
An Alphabet Independent Approach to Two Dimensional Matching�Amihood Amiry Gary Bensonz Martin FarachxGeorgia Tech Univ. of Maryland DIMACSAbstractThere are many solutions to the string matching problem which are strictly linear in theinput size and independent of alphabet size. Furthermore, the model of computation for thesealgorithms is very weak: they allow only simple arithmetic and comparisons of equality be-tween characters of the input. In contrast, algorithm for two dimensional matching have neededstronger models of computation, most notably assuming a totally ordered alphabet. The fastestalgorithms for two dimensional matching have therefore had a logarithmic dependence on the al-phabet size. In the worst case, this gives an algorithm that runs in O(n2 logm) with O(m2 logm)preprocessing.We show an algorithm for two dimensional matching with an O(n2) text scanning phase.Furthermore, the text scan requires no special assumptions about the alphabet, i.e. it runs on thesame model as the standard linear time string matching algorithm. The pattern preprocessingrequires an ordered alphabet and runs with the same alphabet dependency as the previouslyknown algorithms.Key Words: multidimensional matching, period, stringAMS(MOS) subject classi�cations: 68Q05, 68Q20, 68Q25Abreviated title: Two Dimensional Matching�The results presented in this paper appeared in the proceedings of the 24th Symposium on Theory of Comput-ing [3].yCollege of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280; (404) 853-0083;amir@cc.gatech.edu; Partially supported by NSF grant IRI-90-13055.zDept. of Computer Science, University of Maryland, College Park, MD 20742; (301) 405-2715; ben-son@cs.umd.edu; Partially supported by NSF grant IRI-90-13055.xDIMACS, Box 1179, Rutgers University, Piscataway, NJ 08855; (908) 932-5928; farach@dimacs.rutgers.edu;Supported by DIMACS under NSF contract STC-88-09648.

1 IntroductionThe classical string matching problem has as its input a text string T of length n and a patternstring P of length m. The elements in the text and pattern are taken from an alphabet set � and� is the number of distinct characters in the pattern. The output is all text locations i where thereis a character-by-character match with the pattern, i.e. T [i+ j � 1] = P [j]; j = 1; :::; m.String matching is one of the most widely studied problems in computer science [12]. Fischerand Paterson [11] gave a convolutions based solution of time complexity O(n logm log �) wordoperations (O(n logm log logm log �) bit operations). Karp, Miller and Rosenberg [15] gave aparallelizable label doubling algorithm with complexity O(n logm). Knuth, Morris and Pratt [17]gave the �rst linear-time solution. A heuristically improved algorithm was presented by Boyer andMoore[9]. Galil and Seiferas [13] showed a real time algorithm using a constant number of registers.The Knuth, Morris and Pratt, and Galil and Seiferas algorithms have time complexity O(n), arealphabet independent and use a weak model of computation where only equality of symbols istested.Karp and Rabin [16] came up with a randomized linear time algorithm in a stronger arithmeticmodel. They generate a large random prime number as well as use arithmetic operations (e.g.multiplication, modulo) on the characters. Vishkin [22] introduced a deterministic sampling schemethat allowed using the \signature" idea in a deterministic weak model.In recent years there has been growing interest in multidimensional pattern matching, largelymotivated by problems in low-level image processing [21]. Various algorithms exist for the exact twodimensional matching problem. The exact two dimensional matching problem is de�ned similarlyto the string matching problem but the text and pattern are rectangular matrices rather thanstrings. For simplicity's sake we assume that T is an n � n matrix and P is an m � m matrix,although our results apply to rectangular matrices as well.Baker [7] and, independently, Bird [8] used the Aho and Corasick [1] dictionary matching algorithmto obtain a O(n2 log �) algorithm for the exact two dimensional matching problem. Their modelrequires a totally ordered alphabet (since it uses the Aho and Corasick algorithm as a subroutine),and so the time is dependent on the alphabet size. For an unbounded alphabet, their algorithm'stime is O(n2 logm). Two other algorithms for exact two dimensional matching appear in [6] and [4].They both use subword trees and run in time O(n2 log �). Note that while these algorithms requireno arithmetic operations on the characters, they all assume a total ordering on their alphabetsand make order comparisons in addition to checking equality of characters. A convolutions basedmethod was suggested by Amir and Landau [5]. There the time is O(�n2 logm) word operationsin an arithmetic model (or also O(n2pm logm)). The Karp and Rabin algorithm also generalizesto two dimensions but, as we noted before, it is a randomized algorithm with a relatively powerfularithmetic model.In this paper we present what is, to our knowledge, the �rst deterministic algorithm for two di-mensional exact matching where the text scanning is alphabet independent and thus truly linear.Moreover, our algorithm is comparison based using a weak model of computation. During thetext scan, the only character comparisons made are of the equality type, thus the model is weakerthan in the above mentioned two dimensional matching algorithms. As opposed to previous algo-1

rithms, our algorithm is inherently two dimensional, and uses a novel technique in two dimensionalmatching - two dimensional periodicity.The two-dimensional periodicity idea: A periodic pattern contains locations, other than theorigin, where the pattern can be superimposed on itself without mismatch. Suppose our pattern isnon periodic, i.e. there are no such locations, other than the origin. We could then narrow downthe number of potential candidates for a pattern appearance in the text in a fashion that insuresthat all such candidates are \su�ciently far" from each other. Veri�cation of a candidate couldthen be done in the naive character-by-character comparison, but the time would still be linearbecause the candidates do not overlap.The problem with implementing this idea is that there is no guarantee that the pattern is nonperiodic. Indeed it has been shown [2] that there are four di�erent types of two dimensionalperiodicity and that a pattern may contain many locations where it can superimpose on itselfwithout mismatch. Moreover, it is not possible to subdivide all patterns into non-periodic subunits,as is the case with one dimensional strings. In this paper, we make use of the very strong propertythat superimposable patterns can not disagree in the area of overlap, and we present a new methodfor exploiting the pattern's periodicity.In contrast, previous algorithms have all, to a lesser or greater degree, shared a common weakness.They all treat a matrix as a set of rows, rather than as a sequence of rows. That is, they onlyconsider periodicity one dimension at a time. Thus, while exploiting periodicity within rows,information about periodicity amongst rows is disregarded. The extra log factor can be seen as away to recompute information which was discarded in earlier stages of the algorithm. Our uni�edapproach to two dimensional periodicity allows us to use all periodicity information throughout thetext scanning algorithm.Our algorithm consists of a pattern analysis stage and a text scanning stage. In the pattern analysiswe construct a WITNESS array that allows a constant time decision of whether two overlappingpattern appearances conict. This stage is done in time O(m2 log �). The text scanning stage hastwo phases, the compatibility phase and the veri�cation phase.We begin by assuming that the pattern could occur anywhere in the text. In the compatibilityphase we eliminate candidate locations until all remaining candidates agree on the expected textcharacters. We are left with potential candidates that are all compatible with each other. In theveri�cation phase we verify which of these potential candidates are indeed a match. The entire textscanning stage is done in time O(n2).The paper is organized as follows. The pattern analysis is described in section 2. Section 3 consistsof the text scan. We conclude with some open problems.2 Pattern PreprocessingThe idea of array overlap or periodicity and the pattern preprocessing algorithm are given in [2].For completeness, we review the algorithm here. Our goal is to determine where two copies of anarray A can overlap without conict. Such sites are called sources (�gure 1). For each locationthat is not a source, there exists a witness that proves that the overlapping copies of A mismatch.2

A top sourcebaFigure 1: a) An array A b) A overlaps itself without a mismatch.mismatchi+ri j j+cFigure 2: The witness table gives the location of a mismatch (if one exists) for two overlappingcopies of the pattern. Here TOP-WITNESS[i; j] = (r + 1; c+ 1).Given two copies of an m �m array A[1 . . .m; 1 . . .m] one directly on top of the other, the twocopies are said to be in register when all of the corresponding elements in the area of overlap containthe same symbol. Clearly, A is in register with itself when A[1; 1] is aligned with A[1; 1]. If we canslide the upper copy over the lower copy to a point where the copies are again in register, thenat least one of the corner elements A[1; 1] or A[m; 1] in one copy overlaps an element of the othercopy. If the overlapping corner is A[1; 1] then we have a top source. Otherwise, we have a bottomsource.We want to �ll out two WITNESS arrays. For each location A[i; j], TOP-WITNESS[i; j] = (m+1; m + 1) if A is in register with itself when element A[1; 1] overlaps element A[i; j]. Otherwise,TOP-WITNESS[i; j] = (r; c) where (r; c) identi�es some mismatch. Speci�cally A[r; c] 6= A[i +r � 1; j + c� 1] (�gure 2). BOTTOM-WITNESS[i; j] is �lled out similarly except element A[m; 1]overlaps element A[i; j].The Pattern Preprocessing AlgorithmOur pattern preprocessing algorithm (Algorithm A) makes use of two algorithms (Algorithms 1and 2) from [19] which are themselves variations of the KMP algorithm [17] for string matching.3

Algorithm 1 takes as input a pattern string w of length m and builds a table lppattern[1; . . . ; m]where lppattern[i] is the length of the longest pre�x of w starting at wi. Algorithm 2 takes as inputa text string t of length n and the table produced by Algorithm 1 and produces a table lptext[1::n]where lptext[i] is the length of the longest pre�x of w starting at ti.The idea behind Algorithm A is the following: We convert the two-dimensional problem into aproblem on strings (�gure 3). Let the array A be processed column by column and suppose we areprocessing column j. Assume we can convert the block A[1::m; j::m] into a string Tj = t1 . . . tmwhere ti represents the su�x of row i starting in column j. This will serve as the text string.Assume also that we can convert the block A[1::m; 1::m� j] into a string Wj = w1 . . .wm wherewi represents the pre�x of row i of length m � j. This will serve as the pattern string. Now, useAlgorithm 1 to produce the table lppattern for Wj and Algorithm 2 to produce the table lptextfor Tj . If the longest pre�x of the pattern in the text starting at ti runs through the last row ofthe text (lptext[i] = m � i), then A[i; j] is a source. If the longest pre�x stops before the last row(lptext[i] < m � i), then there is a mismatch between the pre�x of row lptext[i] and the su�x ofrow i+ lptext[i]. We need merely locate the mismatch to obtain the witness. In order to treat thesu�x and pre�x of a row as a single character, we will build a su�x tree for the array.A su�x tree is a compacted trie of the su�xes of a string ([20, 23]). The su�x tree is perhaps themost widely used data stucture in string matching. A thorough description of su�x trees and theirproperties appears in [10]. We note that since a su�x tree is a trie, each node v has associated withit some string S(v). In [18], it was pointed out that if l is the Least Common Ancestor (LCA) oftwo nodes v and w, then S(l) is the longest common pre�x of S(v) and S(w). In [14], an algorithmwas given which preprocesses a tree in linear time and answers LCA queries in constant time. Thusa su�x tree, in conjuction with LCA queries, is a powerful tool for comparing the substrings of astring.Algorithm A For building witness arrayStep A.1: Build a su�x tree by concatenating the rows of the array. Preprocess the su�x treefor least common ancestor queries in order to answer questions about the length of the commonpre�x of any two su�xes.Step A.2: For each column j, �ll out TOP-WITNESS for column j:Step A.2.1: Use Algorithm 1 to construct the table lppattern forWj = w1 . . .wm. Characterwi is the pre�x of row i of length m � j. We can answer questions about the equality oftwo characters by consulting the su�x tree. If the common pre�x of the two characters isat least m� j then the characters are equal.Step A.2.2: Use Algorithm 2 to construct the table lptext for Tj = t1 . . . tm. Character ti isthe su�x of row i starting in column j (also of length m� j). Again we test for equality byreference to the su�x tree.Step A.2.3: For each row i, if lptext[i] = m � i then we have found a source and TOP-WITNESS[i; j] = (m+ 1; m+ 1) otherwise, using the su�x tree, compare the su�x of rowi+ lptext[i] starting in column j with the pre�x of row lptext[i]. The length l of the commonpre�x will be less than m� j, and TOP-WITNESS[i; j] = (lptext[i]; l+ 1).4

j m-j-1t0t1t2 w2w1w0
wm�1tm�1m-j columnsFigure 3: Representing a block of the array by a string. For the preprocessing algorithm, Tj =t1 . . . tm is the text and Wj = w1 . . .wm is the pattern.
5

Step A.3: Repeat step 2 for BOTTOM-WITNESS by building the automatons and processing thecolumns from the bottom up.Theorem 1 Algorithm A runs in time O(m2 log �).The su�x tree construction [23] takes time O(m2 log �) while the preprocessing for least commonancestor queries [14] can be done in time linear in the size of the array. Queries to the su�x treeare processed in constant time. The tables lppattern and lptext can be constructed in time O(m)[19]. For each of m columns, we construct two tables so the total time for steps 2 and 3 is O(m2).The total complexity of the pattern preprocessing is therefore O(m2 log �). 23 Text ProcessingText processing is accomplished in two stages: Candidate Consistency and Candidate Veri�cation.A candidate is a location in the text where the pattern may occur. We denote a candidate startingat text location T [r; c] by (r; c). We say that two candidates (r; c) and (x; y) are consistent ifthey expect the same text characters in their region of overlap (two candidates with no overlapare trivially consistent). In terms of witnesses, the candidates are consistent if the witness arrayindicates no witness, i.e. if r � x and c � y then TOP � WITNESS[x� r + 1; y � c + 1] =(m+1; m+1). If r > x and c � y then BOTTOM�WITNESS[x�r+1; y�c+1] = (m+1; m+1).consistent if they have no witness. We use the shorthand (r; c) := (x; y) to mean that the candidates(r; c) and (x; y) are consistent. If the two candidates are inconsistent, then we write (r; c) ./ (x; y).Initially, we have no information about the text and therefore all text locations are candidates. How-ever, not all text locations are consistent. During the candidate consistency phase, we eliminatecandidates until all remaining candidates are pairwise consistent. During the candidate veri�cationphase, we check the candidates against the text to see which candidates represent actual occur-rences of patterns. We exploit the consistency of the surviving candidates to rule out large setsof candidates with single text comparisons (since all consistent candidates expect the same textcharacter).3.1 Candidate ConsistencyAs stated above, the goal of the candidate consistency algorithm presented in this subsection is toproduce a set of candidates for the given text such that the candidates are all consistent.We begin with some transitivity lemmas for the := relation.Lemma 1 For any 1 � r1 � r2 � r3 � n and for any 1 � c1 � c2 � c3 � n, if (r1; c1) := (r2; c2)and (r2; c2) := (r3; c3), then (r1; c1) := (r3; c3).Proof: Suppose that (r1; c1) ./ (r3; c3). Then, there exists an x � m�r3+r1 and a y � m�c3+c1such that P [x; y] 6= P [x+r3�r1; y+c3�c1]. But r3 � r2 so x+r3 � r2 andm � x+r3�r1 � r2�r1.Similarly, m � y+c3�c1 � c2�c1. Since (r1; c1) := (r2; c2), we have that P [x+r3�r1; y+c3�c1] =6

P [x+ r3� r2; y+ c3� c2]. A similar argument shows that P [x; y] = P [x+ r3� r2; y+ c3� c2] since(r3; c3) := (r2; c2). We conclude that P [x; y] = P [x + r3 � r1; y + c3 � c1]. This is a contradiction.Therefore (r3; c3) := (r1; c1): 2Lemma 2 For any 1 � r1 � r2 � r3 � n and for any 1 � c3 � c2 � c1 � n, if (r1; c1) := (r2; c2)and (r2; c2) := (r3; c3), then (r1; c1) := (r3; c3).Proof: The proof is analogous to that of Lemma 1.2A one dimensional consistency algorithmLet c be some column of the text. Initially, all positions in this column are candidates. We wouldlike to remove candidates until all candidates within the column are consistent. Further, we wouldlike to preserve any candidate which might actually represent an occurrence of the pattern in thetext. Thus, we will only remove candidates when we �nd some speci�c text location with whichthey mismatch. The idea of algorithm B is the following. Suppose we have eliminated inconsistentcandidates from the last i rows of column c. The surviving candidates are placed on a list. Noticethat by lemma 1, if the candidate in row n� i is consistent with the top candidate on the list, it isconsistent with all of them. This check takes constant time using the witness array. This principleis used to produce an O(n) algorithm for column consistency.Algorithm B Eliminate inconsistent candidates within a columnStep B.1: Get column number, c.Step B.2: We create a doubly linked list, S, of consistent candidates in column c. Initialize S byadding candidate (n; c) to the top of S.Step B.3: For row r = n � 1 to 1 do:Step B.3.1: Let (x; c) be the top candidate in S. Test if candidates (r; c) and (x; c) areconsistent by reference to the witness arrays:� If (r; c) := (x; c), then add (r; c) to the top of S.If the two candidates under consideration are consistent, then they need not be compared withany other candidates on S. This is because, by lemma 1, consistency within a single column istransitive. � If (r; c) ./ (x; c) then use the witness character in the text to eliminate one of thecandidates. If (x; c) is eliminated, remove it from S and repeat step B.3.1 with thenew top candidate in S. If no candidates remain in S, add (r; c) to S.Clearly, if the two candidates are inconsistent, they can't both match the text. Thus the inappro-priate one is eliminated.Step B.4.3: Return S. 7

Theorem 2 Algorithm B is correct and runs in time O(n).Proof: The correctness of the algorithm follows largely from the comments within the algorithmand from lemma 1.For the complexity bound, note that S can be initialized in constant time. For each row r in thefor loop, there is at most one successful test of consistency. For each unsuccessful test, a candidateis eliminated, either the candidate (r; c) or the top candidate in S. Since the number of candidatesis bounded by n the total time is O(n). 2A two dimensional consistency algorithmWe use the above algorithm as an initial \weeding out" of candidates so that we get a list for eachcolumn of consistent candidates. In the two dimensional consistency algorithm, we start with therightmost column, which we know to be consistent, and add one column at a time from right toleft. We will maintain the following loop invariant:P (i) � the candidates remaining in columns i; . . . ; n are all pairwise consistent.As noted above, by calling Algorithm B with value n we are assured of P (n). The approach ofthe algorithm below is to quickly insure P (i) once P (i + 1) is known. When P (1) holds, we aredone. We use a similar idea to that of algorithm B. We �rst have a phase were we make surethat each candidate is consistent with all candidates above and to the right. A symmetric phasemakes sure that candidates below and to the right are consistent, thus assuring P (i). To reduce thework, we note that during the �rst phase, we need only compare a candidate on column i with theleftmost surviving candidate in each row above it. To further reduce the work, once a candidate incolumn i is found to be consistent with candidates above it, all lower candidates in column i arealso consistent (see �gure 4).Algorithm C Candidate ConsistencyStep C.1: For i 1 to n do Ci Call Algo B(i)Step C.2: For i 1 to n do initialize Ri to be an empty list of candidates for each row i.Step C.3: Put the candidates on Cn onto their appropriate Ri lists.Step C.4: For i n� 1 downto 1 doAdd one row at a time, making sure that it is consistent with all candidates added so far.Step C.4.1: Call Bottom-Up(i)Make sure that all candidates in column i are consistent with all candidates below them in columnsi+ 1; . . . ; m.Step C.4.2: Call Top-Down(i) 8

Make sure that all candidates in column i are consistent with all candidates above them in columnsi+ 1; . . . ; m.Step C.4.3: Add surviving candidates from column i to the appropriate Rj lists.We describe procedure Bottom-Up only, since procedure Top-Down is symmetric.Procedure C1 Bottom-Up(c)Step C1.1: Initialize: cur gets bottom value from Cc. row n is a pointer to the last rowcompared so far.Step C1.2: While not at the top of Cc doStep C1.2.1: If cur is consistent with leftmost item on Rrow, then row row � 1.We compare the current candidate with the leftmost candidate in some row row below it. If they areconsistent, then by lemma 1, all candidates above cur on Cc are also consistent with all candidateson Rrow, even if cur is later deleted as inconsistent with another candidate. We need not considerthat row again.Step C1.2.2: If cur is not consistent with leftmost item on Rrow, then �nd a witness to theirinconsistency. Check which of them is inconsistent with the text and remove candidate fromits list. If cur is removed, set cur to the next item above cur on Cc, otherwise do nothingduring this traversal of loop.We remove the candidate that has a mismatch against the text. If the item in Rrow is removed,then we still need to check if cur is consistent with the remaining candidates in that row. Thus, wedon't need to update any pointers. Otherwise, if cur is removed, we move up in Cc. We don't needto change row because of the comment above. None of the rows below row need to be comparedagainst the new candidate cur since we already know they are consistent.Step C1.2.3: If the row counter points to a row above cur's row, set cur to the nextcandidate above cur in Cc.Theorem 3 The Algorithm C is correct and runs in O(n2).Proof: As in algorithm B, no candidate is removed unless a mismatch is found against the text.Therefore, no valid candidates are removed.To show that at the end of the algorithm, only mutually compatible candidates are left on theRi lists (and on the Ci), we pick two arbitrary surviving candidates (r1; c1) and (r2; c2) such thatc1 < c2. We have two cases: 9

Case r1 � r2: We show this case by induction. Suppose that after processing column c1 + 1 thatP (c1 + 1) holds. The base case is true by Theorem 2. Let (r2; c0) be the leftmost candidatesuch that c0 > c1 and c0 appears on Rr2 after processing column c1. By lemma 1, we needonly show that (r1; c1) := (r2; c0) since (r2; c0) := (r2; c2).Let (r0; c1) be the last candidate with which (r2; c0) was compared during BottomUp(c1).Claim 3.1 r0 � r1 and (r0; c1) := (r2; c0).Proof: Suppose that (r0; c1) ./ (r2; c0). Then we either delete (r0; c1) or (r2; c0) from thecandidate list. If we remove (r2; c0) from the list, then we would compare the next candidateon Rr2 with (r0; c1), thus violating the assumption that (r2; c0) was the leftmost candidatecompared with a c1 candidate. If we remove (r0; c1), the we would compare (r2; c0) with thenext candidate above (r0; c1), thus violating the assumption that (r0; c1) was the last candidateon column c1 with (r2; c0) was compared.To show that r0 � r1 we observe that if r1 > r0, then we couldn't have compared (r2; c0) with(r0; c1) without �rst comparing (r1; c1) with (r2; c0). Since they both survived, they wouldhave had to have been compatible. But then we never would have compared (r2; c0) with(r0; c1) at all. 2Finally, we know that (r1; c1) := (r0; c1), (r0; c1) := (r2; c0), (r2; c0) := (r2; c2) and that r1 � r0 �r2 and that c1 � c0 � c2. So by lemma 1, we have proved the case.Case r1 > r2: This case is very similar to the one above, however, we refer the reader to procedureTopDown rather than BottomUp and lemma 2 rather than lemma 1.The argument that shows the running time to be O(n2) is similar to the complexity analysisin Theorem 2. We observe that during BottomUp (and TopDown) in each comparison ofcandidates results in the removal of a candidate (which can only happen n2 times in all callsto these procedures), or in the cur pointer being decremented (resp. incremented). This canonly happen O(n) time each time BottomUp (resp. TopDown) is called, and they are eachcalled O(n) times. Therefore the complexity is O(n2). 23.2 Candidate Veri�cationAll remaining candidates are now mutually consistent. Each text element t = T [r; c] may becontained by several candidates, the relevant candidates. However, compatible candidates thatshare the same text element must agree on the expected character in that element. This leads tothe following crucial observation: Every element in T can be labeled as either true or false, wheretrue means that it equals the unique pattern symbol expected by all relevant candidates, and falseis all other cases. Thus, every text element needs to be compared to a single pattern element, andevery candidate source that contains a false element within it is not a pattern appearance and canbe discarded.The candidate veri�cation algorithm follows:Algorithm D Candidate Veri�cation 10

Step D.1: Mark every text location T [r; c] with a pattern coordinate pair hi; ji, where hi; ji arethe coordinates of the pattern element P [i; j] that T [r; c] should be compared with.There may be several options for some locations, namely, the position of the scanned text elementrelative to each of its relevant candidates. However, any will do since all candidate sources are nowcompatible. If a location is not contained in any candidate source it is left unmarked. We will latersee how this step is implemented (procedure D1).Step D.2: Compare each text location T [r; c] with P [i; j], where hi; ji is the pattern coordinatepair of T [r; c]. If T [r; c] = P [i; j] then label T [r; c] as true, else label it false.Step D.3: Flag with a discard every candidate that contains a false location within its bounds.This agging is done by the same method as in step D.1.Step D.4: Discard every candidate source agged with a discard. The remaining candidatesrepresent all pattern appearances.Our only remaining task is to show how to mark the text elements with the appropriate patterncoordinate pairs. We adopt the popular sports fans technique - the wave.Starting at the top (left) of each column (row), a wave is propagated going down (to the right) asfollows. The �rst element stands and waves its pattern coordinate pair, if such exists. This nudgesthe neighbor below (to the right of) it to jump and raise its own pair. If it does not have a pair,it borrows its antecedent's pair, incrementing by 1 its row (column) coordinate, to adjust for itsposition relative to the same source. If the pair assigned to some position exceeds the size of thepattern, that position is left unmarked.Thus in two sweeps of the text, column waves and row waves, each text element is given anappropriate pattern coordinate pair. Details of the wave follow:Procedure D1 The WaveStep D1.1: Initialization: Mark every candidate with h1; 1i.Step D1.2: Column Waves: For each column c, and for all positions r from 1 to n in columnc do the following step: If T [r; c] does not have a pair, and T [r � 1; c] has pair hi; ji with i < mthen assign to T [r; c] the pair hi+ 1; ji.Step D1.3: Row Waves: For each row r, and for all positions c from 1 to n in row r do thefollowing step: If T [r; c] does not have a pair, and T [r; c� 1] has pair hi; ji with j < m thenassign to T [r; c] the pair hi; j + 1i.A similar version of the wave can be used to ag candidates with discard. What is propagated thereis the discard ag, along with a counter pair to make sure the discard ag doesn't get propagatedtoo far. The propagation is bottom-up in the columns and then right-left in the rows.11

Theorem 4 Algorithm D is correct and runs in time O(n2).Correctness: The only non-trivial fact is that the wave correctly marks all elements. We need thefollowing terminology. Let (r; c) be a candidate containing position T [r + i; c+ j]. Then j is thecolumn distance between T [r+ i; c+j] and (r; c) and i is the row distance between T [r+ i; c+j] and(r; c). The column-close sources containing location T [r; c] are the sources whose column distanceto T [r; c] is minimal. The closest source containing location T [r; c] is the column-close source whoserow distance to T [r; c] is smallest.Claim: The pattern coordinate pair marked by procedure D1 in location T [r; c] is the pair hi; jiwhere (r� i+ 1; c� j + 1) is the closest source to T [r; c].Proof: By induction on the column distance of the closest source. For column distance 0 thecolumn wave assures that the marked pair is the distance to the closest source (+1). Assumingthat for every text element whose column distance to its closest source is d, the marked pair is thedistance to the closest source, it is easy to see that the row wave will ensure correct marking of allelements with column distance d+ 1 to the source.Time: Each of the steps of algorithm D is easily implementable in time O(n2). Note that in eachof steps D.1 and D.4 is single call to procedure D1, which clearly takes O(n2) time. 24 ConclusionWhile string matching is extremely well studied and understood, multidimensional matching hasbeen somewhat neglected. This neglect does not stem from lack of practical motivation but may beattributed to the fact that string matching techniques do not easily generalize to higher dimensions.We feel that an inherently multidimensional approach is likely to produce better results. Thispaper is a step along the way. All four di�erent previously known algorithms for exact two dimen-sional matching pushed string matching techniques as tools for solving the two dimensional case.However, none succeeded in achieving results similar to the string matching case. Our new idea ofanalysing periodicity in two dimensions turned out useful in improving results of the most basictwo dimensional task - that of exact matching.References[1] A.V. Aho and M.J. Corasick. E�cient string matching. C. ACM, 18(6):333{340, 1975.[2] A. Amir and G. Benson. Two-dimensional periodicity and its application. Proc. of 3rd Sym-posium on Discrete Algorithms, Orlando, FL, Jan 1992.[3] A. Amir, G. Benson, and M. Farach. Alphabet independent two dimensional matching. Proc.24th ACM Symposium on Theory of Computation, 1992.[4] A. Amir and M. Farach. Two dimensional dictionary matching. Manuscript, 1991.12

[5] A. Amir and G. Landau. Fast parallel and serial multidimensional approximate array matching.Theoretical Computer Science, 81:97{115, 1991.[6] A. Amir, G.M. Landau, and U. Vishkin. E�cient pattern matching with scaling. Proceedingsof First Symposium on Discrete Algorithms, San Fransisco, CA, 1990.[7] T.J. Baker. A technique for extending rapid exact-match string matching to arrays of morethan one dimension. SIAM J. Comp, 7:533{541, 1978.[8] R.S. Bird. Two dimensional pattern matching. Information Processing Letters, 6(5):168{170,1977.[9] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Comm. ACM, 20:762{772, 1977.[10] M. T. Chen and J. Seiferas. E�cient and elegant subword tree construction. In A. Apostolicoand Z. Galil, editors, Combinatorial Algorithms on Words, chapter 12, pages 97{107. NATOASI Series F: Computer and System Sciences, 1985.[11] M.J. Fischer and M.S. Paterson. String matching and other products. Complexity of Compu-tation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113{125, 1974.[12] Z. Galil. Open problems in stringology. In Z. Galil A. Apostolico, editor, CombinatorialAlgorithms on Words, volume 12, pages 1{8. NATO ASI Series F, 1985.[13] Z. Galil and J.I. Seiferas. Time-space-optimal string matching. J. Computer and SystemScience, 26:280{294, 1983.[14] D. Harel and R.E. Tarjan. Fast algorithms for �nding nearest common ancestor. Computerand System Science, 13:338{355, 1984.[15] R. Karp, R. Miller, and A. Rosenberg. Rapid identi�cation of repeated patterns in strings,arrays and trees. Symposium on the Theory of Computing, 4:125{136, 1972.[16] R.M. Karp and M.O. Rabin. E�cient randomized pattern-matching algorithms. IBM Journalof Res. and Dev., pages 249{260, 1987.[17] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comp.,6:323{350, 1977.[18] G.M. Landau and U. Vishkin. E�cient string matching in the presence of errors. Proc. 26thIEEE FOCS, pages 126{126, 1985.[19] M.G. Main and R.J. Lorentz. An O(n logn) algorithm for �nding all repetitions in a string.J. of Algorithms, pages 422{432, 1984.[20] E. M. McCreight. A space-economical su�x tree construction algorithm. Journal of the ACM,23:262{272, 1976.[21] A. Rosenfeld and A.C. Kak. Digital Picture Processing. Academic Press, New York, 1982.13

[22] U. Vishkin. Deterministic sampling - a new technique for fast pattern matching. SIAM J.Comp., 20:303{314, 1991.[23] P. Weiner. Linear pattern matching algorithm. Proc. 14 IEEE Symposium on Switching andAutomata Theory, pages 1{11, 1973.

14

J row rJNNJJ JJJJJJJ N J
column ccurrentcandidateFigure 4: In the bottom up scan, the current candidate in column c need only be tested againstthe leftmost candidates (marked by N) in rows r +m . . .r which have not already been tested bycandidates below c.

15

