
7Fast Parallel and Serial ApproximateString MatchingConsider the string matching problem, where di�erences between charac-ters of the pattern and characters of the text are allowed. Each di�erenceis due to either a mismatch between a character of the text and a characterof the pattern, or a superuous character in the text, or a superuous char-acter in the pattern. Given a text of length n, a pattern of length m andan integer k, serial and parallel algorithms for �nding all occurrences ofthe pattern in the text with at most k di�erences are presented. For com-pleteness we also describe an e�cient algorithm for preprocessing a rootedtree, so that queries requesting the lowest common ancestor of every pairof vertices in the tree can be processed quickly.Problems:Input form. Two arrays: A = a1; :::; am - the pattern, T = t1; :::; tn - thetext and an integer k (� 1).In the present chapter we will be interested in �nding all occurrencesof the pattern string in the text string with at most k di�erences.Three types of di�erences are distinguished:(a) A character of the pattern corresponds to a di�erent character of thetext - a mismatch between the two characters. (Item 2 in Example 1,below.)(b) A character of the pattern corresponds to "no character" in the text.(Item 4).(c) A character of the text corresponds to "no character" in the pattern.(Item 6).Example 1. Let the text be abcdefghi , the pattern bxdyegh and k = 3.Let us see whether there is an occurrence with � k di�erences that endsat the eighth location of the text. For this the following correspondencebetween bcdefgh and bxdyegh is proposed. 1. b (of the text) correspondsto b (of the pattern). 2. c to x. 3. d to d. 4. Nothing to y. 5. e to e. 6. fto nothing. 7. g to g. 8. h to h. The correspondence can be illustrated as



2 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHINGb x d y e g hb c d e f g hIn only three places the correspondence is between non-equal characters.This implies that there is an occurrence of the pattern that ends at theeighth location of the text with 3 di�erences as required.So, the main problem we consider is:String matching with k di�erences (the k�differences problem, for short):Find all occurrences of the pattern in the text with at most k di�erencesof type (a),(b) and (c).The case k = 0 in the both problems is the string matching problem,which is discussed in Chapter 2. In this Chapter algorithms for the kdi�erences problem are given. The \k mismatches problem" is simpler thanthe k di�erences problem (there, occurrences of the pattern in the text withat most k di�erences of type (a) only are allowed); however, there are noknown algorithms for the k mismatches problem that are faster than thealgorithms for the k di�erences problem, on the other hand the algorithmsfor the k di�erences problem solve the k mismatches problem as well.The model of computation used in this chapter is the random-access-machine (RAM) for the serial algorithms, and the concurrent-readconcurrent-write (CRCW) parallel random access machine (PRAM) for theparallel algorithms. A PRAM employs p synchronous processors, all hav-ing access to a common memory. A CRCW PRAM allows simultaneousaccess by more than one processor to the same memory location for readand write purposes. In case several processor seek to write simultaneouslyat the same memory location, one of them succeeds and it is not known inadvance which one.The k-di�erences problem is not only a basic theoretical problem. Italso has a strong pragmatic avor. In practice, one often needs to analyzesituations where the data is not completely reliable. Speci�cally, considera situation where the strings that are the input for the problem containerrors, as in reality, and one still needs to �nd all possible occurrences ofthe pattern in the text. The errors may include a character being replacedby another character, a character being omitted, or a superuous charac-ter being inserted. Assuming some bound on the number of errors wouldclearly yield the k-di�erences problem.Note that the measure of the quality of a match between the patternand a substring of the text depends on the application. The k di�erencesproblem de�nes one possible measure. In many applications in molecularbiology a penalty table is given. This table assigns a penalty value for thedeletion and insertion of each letter of the alphabet, as well as a value formatching any pair of characters. In the simplest case the score of a matchis simply the sum of the corresponding values in the penalty matrix. Insome cases however gaps (successive insertions or deletions) get penalties



THE SERIAL ALGORITHM 3that are di�erent from the sum of the penalties of each insertion (deletion).The serial algorithm is given in Section 7.1. The parallel algorithm isdescribed in Section 7.2. Both, the serial and parallel, algorithms use, asa procedure, an algorithm for the LCA problem. The problem and thealgorithm are given in Section 7.3.7.1 The serial algorithmIn this section, an e�cient algorithm for the k-di�erences problem is pre-sented. As a warm-up, the section starts with two serial O(mn) time algo-rithms for this problem. The �rst one is a simple dynamic programmingalgorithm. The second algorithm follows the same dynamic programmingcomputation in a slightly di�erent way, that will help explain the e�cientalgorithm. Subsection 7.1.3 gives the e�cient serial algorithm.7.1.1 THE DYNAMIC PROGRAMMING ALGORITHM.A matrix D[0;:::;m;0;:::;n] is constructed, where Di;` is the minimum numberof di�erences between a1; :::; ai and any contiguous substring of the textending at t`.If Dm;` � k then there must be an occurrence of the pattern in the textwith at most k di�erences that ends at t`.Example 2.Let the text be GGGTCTA, the pattern GTTC and k = 2. The matrixD[0;:::4;0;:::;7] (Table 7.1) is computed to check whether there are occurrencesof the pattern in the text with � k di�erences.G G G T C T A0 0 0 0 0 0 0 0G 1 0 0 0 1 1 1 1T 2 1 1 1 0 1 1 2T 3 2 2 2 1 1 1 2C 4 3 3 3 2 1 2 2Table 7.1.There are occurrences of the pattern in the text with � k di�erencesending at t4, t5, t6 and t7.The following algorithm computes the matrix D[0;:::;m;0;:::;n]Initializationfor all `; 0 � ` � n; D0;` := 0for all i; 1 � i � m; Di;0 := ifor i := 1 to m dofor ` := 1 to n do



4 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHINGDi;` := min (Di�1;` + 1, Di;`�1 + 1, Di�1;`�1 if ai = t` orDi�1;`�1 + 1 otherwise)(Di;` is the minimumof three numbers. These three numbersare obtained from the predecessors of Di;` on its column,row and diagonal, respectively.)Complexity. The algorithm clearly runs in O(mn) time.7.1.2 AN ALTERNATIVE DYNAMIC PROGRAMMING COMPUTATIONThe algorithm computes the same information as in the matrix D of thedynamic programming algorithm, using the diagonals of the matrix. Adiagonal d of the matrix consists of all Di;`'s such that ` � i = d.For a number of di�erences e and a diagonal d, let Ld;e denote thelargest row i such that Di;` = e and Di;` is on diagonal d. The de�nition ofLd;e clearly implies that e is the minimum number of di�erences betweena1; :::; aLd;e and any substring of the text ending at tLd;e+d. It also impliesthat aLd;e+1 6= tLd;e+d+1. For the k-di�erences problem one needs only thevalues of Ld;e's, where e satis�es e � k.Example 2 (continued)Let us demonstrate the Ld;e values for diagonal 3 (Table 7.2).G G G T C T A0G 1T 1T 1C 2Table 7.2.L3;0 = 0, L3;1 = 3 and L3;2 = 4.If one of the Ld;e's equals m, for e � k, it means that there is anoccurrence of the pattern in the text with at most k di�erences that endsat td+m.The Ld;e's are computed by induction on e. Given d and e it will beshown how to compute Ld;e using its de�nition. Suppose that for all x < eand all diagonals y, Ly;x was already computed. Suppose Ld;e should getthe value i. That is, i is the largest row such that Di;` = e, and Di;` is onthe diagonal d. The algorithm of the previous subsection reveals that Di;`could have been assigned its value e using one (or more) of the followingdata:(a) Di�1;`�1 (which is the predecessor of Di;` on the diagonal d) is e � 1and ai 6= t`. Or, Di;`�1 (the predecessor of Di;` on row i which is also on



THE SERIAL ALGORITHM 5the diagonal "below" d) is e � 1. Or, Di�1;` (the predecessor of Di;` oncolumn ` which is also on the diagonal "above" d) is e� 1.(b) Di�1;`�1 is also e and ai = t`.This implies that one can start from Di;` and follow its predecessors ondiagonal d by possibility (b) till the �rst time possibility (a) occurs.The following algorithm "inverts" this description in order to computethe Ld;e's. Ld;e�1, Ld�1;e�1, and Ld+1;e�1 are used to initialize the variablerow, which is then increased by one at a time till it hits the correct valueof Ld;e.The following algorithm computes the L0d;esInitializationfor all d; 0 � d � n; Ld;�1 := �1for all d;�(k+1) � d � �1, Ld;jdj�1 := jdj�1, Ld;jdj�2 := jdj�2for all e;�1 � e � k; Ln+1;e := �12. for e:=0 to k dofor d:=-e to n do3. row := max [Ld;e�1 + 1; Ld�1;e�1; Ld+1;e�1 + 1]row := min(row;m)4. while row < m and row+d < n and arow+1 = trow+1+ddorow := row + 15. Ld;e := row6. if Ld;e = m thenprint *THERE IS AN OCCURRENCE ENDING ATtd+m*Remarks. (a) For every i; `, Di;` �Di�1;`�1 is either zero or one.(b) The values of the matrixD on diagonals d, such that d > n�m+k+1or d < �k will be useless for the solution of the k-di�erences problem.(c) The Initialization step is given for completeness of this presentation.The values entered in this step are meaningless. It is easy to check thatthese values properly initialize the Ld;e values on the boundary of the ma-trix.Correctness of the algorithmClaim. Ld;e gets its correct value.Proof. By induction on e. Let e = 0. Consider the computation of Ld;0,(d � 0). Instruction 3 starts by initializing row to 0. Instructions 4 and 5�nd that a1; :::; aLd;0 is equal to td+1; :::; td+Ld;0, and aLd;0+1 6= td+Ld;0+1.Therefore, Ld;0 gets its correct value. To �nish the base of the inductionthe reader can see that for d < 0, Ld;jdj�1 and Ld;jdj�2 get correct valuesin the Initialization.Let e = `. Assume that allLd;`�1 are correct. Consider the computationof Ld;e, (d � �e). Following Instruction 3, row is the largest row on



6 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHINGdiagonal d such that Drow;d+row can get value e by possibility (a). ThenInstruction 4 �nds Ld;e. 2Complexity. The Ld;e's for n + k + 1 diagonals are evaluated. For eachdiagonal the variable row can get at most m di�erent values. Therefore,the computation takes O(mn) time.7.1.3 THE EFFICIENT ALGORITHMThe e�cient algorithm has two steps:Step I. Concatenate the text and the pattern to one string t1; :::; tna1; :::; am. Compute the "su�x tree" of this string.Step II. Find all occurrences of the pattern in the text with at most kdi�erences.Step I. The construction of the su�x tree is given in Section 4.Upon construction of the su�x tree the following is required. For eachnode v of the tree, a contiguous substring ci+1; :::; ci+f that de�nes it willbe stored as follows: START (v) := i and LENGTH(v) := f .Complexity. The computation of the su�x tree is done in O(n) time whenthe size of the alphabet is �xed. This is also the running time of Step I for�xed size alphabet. If the alphabet of the pattern contains x letters then itis easy to adapt the algorithm (and thus Step I) to run in time O(n logx).In both cases the space requirement of Step I is O(n).Step II. The matrix D and the Ld;e's are exactly as in the alternativedynamic programming algorithm. This alternative algorithm is used witha very substantial change. The change is in Instruction 4, where insteadof increasing variable row by one at a time until it reaches Ld;e, one �ndsLd;e in O(1) time!For a diagonal d, the situation following Instruction 3 is that a1; :::; arowof the pattern is matched (with e di�erences) with some substring ofthe text that ends at trow+d. One wants to �nd the largest q forwhich arow+1; :::; arow+q equals trow+d+1 ; :::; trow+d+q: Let LCArow;d bethe lowest common ancestor (in short LCA) of the leaves of the su�xestrow+d+1; ::: and arow+1; ::: in the su�x tree. The desired q is simplyLENGTH(LCArow;d). Thus, the problem of �nding this q is reducedto �nding LCArow;d. An algorithm for the LCA problem is described inSection 7.3.Example 2 (continued).Let us explain how one computes L3;1 (Table 7.3). For this, L2;0, L3;0and L4;0 are used. Speci�cally L2;0 = 2, L3;0 = 0 and L4;0 = 0.The algorithm (Instruction 3) initializes row tomax(L2;0; L3;0 +1; L4;0 +1)= 2. This is reected in the box in which "Initially row = 2" is written.From the su�x tree one gets that q = 1. (Since a3 = t6 = T and a4 6= t7.)Therefore, L3;1 := 3.



THE PARALLEL ALGORITHM 7G G G T C T A0 0(L3;0) (L4;0)GT 0 (Initially(L2;0) row = 2)T 1(L3;1)C Table 7.3.Complexity. In this section we are interested in the static lowest commonancestors problem; where the tree is static, but queries for lowest commonancestors of pair of vertices are given on line. That is, each query must beanswered before the next one is known. The su�x tree has O(n) nodes. InSection 7.3 an algorithm for the LCA problem is described. It computesLCA queries as follows. First it preprocesses the su�x tree in O(n) time.Then, given an LCA query it responds in O(1) time. For each of then+ k+ 1 diagonals, k+ 1 Ld;e's are evaluated. Therefore, there are O(nk)LCAQueries. It will take O(nk) time to process them. This time dominatesthe running time of Step II.Complexity of the serial algorithm. The total time for the serial algorithmis O(nk) time for an alphabet whose size is �xed and O(n(logm+k)) timefor general input.7.2 The parallel algorithmThe parallel algorithm described below runs in O(logn + k) time. At theend of this section, an explanation how to modify it to run in O(logm+k)time is given. The parallel algorithm has the same two steps as the e�cientserial algorithm. Speci�cally:Step I. Concatenate the text and the pattern to one string(t1; :::; tna1; :::; am). Then, compute, in parallel, the su�x tree of this string(see Chapter 4).Step II. Find all occurrences of the pattern in the text with at most kdi�erences. This step is done in a similar way to Step II in the serialalgorithm.The matrixD and the Ld;e's are exactly as in the serial algorithm. Theparallel algorithm employs n+k+1 processors. Each processor is assignedto a diagonal d;�k � d � n. The parallel treatment of the diagonals is thesource of parallelism in the algorithm.



8 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHINGFor a diagonal d the situation following Instruction 3 is that a1; :::; arowof the pattern is matched (with e di�erences) with some substring ofthe text that ends at trow+d. One wants to �nd the largest q for whicharow+1; :::; arow+q equals trow+d+1; :::; trow+d+q: As in the serial algorithmone gets this q from the su�x tree. Let LCArow;d be the lowest com-mon ancestor (in short LCA) of the leaves of the su�xes trow+d+1 ; ::: andarow+1; ::: in the su�x tree. The desired q is simply LENGTH(LCArow;d).Thus, the problem of �nding this q is reduced to �nding LCArow;d.The parameter d is used and the pardo command for the purpose ofguiding each processor to its instruction.The parallel algorithm1. Initialization (as in Subsection 7.1.2)2. for e := 0 to k dofor d := �e to n pardo3. row := max [(Ld;e�1 + 1); (Ld�1;e�1); (Ld+1;e�1 + 1)]row := min (row;m)4. Ld;e := row + LENGTH(LCArow;d)5. if Ld;e = m and d+m � n thenprint *THERE IS AN OCCURRENCE ENDING ATtd+m*Complexity. In Chapter 4 it is shown how one may compute the su�x treein O(logn) time using n processors. This su�x tree algorithm has the sametime complexity for �xed alphabet and for general alphabet. This is also therunning time of Step I. As in the serial case, one is interested in the staticlowest common ancestors problem: where the tree is static, but queriesfor lowest common ancestors of pair of vertices are given on line. Thatis, each query must be answered before the next one is known. The su�xtree has O(n) nodes. The parallel version of the serial algorithm, which isgiven in Section 7.3, for the LCA problem works as follows. It preprocessesthe su�x tree in O(logn) time using n= logn processors. Then, an LCAquery can be processed in O(1) time using a single processor. Therefore, xparallel queries can be processed in O(1) time using x processors. In thesecond step n + k + 1 processors (one per diagonal) are employed. Eachprocessor computes at most k + 1 Ld;e's. Computing each Ld;e takes O(1)time. Therefore, the second step takes O(k) time using n+k+1 processors.Simulating the algorithm by n processors, instead of n + k + 1 still givesO(k) time. The total time for the parallel algorithm is O(logn+ k) time,using n processors.Lastly, an explanation how one can modify the algorithm to getO(logm + k) time using O(n) processors is given. Instead of the aboveproblem dn=me smaller problems will be solved, in parallel. The �rst sub-problem will be as follows. Find all occurrences of the pattern that endin locations t1; :::; tm of the text. Subproblem i; 1 � i � dn=me will be:



AN ALGORITHM FOR THE LCA PROBLEM 9Find all occurrences of the pattern that end in locations t(i�1)m+1; :::; timof the text. The input for the �rst subproblem will consist of the sub-string t1; :::; tm of the text and the pattern. The input for subproblem iwill consist of the substring t(i�2)m�k+2; :::; tim of the text and the pattern.Clearly, the solution for all these subproblems give a solution for the aboveproblem. Finally, note that one can apply the parallel algorithm of this sec-tion to solve each subproblem in O(logm+k) time using O(m) processors,and all dn=me subproblems in O(logm + k) time using O(n) processors.Simulating this algorithm by n processors still gives O(logm + k) time.7.3 An algorithm for the LCA problemThe lowest-common-ancestor (LCA) problemSuppose a rooted tree T is given for preprocessing. The preprocessingshould enable to process quickly queries of the following form. Given twovertices u and v, �nd their lowest common ancestor in T .The input to this problem is a rooted tree T = (V;E), whose root is somevertex r. The Euler tour technique enables e�cient parallel computation ofseveral problems on trees. We summarize only those elements of the tech-nique which are needed for presenting the serial lowest common ancestoralgorithm below. Let H be a graph which is obtained from T as follows:For each edge (v ! u) in T we add its anti-parallel edge (u! v). Since thein-degree and out-degree of each vertex in H are the same, H has an Eulerpath that starts and ends in the root r of T . This path can be computed,in linear time, into a vector of pointers D of size 2jEj, where for each edgee of H, D(e) gives the successor edge of e in the Euler path.Let n = 2jV j�1. We assume that we are given a sequence of n verticesA = [a1; : : : ; an], which is a slightly di�erent representation of the Eulertour of T , and that we know for each vertex v its level, LEV EL(v), in thetree.The range-minima problem is de�ned as follows:Given an array A of n real numbers, preprocess the array so that for anyinterval [ai; ai+1; : : : ; aj], the minimum over the interval can be retrievedin constant time.Below we give a simple reduction from the LCA problem to a restricted-domain range-minima problem, which is an instance of the range-minimaproblem where the di�erence between each two successive numbers for therange-minima problem is exactly one. The reduction takes O(n) time. Analgorithm for the restricted-domain range-minima problem is given later,implying an algorithm for the LCA problem.



10 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHING7.3.1 REDUCING THE LCA PROBLEM TO A RESTRICTED-DOMAINRANGE-MINIMA PROBLEMLet v be a vertex in T . Denote by l(v) the index of the leftmost appearanceof v in A and by r(v) the index of its rightmost appearance. For each vertexv in T , it is easy to �nd l(v) and r(v) in O(n) time using the following(trivial) observation:l(v) is where al(v) = v and LEV EL(al(v)�1) = LEV EL(v) � 1.r(v) is where ar(v) = v and LEV EL(ar(v)+1) = LEV EL(v) � 1.The claims and corollaries below provide guidelines for the reduction.Claim 1: Vertex u is an ancestor of vertex v i� l(u) < l(v) < r(u).Corollary 1: Given two vertices u and v, one can �nd in constant timewhether u is an ancestor of v.Vertices u and v are unrelated (namely, neither u is an ancestor of vnor v is an ancestor of u) i� either r(u) < l(v) or r(v) < l(u).Claim 2 . Let u and v be two unrelated vertices. (By Corollary 2, wemay assume without loss of generality that r(u) < l(v).) Then, the LCAof u and v is the vertex whose level is minimal over the interval [r(u); l(v)]in A.The reduction. Let LEV EL(A) = [LEV EL(a1), LEV EL(a2); : : : ;LEV EL(an)]. Claim 2 shows that after performing the range-minima pre-processing algorithm with respect to LEV EL(A), a query of the formLCA(u; v) becomes a range minimum query. Observe that the di�erencebetween the level of each pair of successive vertices in the Euler tour (andthus each pair of successive entries in LEV EL(A)) is exactly one and there-fore the reduction is to the restricted-domain range-minima problem asrequired.Remark. The observation that the problem of preprocessing an array sothat each range-minimumquery can be answered in constant time is equiv-alent to the LCA problem was known. This observation has led to a lineartime algorithm for the former problem using an algorithm for the latter.This does not look very helpful: we know to solve the range-minima prob-lem based on the LCA problem, and conversely, we know to solve the LCAproblem based on the range-minima problem. Nevertheless, using the re-stricted domain properties of our range-minima problem we show that thiscyclic relationship between the two problems can be broken and thereby,lead to a new algorithm.7.3.2 A SIMPLE SEQUENTIAL LCA ALGORITHMIn this subsection we outline a sequential variant of the restricted-domainrange-minima problem where k, the di�erence between adjacent elements,is one. Together with the reduction of Section 7.3.1, this gives a sequentialalgorithm for the LCA problem.We �rst describe two preprocessing procedures for the range-minima



AN ALGORITHM FOR THE LCA PROBLEM 11problem: (i) Procedure I takes O(n logn) time, for an input array of lengthn. No assumptions are needed regarding the di�erence between adjacentelements. (ii) Procedure II takes exponential time. Following each of thesepreprocessing procedures, query retrieval takes constant-time. Second, thesequential linear-time range-minima preprocessing algorithm is described.Finally, we show how to retrieve a range-minimum query in constant time.Procedure I. Build a complete binary tree whose leaves are the elements ofthe input array A. Compute (and keep) for each internal node all pre�xminima and all su�x minima with respect to its leaves.Procedure I clearly runs in O(n logn) time. Given any range [i; j], therange-minimum query with respect to [i; j] can be processed in constanttime, as follows. (1) Find the lowest node u of the binary tree such thatthe range [i; j] falls within its leaves. This range is the union of a su�x ofthe left child of u and a pre�x of the right child of u. The minima overthese su�x and pre�x was computed by Procedure I. (2) The answer tothe query is the minimum among these two minima.Procedure II. We use the assumption that the di�erence between any twoadjacent elements of the input array A is exactly one. A table is built asfollows. We assume without loss of generality that the value of the �rstelement of A is zero (since, otherwise, we can subtract from every elementin A the value of the �rst element without a�ecting the answers to range-minima queries). Then, the number of di�erent possible input arrays A is2n�1. The table will have a subtable for each of these 2n�1 possible arrays.For each possible array, the subtable will store the answer to each of then(n� 1)=2 possible range queries. The time to build the table is O(2nn2)and O(2nn2) space is needed.The linear-time range-minima preprocessing algorithm follows.� For each of the subsets ai logn+1; : : : ; a(i+1) logn for 0 � i � n= logn�1�nd its minimum and apply Procedure I to an array of these n= lognminima.� Separately for each of the subsets ai logn+1; : : : ; a(i+1) logn for 0 � i �n= logn�1 do the following. Partition such subset to smaller subsetsof size log logn each, and �nd the minimum in each smaller subset;apply Procedure I to these logn= log logn minima.� Run Procedure II to build the table required for an (any) array ofsize log logn. For each of the subsets ai log logn+1; : : : ; a(i+1) log lognfor 0 � i � n= log logn� 1 identify its subtable.The time (and space) for each step of the preprocessing algorithm isO(n).Consider a query requesting the minimum over a range [i; j]. We showhow to process it in constant time. The range [i; j] can easily be presentedas the union of the following (at most) �ve ranges: [i; x1]; [x1+ 1; y1]; [y1+1; y2]; [y2+1; x2] and [x2+1; j]; where: (1) [i; x1] (and [x2+1; j]) falls within



12 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHINGa single subset of size log logn { its minimum is available in its subtable,(2) [x1+1; y1] (and [y2+1; x2]) is the union of subsets of size log logn andfalls within a single subset of size logn { its minimum is available from theapplication of Procedure I to the subset of size logn, and (3) [y1 + 1; y2] isthe union of subsets of size logn { its minimum is available from the �rstapplication of Procedure I. So, the minimum over range [i; j] is simply theminimum of these �ve minima.7.4 Bibliographic notesLevenshtein [1966] was the �rst to de�ne the three types of di�erences.The random-access-machine (RAM)is described in Aho et al. [1974]. Sev-eral books, AKL [1989], Gibbons and Rytter [1988], J�aJ�a [1992], and Reif[1992], and a few review papers, Eppstein and Galil [1988], Karp and Ra-machandran [1990], Kruskal et al. [1990], Vishkin [1991], can be used asreferences for PRAM algorithms. A discussion on gaps is given in Galiland Giancarlo [1989] and Myers and Miller [1988].The reader is referred to Sanko� and Kruskal [1983], a book whichis essentially devoted to various instances of the k-di�erences problem.The book gives a comprehensive review of applications of the problemin a variety of �elds, including: computer science, molecular biology andspeech recognition. Quite a few problems in Molecular Biology are similarto the k di�erence problem. De�nitions of the problems and algorithmsthat solve these problems can be found, for example, in Doolittle [1990]and Waterman [1989].The dynamic programming algorithm (Section 7.1.1) was given inde-pendently by 9 di�erent papers; a list of these papers can be found inSanko� and Kruskal [1983]. The algorithm given in Section 7.1.2 was pre-sented by Ukkonen [1983]. The algorithms given in Sections 7.1.3 and 7.2were presented in Landau and Vishkin [1989].The serial algorithm of Harel and Tarjan [1984] was the �rst to solve theLCA problem. It preprocesses the tree in linear time and then responsesto each query in O(1) time. The algorithms of Schieber and Vishkin [1988]and Berkman and Vishkin [1989] compute it in parallel; these algorithmscan be used in the serial case, as well, and are simpler than the one ofHarel and Tarjan [1984]. The serial algorithm in Section 7.3 was presentedin Berkman and Vishkin [1989] where one can �nd the parallel versionof it. The remark in Section 7.3 was observed in Gabow et al. [1984].A procedure similar to Procedure I in Section 7.3 was used in Alon andSchieber [1987]. For more on the Euler tour technique see Tarjan andVishkin [1985] and Vishkin [1985].Other algorithms for the k mismatches problem were given in Galiland Giancarlo [1986], Galil and Giancarlo [1987] and Landau and Vishkin[1986], and for the k-di�erences problem in Galil and Park [1990], Landau,



BIBLIOGRAPHY 13Myers and Schmidt [1996], Landau and Vishkin [1988], Ukkonen [1985] andWu and Manber [1992]. In Galil and Giancarlo [1988] a survey was given.Algorithms for approximate multi-dimensional array matching are given inAmir and Landau [1991].7.5 BibliographyAho, A.V., J.E. Hopcroft and J.D. Ullman [1974], The Design andAnalysis of Computer Algorithms, Addison-Wesley, Reading, MA.Akl, S.G. [1989], The Design and Analysis of Parallel Algorithms, Pren-tice Hall, Engelwood Cli�s, New Jersey.Amir, A., and G.M. Landau [1991], \Fast parallel and serial multi di-mensional approximate array matching", Theoretical Computer Sci-ence, 81, 97{115.Alon, N., and B. Schieber[1987], \Optimal preprocessing for answeringon-line product queries," approximate array matching," TR 71/87,The Moise and Frida Eskenasy Institute of Computer Science, TelAviv University.Berkman, O. and U. Vishkin [1989], \Recursive star-tree parallel data-structure," SIAM J. Computing, 22, 221{242.Eppstein, D. and Z. Galil [1988], \Parallel algorithmic techniques forcombinatorial computation," Ann. Rev. Comput. Sci., 3, 233{283.Doolittle, R. F.,, (editor) [1990],Methods in Enzymology, 183: Molec-ular Evolution: Computer Analysis of Protein and Nucleic Acid Se-quences.Gabow, H. N., J. L. Bentley and R. E. Tarjan [1984], \Scaling andrelated techniques for geometry problems," Proc. 16th ACM Sympo-sium on Theory of Computing, pp. 135-143.Galil, Z. and R. Giancarlo [1986], \Improved string matching with kmismatches," SIGACT News, 17, 52{54.Galil, Z. and R. Giancarlo [1987], \Parallel string matching with kmismatches," Theoretical Computer Science, 51, 341{348.Galil, Z. and R. Giancarlo [1988], \Data Structures and algorithmsfor approximate string matching," J. Complexity, 4, 33{72.Galil, Z. and R. Giancarlo [1989], \Speeding up dynamic program-ming with applications to molecular biology," Theoretical ComputerScience, 64, 107{118.Galil, Z. and Q. Park [1990], \An improved algorithm for approximatestring matching," SIAM J. Computing, 19, 989{999.Gibbons, A. and W. Rytter [1988], E�cient Parallel Algorithms, Cam-bridge University Press, Cambridge.Harel, D. and R.E. Tarjan [1984], "Fast algorithms for �nding nearestcommon ancestors," SIAM J. Computing, 13, 338{355.Karp, R.M. and V. Ramachandran [1990], \A survey of parallel algo-



14 FAST PARALLEL AND SERIAL APPROXIMATE STRING MATCHINGrithms for shared-memory machines," Handbook of Theoretical Com-puter Science: Volume A, Algorithms and Complexity (Editor J. vanLeeuwen), MIT Press/Elsevier, 869{942.Knuth, D.E., J.H. Morris and V.R. Pratt [1977] \Fast patternmatching in strings," SIAM J. Computing, 6, 323{350.Kruskal, C.P., L. Rudolph, and M. Snir [1990], \A complexity theoryof e�cient parallel algorithms," Theoretical Computer Science, 71,95{132.J�aJ�a, J. [1992], Introduction to Parallel Algorithms, Addison-Wesley,Reading, MA.Levenshtein, V. I. [1966], \Binary Codes Capable of Correcting, Dele-tions, Insertions and Reversals," Soviet Phys. Dokl 10, SIAM J. Com-puting, to appear. 707{710.Landau, G. M., E. W. Myers, and J. P. Schmidt [1996], \IncrementalString Comparison." SIAM J. Computing, to appear.Landau, G.M. and U. Vishkin [1986], \E�cient string matching with kmismatches," Theoretical Computer Science, 43, 239{249.Landau, G.M. and U. Vishkin [1988], \Fast string matching with kdi�erences," JCSS, 37, 63{78.Landau, G.M. and U. Vishkin [1989], \Fast parallel and serial approx-imate string matching," Journal of Algorithms, 10, 157{169.Myers, E. W., and W. Miller [1988], \Sequence Comparison withConcave Weighting Functions," Bulletin of Mathematical Biology, 50,97{120.Reif, J.H. (editor) [1992], Synthesis of Parallel Algorithms, Morgan Kauf-mann, San Mateo, California.Sankoff, D. and J.B. Kruskal (editors) [1983], Time Warps, StringEdits, and Macromolecules: the Theory and Practice of SequenceComparison, Addison-Wesley, Reading, MA.Schieber, B. and U. Vishkin [1988], \On �nding lowest common an-cestors: simpli�cation and parallelization," SIAM J. Computing, 17,1253{1262.Tarjan, R. E. and U. Vishkin [1985], \An e�cient parallel biconnec-tivity algorithm," SIAM J. Computing, 14, 862{874.Ukkonen, E. [1983], \On approximate string matching," Proc. Int. Conf.Found. Comp. Theor., Lecture Notes in Computer Science 158,Springer-Verlag, pp. 487{495.Ukkonen, E. [1985], \Finding approximate pattern in strings," J. ofAlgorithms, 6, 132{137.Vishkin [1985], \On e�cient parallel strong orientation," Information Pro-cessing Letters, 20, 235{240.Vishkin, U. [1991], \Structural parallel algorithmics," Proc. of the 18thInt. Colloquium on Automata, Languages and Programming, LectureNotes in Computer Science 510, Springer-Verlag, pp. 363-380.



BIBLIOGRAPHY 15Waterman, M. S. (editor) [1989], Mathematical Methods for DNA Se-quences, CRC Press.Wu, S. and U. Manber [1992], \Fast Text Searching Allowing Errors,"Comm. of the ACM, 35, 83{91.


