
Algorithms II 89-322-01, 89-322-02, FINAL EXAM
MOED B

Instructor: Prof. Amihood Amir

Length of Exam: 2 hours
Time: August 28th, 08:30

NO OUTSIDE MATERIAL ALLOWED!!!

A general note about the grading process: Below you will find how
many points were deducted for each error. Some answers incurred several
errors, and so the amount of points deducted in such case was usually the
sum of points deducted per each error, although some exceptions were made
(deducting less points).

1. (33 points) Consider the following strategy for the two server problem:
The server closest to the dirt handles it. The other server advances half
way from its position toward the dirt. Is the algorithm competitive?
Prove.

Answer:

In general, when the dirt occurs exactly in a location where there is
a server, we assume that nothing is done (the server just cleans it)
so there is an implicit assumption that dirt only happens in locations
where there are no servers. However, since this was not explicitly
stated we were lenient in the grading and gave full points to people
who assumed that even if the server who cleans the dirt is right there,
the other server still moves halfway towards the dirt. For completeness,
we present solutions according to each of these assumptions.

The Standard Assumption:

Consider two points on a line, a and b with distance d between them.
In the initial position, the two servers s1 and s2 are halfway between
points a and b. The sequence of events is:
ababababab...ab

When the first a arrives, wlog s1 serves it (moves distance d
2
, and

server s2 moves halfway towards point a, i.e. distance d
4
. When the

next event occurs at point b, s2 moves distance 3d
4

to serve it, and s1

moves distance d
2

in the direction of point b.

The total distance travelled after these two events is thus 2d. For every



further event, one server travels distance d
2

to serve the event, and the

other server travels distance d
2

to the halfway point, for a total of d.

Thus if n events occur, our algorithm requires travel of distance nd.

However, the optimum algorithm places s1 on point a and s2 on point
b for the cost of d and that suffices for any n. Therefore, there does
not exists a constant c for which the time of our algorithm is less than
cd, since for any c take n > c and there is no c-competitivity.

The assumption where there is movement if the dirt is on the
spot of one of the servers:

Consider two points on a line, a and b with distance d between them.
In the initial position, s1 is at point a and s2 is at point b. The
sequence of events is:
aaaaa...aa

Whenever an event occurs, s1 serves it and s2 moves half the distance
toward point a. The total distance for n events is, therefore,

n∑

i=1

d

2i
.

This is clearly at least d
2

but since the optimum is 0 distance, there

can be no constant c for which d
2
≤ c · 0.

Error Codes and Penalties:

1. Bad error in distance computation. −16.

2. Proof not well written. −7.

3. Error in distance calculation. −3.

4. Did not calculate distance in optimal strategy. −7.

5. Did not calculate algorithm’s distance. −7.

6. Major problems in example. −28.

7. Example not fully described. −7.

2. (33 points) The Smallest Set of True Atoms (SSTA) problem is
defined as follows:
INPUT: A Boolean formula in conjunctive normal form (CNF) without
negations and with exactly three literals in every conjunct, i.e.:

(α1,1 ∨ α1,2 ∨ α1,3) ∧ (α2,1 ∨ α2,2 ∨ α2,3) ∧ · · · ∧ (αk,1 ∨ αk,2 ∨ αk,3)



Where αi,j are atoms (no negations).
OUTPUT: The smallest number of atoms that, if assigned truth value
TRUE, will satisfy the formula.

Note that every such formula is satisfiable. We are interested in the
smallest number of atoms that, if assigned value TRUE, will cause the
entire formula to be satisfied.

Example:

α = (A∨B∨C)∧(D∨B∨A)∧(E ∨A∨C)∧(A∨D∨E)∧(E ∨B∨D)

If A and B are assigned value TRUE the the formula is satisfied even if
all other atoms are assigned value FALSE.

The SSTA problem is NP-hard. Write an Integer Program in the
slack form for the SSTA problem.

Answer:

Assume there are n different atoms in the formula. For each one we
assign a variable that will get value 0 if its respective atom is assigned
value FALSE, and 1 if its respective atom is assigned value TRUE.Assume
our variables are x1, ..., xn. The IP is as follows:

Objective Function: max
∑n

i=1 −xi.

Constraints:
xi + si = 1 (Every variable is at most 1).

Let (αj,1∨αj,2∨αj,e) be a conjunct where the variables of its respective
atoms are a, b, and c. Then add constraint:

a + b + c− tj = 1 (At least one atom in the conjunct is satisfied).

xi ≥ 0 i = 1, ..., n.

si ≥ 0 i = 1, ..., n.

tj ≥ 0 j = 1, ..., k.

Error Codes and Penalties:

1. Slack notation not provided. −13.

2. Slack notation objective function should be max, not min. −4.



3. Did not provide constraint for variables to be between 0 and 1.
−5.

4. Not every disjunct has a variable, every atom has a variable. −7.

5. At least one TRUE variable is necessary in every conjunct. −5.

6. Failed to provide slack form for variable constraint. −4.

7. Failed to provide slack form for conjunct constraint −5.

8. Slack variable should all be greater than or equal to 0. −7.

9. Error in constraint of the conjunct. −5.

10. Did not make sure that a different slack variable is necessary for
every conjunct. −4.

3. (34 points) The Longest Reverse Substring Problem is defined as
follows:
INPUT: String T over alphabet Σ.
OUTPUT: The longest substring S of T such that SR is also a sub-
string of T , where if S = S[1], ..., S[m], then SR = S[m], ..., S[1].

Write an algorithm that solves the Longest Reverse Substring problem.
Describe the idea of the algorithm and prove its time complexity. The
more efficient the algorithm (provided it is correct) the more points
will be given.

Answer:

The idea is as follows: Concatenate T and TR (with a symbol not the
alphabet between them), i.e. T ′ = T$1T

R$2, where $1, $2 6∈ Σ. Note
that any substring that occurs in T ′ both before $1 and after $1 is
a candidate for our output. A longest such substring is the output.
Because $1 6∈ Σ it can not be the case that there are two such substrings
which cross $1.

So we need to find a way to efficiently find such substrings. Obviously,
a suffix tree of T ′ will provide all substrings. Any node that has a split
where in one side there is a $1 and on the other side there is no $1, is
a candidate.

We can figure out the length of the suffix leading to every node by
DFS on the suffix tree, so a DFS on the tree can identify the longest
substring that appears in both trees. The only remaining question
is how to recognize the nodes that are potential substrings for the
output.



This can also be done by a DFS on the tree. Note that any leaf
representing a suffix starting at the first n positions of T ′ means a
substring of T , paint it white. Any leaf representing a suffix starting
after location n + 1 means a substring of TR, paint it blue. Going up
the paths, whenever a node has a blue child and a white child, it is
a substring that appears both in T and TR. If all children have the
same color, then the parent node get that color.

Time: Suffix tree construction is done in time O(n log σ), where σ =
min (|Σ|, n), by the Weiner algorithm mentioned in class. The rest of
the operations are DFS searches on the tree, so their time is linear.

Error Codes and Penalties:

0. Completely erroneous algorithm. −34.

1. Correct naive algorithm of time O(n3). 10.

2. Correct algorithm of time O(n2 log n). 14.

3. Correct algorithm of time O(n2). 17.

4. Did not give time for unbounded alphabets. −3.

5. No explanation of correctness. −15.

6. Did not seek a leaf that has a child in T and a child in TR. −10.

7. Error in finding a leaf that has a child in T and a child in TR.
−10.

8. Nonstandard suffix tree construction (e.g. generalized suffix tree.
Since we did not mention it in class, this usage requires proof.
−10.

9. Did LCA of all suffixes of T with all suffixes of TR. There are n2

such possibilities. −15.

10. Wrong suffix tree construction time. −5.

11. How do you know which leaf is T and which is TR? −5.

12. Assumes the suffix tree of T ′ has some leaves ending in $1 and
some leaves ending in $2. −5.

13. Constructs a trie but claims time is O(n log σ). −15.

14. Assumes that an LCA between all suffixes of T and all suffixes of
TR can be found in linear time - no explanation how. −10.



15. Uses an algorithm that constructs two suffix trees, one for T and
one for TR, then compares these trees and claims time is linear
rather than O(n2). −15.

16. Uses LCA of a single node?!? −10

GOOD LUCK


