
Algorithms II 89-322-01, 89-322-02, FINAL EXAM
MOED A

Instructor: Prof. Amihood Amir

Length of Exam: 2 hours
Time: July 7th, 08:30

NO OUTSIDE MATERIAL ALLOWED!!!

A general note about the grading process: Below you will find how
many points were deducted for each error. Some answers incurred several
errors, and so the amount of points deducted in such case was usually the
sum of points deducted per each error, although some exceptions were made
(deducting less points). In addition, some notebooks were given besides the
error a number of pluses (+) or minuses (-). This indicate either additional
points that were added although some errors, or additional points being
deducted due to some other issue which we did not find the need to list
here.

1. (33 points) Let S be a string. Write an algorithm that finds all non-
empty substrings of S that occur in S the maximum number of times
(i.e. there does not exist a substring that occurs more times than any
of those).
Describe your algorithm’s idea and prove its time complexity. The
faster the algorithm (for a correct one) the more points given.

Answer:

The idea is to use the suffix tree. Note that the number of leaves in
the substring rooted at node t is the number of times the substring
from the root to t occurs in S. The substrings that occur a maximum
number of times have to be children of the root (since any grand-child
of the root means there was a split at the level above and thus the
parent had more leaves in its subtree).

So, construct a suffix tree and do a DFS to write for each node how
many leaves there are in its subtree. Now consider the children of the
root, and choose all those with the maximum number of occurrences
(leaves).

Don’t forget: All prefixes along the edge from the root to each max-
imum node chosen above are also substrings that occur a maximum

number of times. In fact, any substring along the edge appears a max-
imum number of times. However, in order to remove possible extra
work it is crucial to notice that the prefixes suffice (as the other sub-
strings must be prefixes along some other edge which will be part of
the output).

Time: The input-dependent time is dominated by the suffix tree con-
struction, i.e., O(|S|+tocc) for finite fixed alphabets, O(|S| log log |Σ|+
tocc), for alphabets whose size is a polynomial in |S|, and O(|S| log |Σ|+
tocc), for general alphabets, where tocc is the number of reported
maximum-repeat substrings (output dependent).

Error Codes and Penalties:

1. The root cannot be a candidate (as it corresponds to the empty
string). Not noticing this was deducted 2 points.

2. Using a parameter of O(n2) for the size of the output (which is
in fact linear). 7 points.

3. Considered size of subtree, and not number of leaves. 5 points.

4. Suffix tree construction in O(n log n) or O(n|Σ|). 5 points.

5. Major lack of details. 12 points.

6. An O(n2) solution (using tries, for example). 13 points.

7. An error in the time complexity. 5 points

8. The naive O(n3) solution. 18 points.

9. Missing log |Σ| in the time for constructing a suffix tree (note that
this was emphasized in the recitation) . 5 points.

10. Traversing all of the substrings along an edge, and not just the
prefixes. 2 points.

11. Traversing only one edge (and not all of the possible edges). 2
points.

12. In addition to 6, error in suffix tree construction complexity. 2
points.

13. Returning a single node. 3 points.

14. Finding only nodes, and not the appropriate substrings. 5 points.

15. Does not traverse the prefixes at all. 5 points.

16. Decision is based on number of children, and not on number of
leaves. 20 points.

17. Returning the suffixes according to the leaves. 13 points.

18. A KMP based algorithm in O(n) time. 20 points.

2. (33 points) Define a strategy Balance1.175 for the two server problem
as follows:
Given a service request of distance d1 from server 1 and distance d2

from server 2, and assuming that the distance travelled so far by server
1 is x1 and the distance travelled so far by server 2 is x2, the server
that will handle this request is server i for which xi +1.75di is smaller.
Prove that the Balance1.75 strategy is not 2-competitive.

Answer:

This was supposed to be a gift question since I assumed everyone would
first try the example given in class for Balance2.

Consider the situation in the figure below, where servers 1 and 2 are
at corners c and d of a a rectangle of height y and width 1. The service
requests are at the corners of this rectangle and they appear in a cycle:
a, b, c, d, a, b, c, d, a, b, c, d....

The optimum would be for one server to serve a and b, and the other
server to serve c and d. However, for an appropriate choice of y, server
1 will serve a and c and server 2 will serve b and d. If y is greater than
2 this will mean that the algorithm is not 2-competitive.

What y should be chosen?
– The first service request will be handled by server 1. For the second
to be handled by server 2 rather than server 1, we need to have:

y +
7

4
>

7y

4

This happens when
7

4
>

3y

4

7 > 3y

7

3
> y

Note that the above holds true also for the situation where, inductively,
server 1 already traveled cy times and server 2 traveled (c−1)y times,
thus server 1 serves a, c and server 2 serves b, d.

Conclude: The competitive ration is greater than 2 for:

2
1

3
> y > 2.

Note that although not correct, we decided to accept answers which
only considered a constant number of requests. Recall that the defi-
nition of competitiveness requires that there exists a constant n0 such
that for any sequence of requests of size n where n > n0, the cost of the
algorithm on the sequence will be at most twice the cost of the optimal
algorithm. Choosing an example with a constant number of requests
does not suffice to negate this, as it is possible that the constant n0 is
much larger.

Also, if you demonstrated that you really know what competitive anal-
ysis is, and what is needed to disprove the claim, you received at least
18 points.

Error Codes and Penalties:

1. The solution works for a constant number of requests, but there
was an error in an attempt to generalize it to a non-constant
number of requests.

2. Was accepted as correct.

3. Ignored.

4. The solution was not understood. This does not mean that the
solution was incorrect. If you had this error (as listed in the
notebook), you are welcome to submit an appeal better explaining
what you meant to do. But notice that your appeal will only be
used to understand what is already written in the notebook, and
will in no way be able to add additional information. If you feel
that you deserve more points, then please appeal. 33 points

5. Algorithm is executed in correctly. 8 points.

6. An incorrect example that depends on y, without noticing the
dependency on y. 5 points.

7. y is not computed, or computed incorrectly. 5 points.

8. Missing computation of costs. 15 points.

3. (34 points) We say that an integer a fits at neighborhood 3 with integer
b if |a − b| ≤ 3.
If S1, S2 are strings of length n of integers then string S1 fits at neigh-
borhood 3 with string S2 if for each i = 1, ..., n the i-th symbol of S1

fits at neighborhood 3 with the i-th symbol of S2.
Example: 3, 17,−1, 4 fits at neighborhood 3 with 4, 19,−2, 2.

The neighborhood-3 matching problem (N3MP) is defined as follows:
INPUT: Text T of length n, and pattern P of length m, both over the
integers.
OUTPUT: All indices i in T for which the pattern fits at neighborhood
3 with the substring of length m of the text that starts at location i.

Write an algorithm that solves N3MP. Describe the algorithm’s idea
and prove its time complexity. The faster the algorithm (if correct)
the more points given.

Answer:

There are a number of possible answers, all using Abrahamson-like
ideas.

Notation: Denote by S + c (S − c) The string S′ where S′[i] =
S[i] + c (S[i] − c).

The first option is using the algorithm we saw in class for counting
matches. Run that algorithm 7 times. Count the number of matches

of P + c in T , for c = −3,−2,−1, 0, 1, 2, 3. Add them all up. For every
location where the sum is m there is a neighborhood-3 match.

Time: O(n
√

m log m) for each c, and this is done 7 times, for a total
of O(n

√
m log m).

The second option notes the following: For every text location t and
pattern location p, |t − p| ≤ 3 iff t − p ≤ 3 and p − t ≤ 3 iff t − 3 ≤ p

and p ≤ t + 3. This means that we have a neighborhood-3 match iff
P is within a “band” of the text +3 and the text −3.

Therefore do two less-than matchings. Check if P ≤ T + 3 and P ≥
T − 3. Every location where both hold has a neighborhood-3 match.

Time: O(n
√

m log m) for each less-than matching. This is done twice
for a total of O(n

√
m log m).

Note: The second option has an added advantage that it has the same
time complexity for neighborhood-d match for every given d.

Error Codes and Penalties:

1. Using KMP or witness tables or incorrect convolutions, each 7
times. 24 points.

2. Counting all of the errors 7 times, but in O(n log m). 10 points.

3. Naive solution. 19 points.

4. Less than matching in O(n) time, or without providing its time
complexity. 10 points.

5. Using less than matching but incorrectly. 5 points

6. O(n
√

m log m). 3 points.

7. Expanding KMP or another algorithm to work on the difference
between P and T (missing the lack of transitivity). 29 points.

8. Using Clifford and Clifford ideas (which don’t work here, but this
is slightly tricky). 5 points.

9. Less than matching in O(n log m) time. 8 points.

10. Variation of Clifford and Clifford which doesn’t remotely work.
14 points.

11. Abrahamson-like Algorithm, with a major lack of details, or a
major misunderstanding. 10 points.

4. (5 points) Basic training at the end of the Yom Kippur war was iden-
tified by:

(a) The helmets were from 1898.

(b) The rifles were from 1898.

(c) The overcoats were from 1898.

(d) All answers are true.

The correct answer is (b).

GOOD LUCK

