [1991], “Fast parallel and serial multi di-
mensional approximate array matching”, Theoretical Computer Sci-
ence, 81, 97-115.

ArLoN, N.; AND B. ScHIEBER[1987], “Optimal preprocessing for answering
on-line product queries,” approximate array matching,” TR 71/87,
The Moise and Frida Eskenasy Institute of Computer Science, Tel
Aviv University.

BERKMAN, O. aND U. VISHKIN [1989], “Recursive star-tree parallel data-
structure,” STAM J. Computing, 22, 221-242.

EPPSTEIN, D. AND Z. GALIL [1988], “Parallel algorithmic techniques for
combinatorial computation,” Ann. Rev. Comput. Sci., 3, 233-283.

DoornITTLE, R. F.,, (editor) [1990], Methods in Enzymology, 183: Molec-
ular Evolution: Computer Analysis of Protein and Nucleic Acid Se-
quences.

GaBow, H. N., J. L. BENTLEY AND R. E. TARJAN [1984], “Scaling and
related techniques for geometry problems,” Proc. 16th ACM Sympo-
stum on Theory of Computing, pp. 135-143.

GALIL, Z. AND R. GIANCARLO [1986], “Improved string matching with k
mismatches,” SIGACT News, 17, 52-54.

GALIL, Z. AND R. GiaNcaRLo [1987], “Parallel string matching with &
mismatches,” Theoretical Computer Science, 51, 341-348.

GALIL, Z. AND R. GiaNcarro [1988], “Data Structures and algorithms
for approximate string matching,” J. Complezity, 4, 33-72.

GALIL, Z. AND R. GIANCARLO [1989], “Speeding up dynamic program-
ming with applications to molecular biology,” Theoretical Computer
Science, 64, 107-118.

GALIL, Z. AND Q. PARK [1990], “An improved algorithm for approximate
string matching,” SIAM J. Computing, 19, 989-999.

GIBBONS, A. AND W. RYTTER [1988], Efficient Parallel Algorithms, Cam-
bridge University Press, Cambridge.

HAREL, D. AND R.E. TARJAN [1984], " Fast algorithms for finding nearest
common ancestors,” SIAM J. Computing, 13, 338-355.

Karp, R.M. AND V. RAMACHANDRAN [1990], “A survey of parallel algo-

14 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHING

rithms for shared-memory machines,” Handbook of Theoretical Com-
puter Science: Volume A, Algorithms and Complezity (Editor J. van
Leeuwen), MIT Press/Elsevier, 869-942.

Knuta, D.E., J.H. MoRrris AND V.R. PrATT [1977] “Fast pattern
matching in strings,” SIAM J. Computing, 6, 323-350.

Kruskar, C.P., L. RunoLPH, AND M. SNIR [1990], “A complexity theory
of efficient parallel algorithms,” Theoretical Computer Science, T1,
95-132.

JAJA, J. [1992], Introduction to Parallel Algorithms, Addison-Wesley,
Reading, MA.

LEVENSHTEIN, V. I. [1966], “Binary Codes Capable of Correcting, Dele-
tions, Insertions and Reversals,” Soviet Phys. Dokl10, STAM J. Com-
puting, to appear. 707-710.

Lanpau, G. M., E. W. MYERS, AND J. P. ScHMIDT [1996], “Incremental
String Comparison.” SIAM J. Computing, to appear.

Lanpau, G.M. aND U. VISHKIN [1986], “Efficient string matching with &
mismatches,” Theoretical Computer Science, 43, 239-249.

Lanpau, G.M. anD U. VISHKIN [1988], “Fast string matching with &
differences,” JCSS, 37, 63-78.

LanDaU, G.M. AND U. VISHKIN [1989], “Fast parallel and serial approx-
imate string matching,” Journal of Algorithms, 10, 157-169.

MyErs, E. W., aAND W. MILLER [1988], “Sequence Comparison with
Concave Weighting Functions,” Bulletin of Mathematical Biology, 50,
97-120.

REIF, J.H. (editor) [1992], Synthesis of Parallel Algorithms, Morgan Kauf-
mann, San Mateo, California.

SANKOFF, D. aND J.B. KRUSKAL (editors) [1983], Time Warps, String
FEdits, and Macromolecules: the Theory and Practice of Sequence
Comparison, Addison-Wesley, Reading, MA.

SCHIEBER, B. aAND U. VIsHKIN [1988], “On finding lowest common an-
cestors: simplification and parallelization,” STAM J. Computing, 17,
1253-1262.

TarJAN, R. E. aND U. VIsHKIN [1985], “An efficient parallel biconnec-
tivity algorithm,” STAM J. Computing, 14, 862-874.

UkKONEN, E. [1983], “On approximate string matching,” Proc. Int. Conf.
Found. Comp. Theor., Lecture Notes in Computer Science 158,
Springer-Verlag, pp. 487-495.

UkkoNEN, E. [1985], “Finding approximate pattern in strings,” J. of
Algorithms, 6, 132-137.

VISHKIN [1985], “On efficient parallel strong orientation,” Information Pro-
cessing Letters, 20, 235-240.

VIsHKIN, U. [1991], “Structural parallel algorithmics,” Proc. of the 18th
Int. Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science 510, Springer-Verlag, pp. 363-380.

BIBLIOGRAPHY 15

WATERMAN, M. S. (editor) [1989], Mathematical Methods for DNA Se-
quences, CRC Press.

Wu, S. aND U. MANBER [1992], “Fast Text Searching Allowing Errors,”
Comm. of the ACM, 35, 83-91.

