
CS 663: Pattern Matching Algorithms

 Scribe: Mohit Dia Lecture#5
 10/14/2010

Pattern Renaming

 The Naive algorithm, KMP and the Wave method are inherently serial. So the motivat-
 ion behind Pattern Renaming is Parallel Pattern Matching. We want a method that uses
 "local" matches.

 The Renaming idea which was given by Karp-Miller-Rosenberg in 1972 is -

 Rename pairs of symbols as a single symbol consistently.

 Renaming:

 P = P1 P2 P3.... Pm-1 Pm

 Let P0 = P

Consider : <P1, P2> <P3,P4><P2i-1, P2i>...<Pm-1,Pm>

There are m/2 such pairs. Number the different pairs by different numbers from
Ʃ1 = {1,....,m/2}

Create the new pattern as:

P1 = P1
1P1

2P1
3...P1

m/2

where P1
i ε Ʃ1

 i = 1,...,m/2

 Now rename all pairs <P1
2i-1, P1

2i>
 i = 1,....,m/22

 by elements from Ʃ2 = {1,....,m/22}

 Proceed for log m iterations where in iteration i+1:

Rename all pairs <Pi
2j-1, Pi

2j>
 j = 1,...., m/2i

by elements from Ʃi+1 = {1,....,m/2i+1}

Page 1

 After iteration log m: Pattern is reduced to a single symbol "1"
 Time : Renaming can be done in linear time at every step by radix sorting the pairs.

Total Pattern preprocessing time: ∑
i=0

logm

m /2i = O(m)

 Text Processing:

 We would like a similar renaming in text as we did in pattern BUT we do not know
 where the pattern starts.
 Unlike pattern, we need to rename at every location.

 We have log m steps.

 At step j:

 For i = 1 to n

if <tj-1
i, tj-1

i+2
j
-1> is one of the pairs that was renamed in pattern step j, then tj

i is the
name of that pair in Pj.

 otherwise tj
i <- B

 end

 After step log m:

 There is an occurence of P in location i of T iff

 tlog m

i = 1

 EXAMPLE:

 T = ababababccababca

 P = babc

 Pattern Renaming:

 Step 1: <b,a> <b,c>
 P1 = 1 2

 Step 2: <1,2>

Page 2

 P2 = 1

 Text Scanning:

Step 1:
 <ab><ba><ab><ba><ab><ba><ab><bc><cc><ca><ab><ba><ab><bc><ca>

T1 = B 1 B 1 B 1 B 2 B B B 1 B 2 B

 Step 2:
<BB><11><BB><11><BB><12><BB><2B><BB><B1><BB><12><BB>

T2 = B B B B B 1 B B B B B 1 B

 So the pattern occurs at positions 6 and 12 in the text.

 Time for Text scanning:

Verifying if a pair <x,y> of text is one of the pattern pairs can be done in time
O(log m).

Now, this is done for every text location. So the time is O(nlog m).

So, for each of the log m steps the time is O(n log2 m); which can be done by
n processors in time O(log2 m)

But this can be done in better time serially:

1. In time O(nlog m):

 Convert pattern alphabet to {1,2,....,m}
Convert text alphabet to {1,2,.......,m,B}

2. At every one of the log m steps:

Radix sort text and pattern pairs:
Time : O(n+m)

Then merge:
Time: O(n+m)

Total time per step: O(n)

Total algorithm time (for log m steps):
 O(nlog m)

Page 3

