
Hybrid Path Planning for UAV Traffic Management

Eyal Zehavi1 and Noa Agmon2

Abstract— Unmanned Aircraft System Traffic Management
(UTM) becomes a highly relevant complex challenge, as the
UAV activity is rapidly growing bringing more amateur and
professional drones to the urban skies. The main concern of
managing such a system is safely navigating and controlling
hundreds or thousands of drones simultaneously, flying in a
crowded dense environments. This paper introduces an innova-
tive approach of hybrid path planning, which tries to make the
best out of the commonly used centralized and decentralized
planning approaches. The Hybrid Path Planner (HPP) defines
two configuration spaces: the Local Zone, which represents the
crowded city zone with many obstacles and constrains, and the
Global Zone, which represents the outer suburban zone, mostly
open space with predefined flight corridors. The HPP server
communicates with each UAV, assigning it a close-to-optimal
path in the global zone, while leaving the relatively heavy-
duty local zone path planning task to be performed by the
UAV, mostly using stochastic methods like RRT*. This approach
reduces the complex path panning task of the centralized server
to a simpler task of calculating only the entry and exit points
to and from the global zone. This robust approach supports
handling a high number of UAVs, while keeping close to optimal
performance.

I. INTRODUCTION

The technological breakthroughs of recent years brings
a revolution to the world of mobility. Highly advanced
autonomous air vehicles, affordable and simple to operate,
become available and popular. These small Unmanned Aerial
Vehicles (UAV), while offering a breakthrough for many
innovative applications, are at the same time burdening the
already busy airspace, challenging public safety and privacy.
Increased use and need of means of transport on one hand
and the technological advancement on the other, have led
to a development of a new segment of air transport - the
urban air mobility (UAM). In the near future, skyline of
cities is expected to change. Small UAVs carrying cargo are
already in test and trials in many cities around the world [1].
Complex transportation ecosystems are developed to move
people by air, expected to populate the low altitude volume
above the urban areas within the coming decade. New
solutions to air flow management are needed to accommodate
the increase in air traffic. This complex challenge has to cope
with environmental condition changes, conflicting priorities
and high UAV numbers, and requires an adaptive robust
solution [?]. The need to control this massive volume of
UAVs in the city sky, has led to development of UTM (UAV
Traffic Management) systems to control the traffic flow.

1Eyal Zehavi is with the Faculty of Computer Science, Bar Ilan Univer-
sity, Ramat Gan, Israel 52900, eyalzehavi@bezeqint.net

2Noa Agmon is with the Faculty of Computer Science, Bar Ilan Univer-
sity, Ramat Gan, Israel 52900, agmon@cs.biu.ac.il

3Watch video at: https://youtu.be/zmMQUJjTKxQ

A key factor in safe and efficient transportation is path al-
location. Each user has its own requirements and limitations,
the airspace has its own rules, and the environment is always
dynamic and surprising. The challenge of the UTM system
is to efficiently assign flight paths for each UAV, such that
transportation flow will be maximized, highest level of safety
will be maintained, and airspace restriction and limitations
will not be violated. There are two leading approaches on
how to achieve these goals: centralized and decentralized.
In Centralized Planning, path planning is done by a cen-
tral controller, the controller receives flight plan requests,
prepares an optimal plan, and assigns each agent with its
customized plan. The advantage of this approach is the
capability to optimize and reach maximum social welfare
[2]. The main disadvantage is the difficulty to scale up since
communication and computing load increases exponentially
with number of users [3]. In Decentralized Planning, path
planning is done by each agent individually. This approach
offers maximum flexibility since each agent allocates its own
computing resources. The challenge is to optimize the overall
plan in order to reach a safe, efficient transportation system.

In this work we introduce the Hybrid Path Planner
(HPP), an innovative architecture within the UTM space
designed to maximize the advantages of the centralized
and decentralized approaches, offering greater flexibility in
supporting UTM operations. Realizing that the path for a
UAV may be comprised of different segments requiring
different approaches, the HPP divides the environment into
two segments - Local Zone and Global Zone. In the local
zone each UAV plans its own path, while in the global
zone the UAV’s path is centrally planned by the HPP. The
HPP assigns each UAV with its entry and exit points to the
global zone and its path along the global zone, in order
to regulate the traffic and optimize the overall performance
of the system. We review in this paper three methods for
computing entry and exit points to the global zone, we then
analyze and examine empirically the performance of HPP
computation time and resulting travel distance and show a
computationally-efficient algorithm for calculating a UAV’s
entry and exit points in a 2D configuration space. Finally,
we demonstrate the HPP architecture in a 3D simulation in
a realistic environment.

II. RELATED WORK

The recent growth in demand and complexity of the UTM
operations has led to the development of different approaches
for an optimized UTM system. In this section we survey
relevant academic and practical approaches for such systems.



A. Motion Planning and Path Finding

Motion planning is one of the most basic problems in
robotics, which refers to finding a sequence of valid config-
urations that move a robot from an initial to a goal configu-
ration [?]. The problem is generally NP-hard in continuous
spaces [4], thus solutions to the problem of motion planning
usually include a discrete model of the world, or sampling-
based world representation.

A basic algorithm using sampling of the state space to find
a path for a robot is Rapidly-growing Random Trees (RRT)
[5] (later extended to RRT* [6], and many other variants),
used vastly for UAVs. Due to the multi-dimensionality of
the state space, there is no algorithm that provides an exact
analytic solution to such a problem. Even approximation
algorithms operating on a 3D subspace of this problem space
are difficult to compute in real time [7]. Comparison of path
planning algorithms for UAVs with respect to optimality and
computational complexity can be found in [8].

Another approach to reduce complexity was introduced
in [9], an effective, cooperative, probabilistically-complete
multi-robot motion planner, which avoids collisions and
obey dynamics. This approach showed high efficiency in
complex problems, relying on cooperation to find routes, and
suggested that incorporating high-level planning will enable
a team of robots to better perform in complex tasks, as
suggested by our work.

Attempts to handle the complexity arising from planning
paths for high-dimensional multi-robotic systems with non-
linear dynamics and collision avoidance include planning in
both discrete and continuous spaces is described in [10].
Sislak et. al [11] described a distributed flexible multi-layered
de-confliction architecture, where collisions are avoided by
an asset-to-asset negotiation and single A* progressive path
planning. This approach allows to handle higher number
of aircraft, decreased requirements for human operators and
allows participation of non-cooperative agents.

Multi-Agent Path Finding (MAPF) algorithms are used
where multiple agents need to plan a path simultaneously
while assuring collision avoidance. The goal in these al-
gorithms is to minimize the sum of all travel times, or
minimize the maximal travel time of the agents. Solving
MAPF optimally is computationally hard, and many different
algorithms have been developed for this purpose over the
years [12]. Solutions to the MAPF problems can be either
centralized [2], distributed, or a combination of both [13].
However, solutions are usually restricted to situations in
which all robots initiate their navigation simultaneously,
and in discrete spaces (grid or graph environment). Both
assumptions, as well as the high computation time, make
it impractical to use this model and solutions in our domain.

A recent study by Ho et. al [14] examines a decentralized
approach for aerial traffic management system, in which the
UAVs are responsible for handling collision-avoidance using
negotiation. The study shows that using this method lead to
a significant reduction in costs for the aircrafts in terms of
delays and rejected operations due to re-planning.

Our suggested HPP framework is designed to incorporate
any distributed path planning method in the local zone, and
cooperative path planning method in the global zone.

B. Current UTM Practice

UTM theoretical and practical research is lead by institutes
such as NASA and U-SPACE CESAR, while experts from
industry and academic fields work closely with and federal
aviation administrations (such as FAA and EASA) towards
the goal of integration of UAS into the national air space.
NASA’s UAS Traffic management (UTM) research initiative
has demonstrated the flight of multiple UAVs flying in
urban environments [15]. Most of the deconfliction has been
demonstrated with separate operational volumes through
different UAS service suppliers (USS). A UAV talks with the
local USS to get flight approvals from the UTM and make
contingency plans [16]. In their work, Chakrabarty et al.
offer a complete autonomous architecture for flying a UAV in
dense urban environments. The planning architecture consists
of a global planner which plans path to the goal using RRT
and local planner is involved in avoiding obstacles according
to SAFE50 autonomy architecture [17], unlike the HPP local
planner which is also involved in path planning.

One way to handle the complexity of the problem is to
divide the airspace to multiple layers and apply different rules
and algorithms for each one. in [18] a multidimensional grid
with fixed top-level paths and lower level paths was used for
local traffic between the departure and arrival points and the
top-level paths. Layers with fixed paths (“drone highways”)
manage traffic implementing scheduling algorithms, while
the rest of the layers used for traffic from departure points
to the highways and from the highways to the arrival point,
implement routing algorithms to handle traffic. In [15] Ama-
zon proposed a concept of airspace design and management
where the airspace is divided into three vertical layers with
lateral “predefined low risk location”: “low-speed localized
traffic”, “high-speed transit”, and “no-fly” zone.

On December 28th 2020, The US FAA issued a final ruling
on Remote ID [19] , forcing all drones to either fly in a pre-
defined area (FRIA), or install a broadcast device publishing
drone and operator real time information .

III. THE HYBRID PATH PLANNER ARCHITECTURE

We developed the hybrid path planning (HPP) approach
to cope with the complex environment challenges of UAV
flights in urban areas. Obstacles and densely-populated areas
on ground and strictly regulated traffic in predetermined
routes in air, make high volume traffic in this environment a
challenging task.

Looking at traditional air traffic regulation we find two
principle approaches to control air traffic:
• Flying in predetermined routes regulated by a central

controller, used to handle high volumes of traffic.
• Flying in predetermined volumes, self controlled (yet

still subject to flight rules) in more scarce areas.
The HPP approach divides the flight path of the UAV in
a similar manner into two differently regulated zones: the



global and local zones (see illustration in Figure 1). Global
zones (SkyWay) include predetermined centrally controlled
SkyWays, while the local zones define a self controlled
confined volume.

The core of the HPP is a server utility that accepts path
requests from UAVs, and assigns each one with optimized
flight path. The HPP determines a UAV’s entry point into
the global zone and an exit point from it, and may take into
account the expected load, no-fly zones and other global
considerations when computing a path. If the HPP was
required to accurately assess the travel time for each UAV
from its start to goal locations, it would have needed to
compute a full path (using RRT*, for example). However,
computing the exact path for each UAV is impractical
in terms of computation resources. Therefore, local zone
navigation will not be calculated, but will be approximated
by an estimation algorithm. We will review three methods
for determining the entry and exit points of the UAV, as
described section IV. We have implemented and evaluated
all three methods to examine the differences between them
in terms of calculation time, estimated UAV travel distance,
and the difference between it and the actual UAV path length
calculated by the HPP simulator, as described in section VI

Fig. 1. The global zone (SkyWay) and local zones for the HPP architecture
in the 3D simulation, and in the correlated 2D simulation (top left corner)

A. Local Zone

The local zones is typically a geographical volume char-
acterized by densely populated environment with variety of
restrictions, for example a neighbourhood, city quarter, ed-
ucational institutes, or industrial zone. This area is dynamic
and changing, requiring slow careful navigation with highly
efficient obstacle avoidance capabilities. Start and goal points
will always be in the local zones, and transition to and from
the global zone will be done via entry and exit points defined
by the HPP Server. Since the local zone is nonholonomic
space, the HPP approach suggests local zone path planning
will be performed locally by the UAV using RRT* or other
similar algorithm from the start to the entry point, and from
the exit to the goal point.

B. Global Zone (SkyWay)

The global zone is typically a geographical volume char-
acterized as open lower density space which supports higher
speed UAV traffic. The global zone is allocated in areas
like inter-cities with reduced risk and noise to the dense
population, and will usually be restricted to routes between
predefined fixed nodes, dictated by the regional transporta-
tion authority. Since the global zone space can be modeled

as a graph, the HPP approach suggests global zone path
planning will be performed centrally by UTM authority,
using A* or other similar algorithm from the entry to the
exit point.

C. Problem Definition

In this paper we examine different methods for hybrid path
planning optimization. The global zone will be modeled as
a 2D weighted undirected graph G = (V,E,L) with nested
local zones, such that each vertex vi ∈ V = (vxi , v

y
i ) is

an intersection in the SkyWay, an edge e = (vi, vj) ∈ E
connects two vertices vi, vj ∈ V in a direct line in the
SkyWay, and the weight of an edge ei ∈ E, denoted by
eli ∈ L, represents load statistical data as a function of time
t1. We assume that local zone navigation does not cross the
SkyWay.

D. Path Planning Process

The Path Planning Process (flight plan) begins with a UAV
requesting a flight path.Formally, a UAV i that needs to travel
issues a UAV Path Request Ri = < rsi , r

g
i , r

t
i > such that rsi

is the requested start point rgi is the requested goal and rti is
the requested entry time to the global zone. The HPP server
calculates a UAV Path ui = < us

i , ue
i , uel, ux

i , ug
i , ut >

such that us
i is the path start point, ue

i is the path entry point
to the global zone, uel

i = {ei1 . . . eik} is a list of edges on
G (the SkyWay), ux

i is the path exit point, ug
i is the path

goal point and ut
i is the path entry time. Once receiving

the plan, the UAV takes off and navigates to the entry point
(using any onboard navigation algorithm, in our case we have
implemented RRT*). In this paper we assume that the UAV
is avoiding obstacles and other UAVs autonomously. The
UAV joins the SkyWay at the assigned time and location
and navigates through the global zone at the assigned speed
to the exit point. The UAV then enters the goal’s local zone
and navigates to its goal.

IV. HPP METHODS

We will examine three possible global path planning
methods that define for each UAV i the entry point, exit
point and path in the global zone (SkyWay): MLT, MGT
and OPT (defined below). We will test the HPP algorithms’
performance, and compare HPP performance to an optimal
solution which computes RRT* for each UAV as a bench-
mark. The evaluation will focus on the trade-off between
3 parameters: the actual travel time and distance compared
to the estimated one, and the computation time. All three
algorithms do not compute the actual path for the a UAV,
but use other straight line calculations as estimations (MLT
and MGT use simple straight line estimation, and OPT uses
a weighted estimation, discussed in detail in section V).

1Since eli is time dependent, its formal definition is eli(t), though we
omit the time dependency wherever possible



(a) MLT (b) MGT (c) OPT

Fig. 2. Illustration of the three methods in HPP

A. Minimum Local Time (MLT)

Minimal local time method determines a path for each
UAV i that minimizes its time in the local zone. The HPP
will receive the UAV request and choose an entry point P e

i

on the SkyWay which is closest to the start point, and exit
point P x

i on the SkyWay which is closest to the goal point,
and determine the SkyWay path with minimal cost between
these two points. See illustration in Figure 2 (a).

B. Minimum Global Time (MGT)

Minimal global time method determines a path for each
UAV i that minimizes its time in the global zone. The HPP
will receive the UAV request and choose an entry point P e

i

and exit point P x
i , such that the distance between P e

i and
P x
i will be minimal. See illustration in Figure 2(b).

C. Approximated Optimal Time (OPT)

The approximated optimal time method (optimal time,
in short) calculates a path for each UAV i that strives to
minimize total travel time, both in global and local zones,
considering obstacle density in local zones (affects RRT*
path length) and SkyWay speed. See illustration in Figure
2(c). The calculation of the approximated optimal route is
described in depth in the following section.

V. OPT ALGORITHM

Recall that the HPP does not compute the exact path in
the local zones, but uses a straight-line approximation of
path length. However, the actual path length can be quite
different than the straight-line approximation, especially in
very dense environments. In order to estimate the impact of
the density of the obstacles in the zones on the length of the
RRT* path, we define the notion of RRT-Factor, RRTF(o)
(denoted by RRTF, or F, in short), which indicates the length
of the actual RRT*-based path compared to a straight line
in an area with obstacle density o. RRTF(o) is determined
empirically, as shown in the evaluation section. We describe
in detail the selection of the entry point to the SkyWay. The
selection of the exit point is similar.

OPT algorithm works as follows. For a given start point,
it examines for every edge ej bounding the start zone, a
point P e

i (vj) along that edge that minimizes the travel time
towards a vertex of the SkyWay, denoted as SFN (SkyWay’s
First Node, the node closest to the entry point along its
way to the goal point). Then it calculates all possible SLN
(SkyWay’s Last Node) points bounding the goal’s local zone,
and determines the pair of entry and exit points minimizing

the total travel time. The OPT algorithm considers several
parameters including obstacles level in the local zone and
travel speed in the SkyWay (denoted by Speed Factor). See
illustration in figure 3 for a single SFN.

Fig. 3. Entry Point optimization

A. Entry Point Selection

In order to find the optimal entry point, we need to find
the X value shown in figure 3 that will minimize the distance
to the SFN. Specifically, we would like to minimize the
sum of two values: the estimated travel time between the
start point to entry point, (X2 + B2)1/2 ∗ F, and from the
entry point to the SFN: (A − X). We take the distance
equation first derivative and compare to zero, resulting in
X =

√
B/(F2 − 1). Since B (distance of start point to

the edge) and F (RRT* overhead factor) are known, the
calculation of the X value yielding minimal travel time is
straightforward.

B. SkyWay Speed Factor

A key factor in the optimal entry point calculation is the
the UAV different travel speed in the local and the global
zone. Because of this fact, there could be a bias to prefer
global zone travel, which decreases x as can be seen in figure
3 (brings the entry point closer to the start point). We denote
the increase (or decrease) in the speed on traveling in the
SkyWay compared to the local zone by SF (Speed Factor).
Therefore the optimization equation will then be updated
as follows: Dist = F ∗

√
X2 +B2 + (A − X) ∗ SF . By

deriving this equation we can again deduce the optimal X
value: B∗SF√

F2−SF

C. Time Complexity

The OPT algorithm within the HPP Planner wishes to find
a close to optimal entry point to the SkyWay for each UAV.
The number of edges bounding a local zone is bounded by
constant value c, so the calculation of the optimal entry-exit
is done in O(c2) = O(1), in addition to the calculation of
the path along the SkyWay. However, in our HPP implemen-
tation we perform a pre-process phase to calculate distances
between all vertices of the SkyWay surrounding the start
zone, to all vertices of the SkyWay surrounding the goal zone
(and between all zones, in general), using A*. This process
is done once for all UAVs in offline and results are kept in
an arraylist. Thus using the arraylist to select the SkyWay’s
first and last node is done in O(n).



VI. HPP SIMULATOR

In order to support multi-cycle runs of HPP planning, we
developed the HPP Simulator (HPPS) (see Figure 4).

Fig. 4. HPP Simulator

A. Configuration Space

Local Zone
The local zone is represented as a 2D 50X50 units grid .
Each unit can be defined as free or occupied by an obstacle.
A UAV can travel in the local zone in all 8 surrounding
cells: up/down/left/right and diagonally. In the local zone our
selected path planning algorithm is RRT* since it is suitable
for nonholonomic space with obstacles [20].
Global Zone
The global zone (SkyWay) is represented as an undirected
weighted graph with nodes and edges, where each edge has
a weight parameter that can either represent the distance
between nodes, or other constraints along the edge (e.g.,
heavy traffic or bad weather). The Graph information (e.g
nodes, edges, weights) is stored in a configuration file, and
can be automatically replaced between runs.

B. Path Options

The HPPS supports several configurations of path plan-
ning in the local and global zones. Specifically, we have
implemented A∗ for path planning in the global zone, and
in the local zone the path is calculated in one of the three
options mentioned above (MLT, MGT, and OPT). We have
also implemented RRT* for benchmark, although the actual
path planning does not run RRT*.

C. Connectivity

The HPP can verify, as a pre-process step, that a valid
path exists between the start point and the entry point (that
is, they belong to the same connected component). First the
algorithm verifies the points are not located in an obstacle,
then it verifies that a path exists between the points using
the flood fill algorithm. A flood fill operation begins at the
start point and colours in blue all the grid points connected
to the start point. The algorithm then verifies that the entry
point is in a blue grid slot. If not, the HPPS can pop an alert
or automatically adjust the entry point to a near blue grid
slot, as demonstrated in Figure 5.

Fig. 5. Two examples of the Flood Fill Test

D. RRT Parameters
RRT* algorithm has a few parameters to control its

behaviour allowing to customize the algorithm to the im-
plementation case. The parameters used in the HPPS are:
Threshold The Threshold parameter is the maximum length
of each tree branch. Higher threshold allows quicker tree
expansion and faster time to reach the goal. Lower threshold
allows better agility and path smoothing between obstacles.
The value that seems to balance time calculation performance
vs. path optimization was 4 grid units.

Fig. 6. Different Threshold Values (3 at the left, 5 at the right)

Maximum Iteration factor (MIF) In the RRT* algorithm
each iteration tries to produces a branch. Theoretically itera-
tions can continue to infinity optimizing the tree. The HPPS
allows 2500 iterations (n2) if goal is found, and if goal not
found, continue up to 2500 * MIF times. The MIF value
used in the HPPS is 5.

E. 3D Module
The HPP Simulator supports 3D representation using

Unity 3D Engine. the HPP Simulator outputs the following
configuration files to a shared folder:
• HppSkyWay - contains SkyWay’s edges data (start point

and end point)
• HppObs - contains obstacle data (x, y , height)
• HppDronePath# - contains the path data for a specific

(#) drone (waypointx, y, speed)
The 3D Engine then initialize a predefined scene, loads

SkyWay data and obstacle data, presents them, loads the
drone paths, instantiates a drone for each path and simulates
its takeoff, flight and landing.

VII. EMPIRICAL EVALUATION

A. Calculation Time of RRT* vs. OPT
Multiple UAV operations require simultaneous path plan-

ning calculations for many platforms. RRT* algorithm is



highly effective in nonholonomic path finding but is also time
consuming. As can be seen in Figure 7 calculation time starts
from 1-2 seconds, and increases with obstacle level to more
than 10 seconds per path (Intel i7 CPU) . These results were
achieved when restricting number of RRT iterations, allowing
more calculation time will increase results optimization. In
Figure 7 we can see the results of 1100 iterations - mean time
of 20 RRT* iterations for each obstacle levels 1-55%. We can
see the trend of higher computation time as obstacle level
increases. The large variation in the results is the outcome
of the random nature of RRT*, causing some paths to be
found quickly while others take more time.

Fig. 7. RRT* Calculation time vs. Obstacle Level

OPT Algorithm’s calculation time, on the other hand, is
very fast and takes in average less than 1 m/sec per path.

B. MLT vs MGT
Our initial interest was to compare the performance of

MGT with MLT. We ran this test with Speed Factor = 1,
meaning the same speed traveling the local and global zones.
Our assumption was that reducing travel time in the local
zone will yield a shorter path, because the RRT*’s ’Zig
Zag’ motion will add substantial travel time. Tests runs in
the simulator revealed otherwise. The MGTwas shorter in
average of 19% as seen in Table I below. Each row indicates
the average path length of 25 iterations.

obstacle density (%) MLT MGT Diff
0 481.88 384.44 20.22%
5 264.28 240.52 8.99%
10 566.68 448.56 20.84%
15 465.32 383.54 17.57%
20 100.8 72.8 27.78%
Average 375.79 305.97 19.08%

TABLE I
MLT VS. MGT PATH LENGTH

In order to verify results integrity, we ran 1000 iterations
of RRT* path calculations, each 40 runs with the exact
same RRT* parameters, and then repeated 25 times with
different obstacle level. We calculated the standard deviation
of the cost results. The coefficient of variation (CV=standard
deviation/mean) was very low and always under 1 which
indicates the algorithm is robust.

C. OPT vs MLT vs MGT
In this test we ran 500 iterations comparing OPT,MLT and

MGT. Every 100 iterations we changed the Speed Factor
(SF), in order to see what influence (if any) it has on the

different algorithms’ performance. In Figure 8 below we can
clearly see that the OPT algorithm performed significantly
better in all SF levels 1-5 (SF 5 for example means global
zone travel speed is 5 times faster than local zone travel
speed). The average improvement from MGT was 22.2%
and the average improvement from MLT was 9.74%. We can
also see that as SF increases, the MLT becomes better than
the MGT, due to the higher traveling speed in the SkyWay.

Fig. 8. OPT vs MLT vs MGT

D. Calculating the RRT Factor (RRTF)

RRT* by definition of its branching implementation, is
always longer than a direct start-entry line. As discussed,
we have defined a parameter called RRT* Factor (RRTF),
which measures the relation between the RRT* distance, and
direct distance between start and entry points (or exit and
goal points) in the local zone. We further verified the logical
assumption that higher obstacle level will increase the RRTF.
Using the HPP Simulator we ran 10,000 tests recording
the relation between RRT* path length and direct path
length and how this relation is changing when applying
different obstacle levels. We have run 1000 cycles of RRT*
path planning in a given local zone. Each experiment was
executed 20 times with the same obstacle level (from 1%
to 50%), where obstacle locations were drawn at random.
For each line the average RRTF was calculated. As seen in
figure 9, there is a close to linear relation between the RRT*
Factor and obstacle density. Using linear regression we found
a factor that can help us estimate the distance to be traveled
in the local zone, given a known obstacle level. The ’magic
number’ for RRT* distance prediction for a given obstacle
level was found to be RRTF(o) = 1.340984394× o.

Fig. 9. RRTF prediction by obstacle level (o) using Linear Regression



In order to verify RRTF’s integrity we have ran a series
of 600 cycles, measuring the difference between the cost
predicted by the HPP and then ran RRT* to get a real result.
Every 20 cycles we changed the start point and obstacle
level to measure RRTF accuracy in variable conditions. We
recorded the difference in each cycle between the actual cost
measured by the HPP Simulator, and the RRTF Predictor.
Results show that the RRTF’s accuracy is not affected by
the obstacle level. The average error is 1.32% which is very
low, though standard deviation reaches 13.4% which can be
explained by RRT*’s random nature.

E. SkyWay Speed Factor (SF)

We have measured the cost reduction reaching the sky-
way’s first node as seen in figure 3, when using the HPP entry
point optimization in different speed factors. As expected -
as speed factor increases, travel time decreases. In order to
further verify that the speed factor does not bias entry point
optimization, we ran 300 tests with constant speed factor 0.5,
changing start point and obstacle level every 20 cycles. For
each batch we measured the average cost difference between
OPT and MLT. In figure 10 below we can see that for almost
all obstacle levels the average cost difference was positive
meaning MLT average cost was higher than OPT average
cost. Average difference for all obstacle levels was 24.93
which was 10.2% from the average path cost.

Fig. 10. OPT - MLT cost difference by Obstacle density

VIII. CONCLUSIONS AND FUTURE WORK

We have introduced an innovative hybrid approach for
path planning in the UTM space, combining distributed and
central planning. The hybrid approach is based on dividing
the air space into two zones: global and local zone, and
finding the best way for a UAV to join the global zone
and leave it. The architecture is based on using a path
planning predictive model for an individual UAV, without
the need to actually compute a path (using RRT*) for each
request, thus allowing the system to handle many requests in
parallel. We have empirically analyzed the performance of
this optimal estimator algorithm against two other algorithms
for determining the entry and exit points to the global zone,
and have shown that it significantly outperforms them, and
provides an accurate estimate to the actual path traveled by
the UAV. During the research we have encountered several
aspects required in real world situations, that seems highly
applicable for future study, among those possible use of
hierarchical representation within the local zones that takes

into account such heterogeneous environments, extending the
work to 3D environments, and accounting for dynamic and
probabilistic obstacles.

REFERENCES

[1] Ayalon-HighWays. Request for information (rfi) and request for
demonstration (rfd) subject: Urban mobility in the aerial dimension,
February 2020.

[2] Ofra Amir, Guni Sharon, and Roni Stern. Multi-agent pathfinding as a
combinatorial auction. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[3] John H Reif. Complexity of the mover’s problem and generalizations.
In 20th Annual Symposium on Foundations of Computer Science (sfcs
1979), pages 421–427. IEEE, 1979.

[4] Jacob T Schwartz and Micha Sharir. On the “piano movers” problem.
ii. general techniques for computing topological properties of real
algebraic manifolds. Advances in applied Mathematics, 4(3):298–351,
1983.

[5] Steven M LaValle, James J Kuffner, BR Donald, et al. Rapidly-
exploring random trees: Progress and prospects. Algorithmic and
computational robotics: new directions, (5):293–308, 2001.

[6] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based
algorithms for optimal motion planning. Robotics Science and Systems
VI, 104(2), 2010.

[7] Chad Goerzen, Zhaodan Kong, and Bernard Mettler. A survey of
motion planning algorithms from the perspective of autonomous uav
guidance. Journal of Intelligent and Robotic Systems, 57(1-4):65,
2010.

[8] Mohammadreza Radmanesh, Manish Kumar, Paul H Guentert, and
Mohammad Sarim. Overview of path-planning and obstacle avoidance
algorithms for uavs: A comparative study. Unmanned systems,
6(02):95–118, 2018.

[9] Duong Le and Erion Plaku. Cooperative multi-robot sampling-based
motion planning with dynamics. In Twenty-Seventh International
Conference on Automated Planning and Scheduling, 2017.

[10] Erion Plaku. Planning in discrete and continuous spaces: From ltl
tasks to robot motions. In Conference Towards Autonomous Robotic
Systems, pages 331–342. Springer, 2012.

[11] David Šišlák, Michal Pěchouček, Přemysl Volf, Dušan Pavlı́ček, Jiřı́
Samek, Vladimı́r Mařı́k, and Paul Losiewicz. Agentfly: Towards multi-
agent technology in free flight air traffic control. In Defence industry
applications of autonomous agents and multi-agent systems, pages 73–
96. Springer, 2007.

[12] Roni Stern. Multi-agent path finding–an overview. In Artificial
Intelligence, pages 96–115. Springer, 2019.

[13] Jirı Švancara and Roman Barták. Combining strengths of optimal
multi-agent path finding algorithms. In Proceedings of the 11th Inter-
national Conference on Agents and Artificial Intelligence (ICAART),
pages 226–231, 2019.

[14] Florence Ho, Ruben Geraldes, Artur Gonçalves, Bastien Rigault, Ben-
jamin Sportich, Daisuke Kubo, Marc Cavazza, and Helmut Prendinger.
Decentralized multi-agent path finding for uav traffic management.
IEEE Transactions on Intelligent Transportation Systems, 2020.

[15] Tao Jiang, Jared Geller, Daiheng Ni, and John Collura. Unmanned
aircraft system traffic management: Concept of operation and system
architecture. International journal of transportation science and
technology, 5(3):123–135, 2016.

[16] Anjan Chakrabarty and Corey A Ippolito. Autonomous flight for multi-
copters flying in utm-tcl4+ sharing common airspace. In AIAA Scitech
2020 Forum, page 0881, 2020.

[17] Corey A Ippolito, Kalmanje Krishnakumar, Vahram Stepanyan, Anjan
Chakrabarty, and Josh Baculi. Safe50 reference design study for large-
scale high-density low-altitude uas operations in urban areas. In 2019
AIAA Modeling and Simulation Technologies Conference, 2019.

[18] Lasse Berntzen, Adrian Florea, Cristian Molder, and Noureddine
Bouhmala. A strategy for drone traffic planning dynamic flight-paths
for drones in smart cities. In SMART 2019, The Eighth International
Conference on Smart Cities, Systems, Devices and Technologies, 2019.

[19] FAA. Faa’s remote id final ruling, December 2020.
[20] R. Pepy and A. Lambert. Safe path planning in an uncertain-

configuration space using rrt. In 2006 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 5376–5381, 2006.


