Kaikoura Tree Theorems: Computing The
Maximum Agreement Subtree

Mike Steel* Tandy Warnow!
February 11, 2003

Abstract

The Mazimum Agreement Subtree Problem was posed by Finden and
Gordon in 1985 [2], and is as follows: given a set S = {s1,$2,...,sn} and
two trees P and (@) leaf-labelled by the elements of S, find a maximum
cardinality subset So of S such that P|Sy = @|So. This problem arises
in evolutionary tree construction, where different methods or data yield
(possibly) different trees for the same species set, and the problem is to de-
termine the largest set of species on which the trees agree. An exponential
time algorithm for finding the maximum agreement subtree of two binary
trees was found by Kubicka et. al. [4]. In this paper, we will present
an O(n*a(n?)) algorithm to determine the largest agreement subtree of
two trees. For the case of trees of maximum degree k, the algorithm has
running time O(n’a(n?)).

1 Preliminary Definitions

We begin with some definitions. A tree T is a connected acyclic graph. Given a
finite set S = {s1,82,..., S}, we say that a tree T is leaf-labelled by S if there is
a bijection between the leaves of T' and the elements of S. The leaf labelled by
the element s € S is indicated by L(s), and the label at leaf v is given by L™ (v).
Given a subset Sy of S, T'|Sy refers to the minimal homeomorphic subtree of
T containing all the leaves labelled by elements of Sy; in this tree, nodes of
degree two are supressed. Given two trees P and @) each leaf-labelled by S, we
say that P|Sy = @Q|So if there is a graph isomorphism (i.e. edge-preserving)
¢ : V(P|So) = V(Q|So) such that L= (4(L(s))) = s for all s € S. Thus, the
mapping ¢ must carry labels to labels.

*Department of Mathematics, Massey University, Palmerston North, New Zealand; this
work was supported by the New Zealand Lotteries Commission

tDivision 1423, Sandia National Laboratories, Albuquerque, NM 87185-5800; this work
was supported by the U.S. Department of Energy under Contract DE-AC04-76DP00789, and
was done while visiting New Zealand supported by NSF

The Agreement Subtree Problem is then as follows:

Problem: The Agreement Subtree Problem

Instance: A set S = {s1,82,...,5,}, two binary trees P and) which are
leaf-labelled by S, and an integer k.

Question: Does there exist a subset Sy of cardinality at least & such that
P|Sy = Q|So?

This problem arises naturally in the application to phylogenetic tree con-
struction, where trees for the same species set may be constructed in a variety
of ways (either the optimality criteria may differ, or the trees may be based
upon different data sets).

The agreement subtree problem was first posed by Finden and Gordon in
1985[2], and a method for finding a subtree on which two binary trees agreed
was presented. Unfortunately, the heuristic did not guarantee that the subtree
would be of maximum cardinality. In [4], Kubicka et. al. presented an algorithm
for the agreement subtree problem on binary trees, which had running time
O(n(z+9)10821) " Lower bounds on the minimum size of the agreement subtree
of two n-leaf binary trees were found by Kubicka et al in [5]. In this paper
we present the first polynomial time algorithm for the problem of computing
the maximum agreement subtree of two trees. The algorithm we present has
running time O(n??«a(n?)), where a(n) is the inverse Ackerman function. For
trees of maximum degree k, the algorithm has running time O(n?a(n?)).

The organization of the remainder of the paper is as follows. In section 2 we
describe an O(n%a(n?)) algorithm for finding the maximum agreement subtree
of two binary trees. In section 3 we show how to extend the techniques of
section 2 for the general case, where the maximum degree of the trees are not
constrained. We then discuss open problems in section 4.

2 Finding the Maximum Agreement Subtree of
Binary Trees

We now present an O(n?a(n?)) dynamic programming algorithm for finding the
maximum agreement subtree of two binary trees on n labelled leaves.

2.1 Definitions

Define a subtree of a tree T to be a subgraph of T" which is a component of
T — {e} for some edge e € E(T). For subtrees p,q of P, respectively, we will
compute the size of the maximum agreement subtree t = M AST (p, q) on which
they agree. Note that here p and ¢ may not have the same label set. When two
subtrees p and ¢ arise by deleting a single edge, we will say that p and ¢ are

complementary. We specifically need to keep track of all pairs of complementary
subtrees.

We order the subtrees of P by inclusion, and compute a linear extension
L(P) of this partial ordering. In the same way we construct the linear ordering
L(Q), and similarly we can compute a linear ordering £ on L(P) x L(Q). We
then compute M AST (p, q) for each p € L(P) and q € L(Q), ordered by £, where
MAST(t,t’) will be the number of leaves in the maximum agreement subtree of
t and t/,

Note that we do not compute M AST (p, ¢) until we have computed M AST'(t,t')
for all subtrees t C p and t' C q. There are O(n) of these subtrees formed by
these edge deletions, and each such subtree t is naturally rooted at the vertex
y incident to the edge e deleted in order to form ¢ (recall ¢ is a component of
T — {e}, for T € {P,Q}). Furthermore, each subtree ¢ has two children sub-
graphs ¢! and #2, since the trees P and () are binary; thus, the removal of the
node y from ¢ will create two subgraphs ¢! and 2. These subgraphs are also
subtrees by our definition.

2.2 Algorithmic Details

We need to compute the labels L(¢;) which appear in each subtree ¢;. To
compute L(t;), we first compute L(t}) for each ¢, C t;; then, L(¢;) is just the
union of two label sets, since each T; is binary. Thus, these computations can
be completed using O(n) find operations, for a total cost of O(na(n)), where
a(n) is the inverse ackerman function[8].

Now assume p and g are subtrees of P and @ respectively, and that we have
computed MAST(p',q") for all subtrees p' C p and ¢’ C ¢. In particular, we
will have computed M AST (pt,¢’), fori =1,2 and j = 1,2.

The computation of M AST(p,q) then depends upon whether p or ¢ are
both subtrees containing more than one leaf. If p contains only one leaf z, then
MAST (p,q) = 1if L(z) € L(q), and otherwise M AST (p,q) = 0. The case
where ¢ contains only one leaf is handled similarly. When both subtrees p and
g contain at least two leaves, then the value of M AST (p, q) is obtained by max-
imizing the score obtained from the different combinations of their constituent
subtrees, p',p?, q', and ¢>. To summarize:

MAST (p,q) =
|L(p) N L(q)|, if either p or ¢ is a singleton, or
maz{MAST(p',q') + MAST(p*,¢*),
MAST (p',q?) + MAST(p?,q")}, otherwise.

The computation of M AST(P, Q) is then set to

MAT(py,p,) (Q1,QQ){MAST(p17 q1)+MAST(p17 QQ), MAST(pl: q2)-|-MAST(p2, th)},
where (p1,p2) and (g1, g2) are both pairs of complementary subtrees.

2.3 The Algorithm

Algorithm:
Compute the list L(P) of subtrees ¢t C P, so that
if ¢ C t' then t appears before ¢’ in the list L(P).
Compute list L(Q) in the same way.
Compute a total order £ on L(P) x L(Q), the
pairs of subtree p, ¢, where p C P,q C Q.
For each (p,q) € £L DO
Compute M AST (p,q)
end-do
Compute M AST (P, Q)
end-do
end of algorithm

2.4 Running time analysis

The initialization (computing all subtrees ¢ and L(t) for all subtrees) involves
O(n) unions, and hence costs us O(na(n)). Computing M AST (p, q) costs us a
single find if one (or both) of p or ¢ is a singleton; else it costs us two additions
and one comparison. Since there are O(n?) pairs (p, q) of subtrees, this costs us
O(n?) finds, additions, and comparisons, for a total of O(n?a(n?)). The final
computation of selecting the max among O(n?) values involves O(n?) additions,
and O(n?) comparisons. All in all, a total cost of O(n?a(n?)).

2.5 Proof of Correctness

Theorem 1 The algorithm correctly determines the size of the mazimum agree-
ment subtree for two binary trees on n labelled leaves.

Proof: The proof is by induction on n. If n = 1, the proof is trivial: either
the trees are identical, or they are disjoint, and the algorithm handles each case
correctly. So assume true for all trees on fewer than n leaves.

Let P and @) be two trees on n leaves each, and let T' be the maximum
agreement subtree of P and). T must contain at least three leaves, trivially,
no matter how small n is. Let ey be an edge in T', creating a bipartition on the
label set S|L(T) into two parts, S; and S,, with subtrees 7! and T?. Since P
and @) both agree on T, each of P and) must contain edges creating the same
bipartition on S|L(T); let these edges be ep and eg.

The removal of ep from P creates trees p! and p?, and similarly we have
trees ¢! and ¢? created by removing eg from Q. Since P and () agree with T,
we can say (without loss of generality) that S; C L(p%) N L(g%), i = 1,2. The
algorithm will compute the maximum agreement subtrees of p’ and ¢/ for each
i, 7, and thus be able to determine that the maximum is obtained at p',¢' and
p?,¢%, so that the maximum agreement subtree is obtained by using the leaves
inT.

One point to note is that p’ and ¢/ are not truly binary trees, since they
have each a single node of degree two; however, supressing these degree two
nodes creates binary trees which we will call P!, P2, Q', and Q%. It is then
clear to see that the algorithm would correctly handle the determination of the
maximum agreement subtree of the various combinations of P? and ()7, and a
quick check of the algorithm reveals that this translates into the correct handling
of these rooted binary trees. Thus, the algorithm will correctly determine the
maximum agreement subtrees of the various combinations of the p’ and ¢/, and
thus discover the way that T' was constructed. ||

3 Finding the Maximum Agreement Subtree of
Arbitrary Trees

The only modification we need to make here is that each subtree (as defined
above) may consist of more than two subtrees, so that the computation of
MAST (p,q) for p and ¢ subtrees of P and @) respectively, will involve solving
a maximum matching problem on a bipartite graph. That is, if p is a subtree
of P, and ¢ a subtree of @, and the subtrees of p and ¢ are p',p?,...,p" and
q',q%, ...,q", respectively, then we have computed M AST(p,¢’) for each i =
1,2,...,kand j = 1,2,...,7. We can therefore weight the complete bipartite
graph Ky, by w(i,j) = MAST(p’,¢’), and compute the maximum matching
in this bipartite graph. This costs us O((|p| + |¢])>®) [3], where |p| equals the
degree of the root of p, which in turn equals the number of subtrees of p involved
in the computation.

Since there are O(n) edges, there are O(n) subtrees, and hence O(n?) M AST
computations to perform. The worst case occurs when each of the trees are
stars, and thus each subtree (other than the single node subtrees) has n — 1 sub-
subtrees. For this case, the M AST computations incur a cost of O(n?5a(n?)).

However, for trees P and () where the maximum degree of nodes are bounded
by k, this algorithm has running time bounded by O(n2a(n?)), as in the case
for binary trees.

4

Open Problems

Can a better running time be achieved for this problem? Note that improving
the running time on this algorithm probably is as hard as improving the bipartite
matching problem.

References

[1]

2]

G. Chartrand, F. Saba, H. Zou, Greatest common subgraphs of graphs,
Casopis Pest. Math, 10 (1985) 87-91.

C.R. Finden and A.D. Gordon, Obtaining Common Pruned Trees, Journal
of Classification, 2 (1985) 255-176.

Hopcroft, J. E. and Karp, R.M. , An O(n®/?) algorithm for mazimum
matching in bipartite graphs, STAM J. of Comput. 2 (1973) pp. 225-231

E. Kubicka, G. Kubicki, and F.R. McMorris, An algorithm to find agree-
ment subtrees, to appear, Journal of Classification, 1992.

E. Kubicka, G. Kubicki, and F.R. McMorris, On agreement subtrees of two
binary trees, manuscript, 1992.

G. Kubicki, Greatest common subgraph index of graphs, Congressus Nu-
merantium 76 (1990) 101-113.

D. Swofford, When are phylogeny estimates from molecular and morpholog-
ical data incongruent?, in Phylogenetic Analysis of DNA Sequences,
eds. M.M. Miyamoto and J. Cracraft, New York (1991), Oxford University
Press.

Robert E. Tarjan, Efficiency of a good but not linear set union algorithm,
JACM 22(2):215-225, 1975.

E.O.Wilson, A Consistency Test for Phylogenies Based upon Contempora-
neous Species, Systematic Zoology, 14, pp. 214-220.

