
Journal of Autonomous Agents and Multi-Agent Systems manuscript No.

(will be inserted by the editor)

Capturing an Area-Covering Robot

Roi Yehoshua · Noa Agmon

Received: date / Accepted: date

Abstract Area coverage is a fundamental task in robotics, where one or more
robots are required to visit all points in a target area at least once. In many
real-world scenarios, the need arises for protecting one’s territory from being
covered by a robot, e.g., when we need to defend a building from being sur-
veyed by an adversarial force. Therefore, this paper discusses the problem of
defending a given area from being covered by a robot. In this problem, the
defender needs to choose the locations of k stationary guards in the target
area, each one having some probability of capturing the robot, in a way that
maximizes the probability of stopping the covering robot. We consider two
types of covering robots: one that has an a-priori map of the environment,
including the locations of the guards; and the other has no prior knowledge of
the environment, and thus has to use real-time sensor measurements in order
to detect the guards and plan its path according to their discovered locations.
We show that in both cases the defender can exploit the target area’s topol-
ogy, and specifically the vulnerability points in the area (i.e., places that must
be visited by the robot more than once), in order to increase its chances of
capturing the covering robot. We also show that although in general finding
an optimal strategy for a defender with zero-knowledge on the robot’s cover-
age strategy is NP-Hard, for certain values of k an optimal strategy can be
found in polynomial time. For other cases we suggest heuristics that can signif-

The research was funded in part by ISF grant 1337/15.

Roi Yehoshua
Department of Computer Science
Bar-Ilan University, Israel
E-mail: yehoshr1@cs.biu.ac.il

Noa Agmon
Department of Computer Science
Bar-Ilan University, Israel
E-mail: agmon@cs.biu.ac.il

2 Roi Yehoshua, Noa Agmon

icantly outperform the random baseline strategy. We provide both theoretical
and empirical evaluation of our suggested algorithms.

Keywords Mobile robot coverage · area protection · adversarial coverage ·
motion and path planning · robotics in hazardous fields

1 Introduction

Coverage path planning is one of the fundamental problems in robotics. The
goal of coverage path planning is to find a sequence of world locations which
allows the robot to visit every part of the target area while optimizing some
criteria, usually minimizing travel cost, while avoiding obstacles. This problem
has many real-world applications, from automatic floor cleaning [7] and grass-
mowing [1], to field demining [21] and surveillance by unmanned aerial vehicles
(UAVs) [13, 20].

In a recently introduced version of the problem, adversarial coverage [24–
28], the robot has to cover the given terrain without being stopped by an
adversary. Each point in the area is associated with a probability of the robot
being stopped at that point. The objective of the robot is to cover the entire
target area (including the threat points) as quickly as possible while mini-
mizing the probability that it will be stopped before completing the coverage.
This problem is a generalization of the original problem of coverage in neutral
environments (without adversarial presence), where risks do not exist, thus are
not accounted for, and the only goal is to minimize coverage time [3, 10, 15].
Adversarial coverage can be applied in a wide range of fields, from performing
coverage missions in hazardous environments such as nuclear power plants or
the surface of Mars, to surveillance of enemy forces in the battle field and field
demining.

In previous studies of the adversarial coverage problem, a simplistic adver-
sarial model, in which the locations of the threat points in the environment
are randomly chosen, was assumed. In this paper we build a more sophisti-
cated model of the adversary, in which it can choose the best locations of
the threat points, such that the probability of stopping the covering robot is
maximized. Hence, we are now looking at the problem from the perspective of
the adversary. In the eyes of the adversary, the threat points are considered as
guards that protect its territory from being covered by an unwanted intruder.
We will refer here to the adversary as the defender, since the covering robot is
now the one that we are trying to defend against. Hence, this work addresses
the coverage defending problem, the task of placing a group of guards in the
environment as to maximize the probability of capturing a covering robot. Ex-
amples of practical applications of this problem include a strategic placement
of surveillance cameras in a building as to protect it from being explored by
an unwanted intruder, and deployment of anti-drones weapons that protect a
territory from being surveyed by hostile UAVs.

We examine the impact of the defender’s knowledge of the robot’s cov-
erage path on its choice of the guards’ locations, and provide solutions for

Capturing an Area-Covering Robot 3

defenders having no knowledge, partial knowledge and full knowledge of the
robot’s coverage strategy. We show that for a full-knowledge defender there is
a simple algorithm that provides the optimal strategy for placing the guards,
whereas finding an optimal strategy for a zero-knowledge defender is NP-
Hard. Nevertheless, we propose an algorithm for a zero-knowledge defender
that outperforms the baseline random strategy, and can provide the optimal
solution under certain conditions. We also discuss some cases in which the de-
fender has partial knowledge of the robot’s coverage path, e.g., when it knows
where the path begins.

For a zero-knowledge defender, we propose defending strategies against
two types of covering robots: an offline covering robot that possesses a map of
the environment, including the specific locations of the guards; and an online
covering robot that has no a-priori map of the environment, and thus has to
use real-time sensor measurements in order to detect the guards. We show that
in the latter case the defender can take advantage of the robot’s limited sensing
to affect the order in which it visits the various parts of the environment, thus
making it visit places that are protected by guards more frequently.

Finally, we evaluate the defender’s strategies in an extensive set of ex-
periments, testing it against various types of covering robots (with different
sensing capabilities) and in various types of environments. The results show
that the defender’s suggested strategy performs significantly better than ran-
domly placing the guards in the environment. They also show that the de-
fender’s strategy is robust against robots with different sensing capabilities,
i.e., adding better sensing capabilities to the robot has little influence on the
ability of the defender to stop it.

The paper is organized as follows. Section 2 presents background and re-
lated work. Section 3 defines the coverage defending problem. Sections 4 and 5
present strategies for a full-knowledge defender and a zero-knowledge defender,
respectively, and analyze them theoretically. Section 6 presents experimental
results evaluating these strategies. Section 7 concludes with a summary and
brief overview of future work.

2 Related Work

The problem of area coverage has been discussed extensively in the robotic lit-
erature. A survey of various coverage algorithms is provided in Choset [5], and
a more recent one is provided by Galceran and Carreras [11]. These surveys
distinguish between offline coverage algorithms, in which the robot has a pri-
ori knowledge of the entire environment, and online or sensor-based coverage
algorithms, in which no such information is required. They further distinguish
between approximate cellular decomposition, where the free space is approx-
imately covered by a grid of equally-shaped cells, and exact decomposition,
where the free space is exactly partitioned. Here we assume approximate cel-
lular decomposition, and we treat both offline and online coverage.

4 Roi Yehoshua, Noa Agmon

A related problem to coverage is the patrolling problem, where a team of
robots is required to visit a target area repeatedly in order to monitor some
change in state of that area, typically to detect an intrusion to the area (see
[23] for a survey on multi-robot patrolling algorithms). In contrast, here the
guards are stationary and they may catch the covering robot with some prob-
ability less than or equal to 1. A new problem addressing patrolling security
game where a defender is supported by a spatially uncertain alarm system was
presented in [2]. In their work, a single defender that moves simultaneously
with the attacker uses the detection signals from the alarm system to make
a decision on its next move. Conversely, in our case the stationary defenders
(guards) are used for both detecting and capturing the attacker.

In the art gallery problem, the minimum number of guards, who together
can observe the whole gallery, needs to be determined [8, 18]. This problem is
known to be NP-Hard [18]. Conversely, here the defender does not necessarily
possess enough guards to cover the entire area. In addition, in the art gallery
problem it is assumed that each guard has a probability one of detecting
an intruder within its sensing range, while in our case each guard has some
probability 0 < p ≤ 1 of capturing the intruder.

Pursuit-evasion is another family of problems in which one one or more
pursuers try to capture one or more evaders who, in turn, try to avoid capture
[4, 6]. Typically, the objective in this problem is to decide how many pursuers
are needed, and how they should move on a given graph, in order to capture all
the evaders with either a minimum sum of their travel distances or minimum
task-completion time. Conversely, in our problem the evader (the covering
robot) needs to visit all the vertices in the graph in the shortest possible time,
while the pursuers (the guards) are not moving.

Pita et al. [22] present a game-theoretic approach for choosing random
checkpoints on the roadways entering the airport to combat various potential
adversaries. The main focus of their study was to show how the security sched-
ules of the police can be randomized in order to avoid the vulnerability that
comes with predictability. In contrast to their work, here the covering robot
may encounter more than one guard (checkpoint) during its coverage mission,
and also it must visit all the places in the target area rather than penetrate
into a specific location.

The offline single-robot adversarial coverage problem was formally defined
in [28]. There we suggested two heuristic algorithms for solving the problem:
STAC, a spanning-tree based coverage algorithm, and GAC, which follows a
greedy approach. We have shown that while STAC tends to achieve higher ex-
pected coverage, GAC produces shorter coverage paths with lower accumulated
risk. The online single-robot version of the problem was presented in [25]. Both
of these studies assumed a simplistic adversarial model, in which the threats
are randomly scattered across the environment.

In [24] we have built a more sophisticated adversarial model, in which
the adversary (referred to as the defender in this paper) can choose the best
locations of the threat points (guards), such that the probability of stopping
the covering robot is maximized. By analyzing the graph representing the

Capturing an Area-Covering Robot 5

target area, we have shown how the vulnerability points in the area (i.e.,
places that must be visited multiple times by the robot) can be exploited by
the adversary in order to increase its chances of catching the covering robot.
In that work we assumed that all the guards have the same probability of
capturing the robot, and that the covering robot has full knowledge of the
environment prior to its movement (i.e., offline coverage).

This paper extends the work initially presented in [24], while making the
following new contributions:

1. We extend the defender model to cases where its guards have non-uniform
probability of capturing the covering robot, thus taking into account the
ability of each guard to detect the robot.

2. We analyze different models of the covering robot, i.e., offline coverage (in
which the robot is given the map of the environment in advance) vs. online
coverage (in which the covering robot has no knowledge of the environment
prior to the coverage). We show that in the online case, the defender can
take advantage of the robot’s limited knowledge on the environment in
order to increase its probability of capturing the robot.

3. We evaluate the extended models in a new variety of simulated environ-
ments and settings.

3 Coverage Defending Problem Formulation

We represent the target area by an undirected connected graph G = (V,E)
with vi ∈ V vertices, ei,j ∈ E edges, and |V | = n. G corresponds to the
topological map for the coverage mission and is assumed to be known a priori
to the defender.

In the robotic coverage literature, a typical representation of the environ-
ment is that of a grid map (e.g., [10, 19, 29]). In this case, the graph G = (V,E)
is the graph induced by the grid cells, i.e., each grid cell that is not occupied
by an obstacle is represented by a vertex in V , and vertices that represent
adjacent free cells in the grid are connected by an edge in E. When the envi-
ronment is represented as a grid, we assume that the robot can move only in
the four basic directions (up/down, left/right), but not diagonally.

To make our theoretical analysis as general as possible, we define the de-
fender strategy for any graph representation of the environment, but use grid
maps in the experiments.

3.1 Covering Robot Model

In the offline case, we assume that the robot has the map describing the target
area (i.e., the graph G). We also assume that the robot is able to localize itself
to a specific node in the graph using an appropriate localization system.

Some of the coverage algorithms known in the literature assume that the
robot must return to its starting point when the coverage ends, facilitating

6 Roi Yehoshua, Noa Agmon

its collection and storage (e.g., Spiral-STC [9]), while others do not hold this
assumption (e.g., the wavefront algorithm [29]). Here, the success of the robot
will be determined solely by its ability to complete the coverage, thus we do
not deal with the question of what happens to the robot after it completes
its coverage task (e.g, if it needs to return to its initial location or find a safe
escape route).

The goal of the robot is to find a path in G that visits every vertex of V
at least once and has the minimum total risk, i.e., encounters cells that are
protected by guards the least number of times. Finding the optimal coverage
plan for the robot is an NP-Hard problem [28].

In the online case, we define an observation function O(v) that returns the
set of vertices in the graph that can be observed by the robot from a given ver-
tex v. Even though our approach can be applied to any observation function,
for simplicity we assume the robot is equipped with an omnidirectional sensor
with limited range r (e.g., a panoramic camera). If the robot’s sensors provide
less than a 360◦ field of view, we assume that after arriving at a new location,
the robot turns around in order to take a 360◦ view of its surroundings.

Thus, when the environment is represented as a regular grid of equal square
cells, the observation function is defined as follows: the robot in a cell c observes
a cell c′ if the line segment connecting the centers of c and c′ is in the circle of
radius r, centered in c, and does not cross any occupied cell. Figure 1 shows
an example for O(c), when the robot is located at cell c = (5, 5) and has a
sensor with radius r = 3.

Fig. 1: The set of cells that can be detected by the robot’s sensor from cell (5, 5) within the
range r = 3. Obstacles are represented by black cells, and visible cells are colored blue.

Capturing an Area-Covering Robot 7

3.2 Defender Model

The objective of the defender is to protect its territory from being covered by
the robot. The defender can place k < n stationary guards at different locations
of the area. Each guard i has some probability pi (0 < pi ≤ 1) of intercepting
the robot, when the robot enters into its location. This probability depends
on the ability of the guard to detect and/or catch the robot, depending on
the type of guards that will be employed. For example, if the area is protected
by security cameras, then pi represents the ability of each camera to detect
the robot, depending on several factors such as the quality of the camera,
illumination conditions in the area, etc. On the other hand, if the defender
uses traps in the floor, then pi represents the ability of each trap to physically
stop the robot, depending on factors such as the size of the trap, its visibility,
the sensing and maneuvering capabilities of the robot, etc.

Figure 2 shows an example world map represented as a grid of size 20×20.
Obstacles are represented by black cells, unguarded cells are colored white,
and cells that are protected by guards are represented by 5 different shades
of the same color. 1 Darker shades represent higher values of pi, i.e., locations
that are protected by guards with higher probability of capturing the robot.

Fig. 2: An example map of the world. Darker shades represent locations that contain guards
with higher probabilities of capturing the robot.

The goal of the defender is to assign the k guards to k locations in the
environment such that the probability of capturing the covering robot is max-
imized. Let us formally define this objective function. First, we denote the
coverage path followed by the robot by A = (w1, w2, ..., wm), where w1, ..., wm

are vertices of the graph G. Note that m ≥ n, i.e., the number of vertices in
the coverage path might be greater than the number of vertices in G, since
the robot is allowed to repeat its steps. Let us denote the probability that
the robot is captured at vertex vi by pi: pi = 0 if no guard is assigned to vi,

1 appearing as magenta in the paper’s online version and gray in its printed version.

8 Roi Yehoshua, Noa Agmon

otherwise it is equal to the assigned guard’s probability of capturing the robot.
We also denote the number of times the robot visits the vertex vi along its
coverage path by ti (ti ≥ 1).

Now, we define the event SA as the event that the robot is able to complete
its coverage path A, without being captured by any of the guards. Assuming
that the events of the robot being stopped at any vertex of A are independent,
the probability of SA is the product of all the probabilities that the robot is
not stopped at any of the vertices in A, i.e.,

P (SA) =

n∏
i=1

(1− pi)
ti (1)

Thus, the objective of the defender is to find an assignment for the given
k guards that will minimize the probability P (SA).

We distinguish between defenders having no knowledge and full knowledge
of the robot’s coverage path. A full-knowledge defender knows the exact cov-
erage path A of the robot. Thus, its objective is to choose k vertices in V at
which to place guards, such that P (SA) is minimized for a specific coverage
path A. On the other hand, a zero-knowledge defender has no information
on the coverage path of the robot. Thus, it can only assume that the covering
robot follows an optimal covering strategy, i.e., that it tries to visit every point
in the target area the least possible number of times, especially the ones that
are protected by guards. Hence, the objective of a zero-knowledge defender
is to choose k vertices in V at which to place guards, such that P (SA) is
minimized for an optimal coverage path A. Section 4 presents a strategy for a
full-knowledge defender, while Section 5 deals with a zero-knowledge defender.

Table 1 summarizes the different types of defenders and robots discussed
in the paper, and provides a reference to the algorithms that deal with each
case.

Defender Robot Description Algorithm

Full-knowledge Any type
Defender knows the robot’s path,

thus robot’s coverage strategy is irrelevant.
1

Zero-knowledge Offline
Defender does not know the robot’s path.

The robot has the area’s map.
4

Partial-knowledge Offline
Defender only knows where the robot’s

path begins. The robot has the area’s map.
4

Partial-knowledge Online
Defender does not know the robot’s path,

but knows its sensing capabilities.
The robot has no map of the area.

5

Table 1: Summary of defender and covering robot types

Capturing an Area-Covering Robot 9

4 Full-Knowledge Defender

For a full-knowledge defender, there is a simple algorithm that generates an
optimal strategy with maximum probability of stopping the robot (see Al-
gorithm 1). The idea is to place the given k guards at vertices that are most
frequently visited along the known coverage path A, sorted by their probability
of capturing the robot.

Algorithm 1 FullKnowledgeDefender(G,A, S)

input: G = (V,E) – the graph representing the environment, A – the coverage path, S –
the set of guards

1: Compute for every vertex in V the number of times it is visited by A
2: Sort the vertices in V in a decreasing order of their visits number
3: Denote by v1, ..., vn the vertices after the sort
4: Sort the guards in S in a decreasing order of their probability of stopping the robot
5: Denote by g1, ..., gk the guards after the sort
6: for i← 1 to k do
7: Assign guard gi to vertex vi

Clearly, the allocation of guards as defined by Algorithm 1 maximizes the
probabilities pi with the highest exponents in (1), thus minimizing the prob-
ability of the robot completing the coverage P (SA). The runtime complexity
of the algorithm is O(nlogn), where n is the number of vertices in G.

5 Zero-Knowledge Defender

For a zero-knowledge defender, that has no information on the robot’s coverage
path, the problem of finding an optimal strategy that maximizes its chances
of capturing the robot becomes NP-Hard, as proven by the next theorem.

Definition 1 Zero-Knowledge Defender Coverage Problem (ZKDCP): Given
a graph representation of the environment G = (V,E), choose k vertices of V
at which to position guards, such that the probability of stopping any robot
covering the environment is maximized.

Theorem 1 The ZKDCP problem is NP-Hard.

Proof. To prove the NP-hardness of the problem, we will use a reduction from
the Hamiltonian path problem, which is known to be NP-complete [12].

Given an instance of the Hamiltonian path problem on a graph G = (V,E),
we construct an instance of the zero-knowledge defender coverage problem on
the same graph G with k = 1. We will prove that there exists a Hamiltonian
path in G, if and only if the optimal strategy for the defender is to place its
single guard at a random vertex of G.

First direction – if there exists a Hamiltonian path in G, then there is
a coverage path of G that visits each vertex exactly once (which is also the

10 Roi Yehoshua, Noa Agmon

optimal one). In this case, the optimal strategy for the defender is to place
its single guard randomly at one of the vertices, since it has no benefit from
placing the guard at any specific vertex (non-optimal coverage paths may visit
any other vertex more frequently than that vertex).

Second direction – if G is non-Hamiltonian, then there is at least one vertex
of G that must be visited multiple times by any coverage path of G. In this
case, the optimal strategy for the defender is to place its single guard at the
vertex that must be visited the greatest number of times, which is clearly
different from just choosing a random vertex of G.

Therefore, we can find if there exists a Hamiltonian path in a given graph
G, by checking if the optimal strategy for a zero-knowledge defender is to
place a single guard randomly at one of the vertices of G or not. Thus, the
zero-knowledge defender coverage problem is NP-hard.

Although the general problem is NP-hard, we will show in Section 5.3.1
that for certain values of k and in certain types of environments, an optimal
defender strategy can be found in polynomial time.

5.1 Outline of the defender’s strategy

We now describe the general strategy for a zero-knowledge defender. More
detailed algorithms are presented in Section 5.3 for a defender acting against
an offline covering robot, and in Section 5.4 for a defender acting against an
online covering robot.

In general, the defender’s strategy consists of the following main steps:
1. Place guards at vertices of the graph that must be visited by the covering

robot more than once, while giving precedence to vertices that must be
visited more frequently.

2. Place guards at groups of vertices, where at least one of the vertices must
be visited by the covering robot more than once, while giving precedence
to groups that must be visited more frequently.

3. If there are any more guards left to place after taking the first two steps, use
heuristics to choose additional locations in which to place the remaining
guards.

5.2 Analysis of the representative graph

The defender’s strategy is based on exploiting certain properties of the graph
representing the environment. In this section we describe these properties and
analyze them theoretically. First, we use the following definitions and theorems
from graph theory [14].

Definition 2 An articulation point (cut vertex) in a connected graph G
is a vertex whose removal would break the graph into two or more connected
components.

Capturing an Area-Covering Robot 11

Definition 3 A connected graph is biconnected if it has no articulation
points.

Definition 4 A block (a biconnected component) is a maximal biconnected
subgraph, i.e. a subgraph with as many edges as possible and no articulation
points.

Definition 5 A vertex cut in a connected graph G is a set of vertices whose
removal renders G disconnected.

Definition 6 A block-cut tree of a graph G is a tree in which each node
represents either a block or an articulation point of G. A node representing an
articulation point is connected to all nodes representing blocks that contain
that point.

The block decomposition theorem [14] states that there is a unique block-
cut tree for each graph. Figure 3 shows an example for a block-cut tree
of a graph. The blocks are b1 = 〈1, 2〉, b2 = 〈2, 3, 4〉, b3 = 〈2, 5, 6, 7〉, b4 =
〈7, 8, 9, 10, 11〉, b5 = 〈8, 12, 13, 14, 15〉, b6 = 〈10, 16〉, b7 = 〈10, 17, 18〉, and the
articulation points are c1 = 2, c2 = 7, c3 = 8, c4 = 10.

Fig. 3: A graph (upper figure) and its block-cut tree (lower figure).

12 Roi Yehoshua, Noa Agmon

We now extend the definition of an articulation point to a k-connected
articulation point.

Definition 7 Connectivity of a vertex v is the number of connected com-
ponents the graph would split into if v is removed from the graph.

Definition 8 A k-connected articulation point is an articulation point
whose connectivity is k.

For example, the articulation point c1 in Figure 3 is 3-connected, since
removing it from the graph would split it into three connected components:
〈1〉, 〈3, 4〉, 〈5, 6..., 18〉, while the articulation point c2 is 2-connected, since re-
moving it from the graph would split it into only two connected components:
〈1, ..., 6〉, 〈8, ..., 18〉. By definition, each articulation point must be at least 2-
connected.

In Section 5.3.1 we show the relationship between the connectivity of the
articulation points and the number of times the covering robots must visit
these points.

5.2.1 Finding the articulation points and their connectivity

Algorithm 2 describes how to find all the articulation points in the graph
and their connectivity. It is an extension of the classical linear-time algorithm
for computing biconnected components in a connected undirected graph by
Hopcroft and Tarjan [17], which is based on Depth-First Search (DFS).

Before introducing the algorithm, we remind the reader that every edge
(u, v) traversed during a DFS execution can be classified into one of several
types, depending on whether we have visited v before in the DFS, and if so,
the relationship between u and v. In particular, we will be interested in the
following two types of edges:

Definition 9 The edge (u, v) is a tree edge if v is visited for the first time
as we traverse the edge (u, v) during a DFS execution.

Definition 10 The edge (u, v) is a back edge if v is an ancestor of u when
we traverse the edge (u, v) during a DFS execution.

Algorithm 2 keeps the following fields for each vertex v in the graph:

• num[v]: the DFS visit number of v (i.e., the first time that v is visited
during the DFS execution).

• low[v]: the smallest value of num[x], where x is a vertex of the graph that
can be reached from v following a sequence of zero or more tree edges
followed by at most one back edge.

• level[v]: the DFS tree level of v.
• children[v]: the number of children of v in the DFS tree.
• connectivity[v]: the connectivity of v.
• blocks[v]: the list of blocks that are rooted at v.

Capturing an Area-Covering Robot 13

Figure 4 demonstrates how these fields are computed on a sample graph.
For instance, low[b] = 1, since the lowest numbered vertex that can be reached
from d is a (through the tree edge (b, d) and then the back edge (d, a)). On the
other hand, low[c] = 5, since the lowest numbered vertex that can be reached
from c is c itself.

a

b c

d e f g

a
num[a] = 1

low[a] = 1

b
num[b] = 2

low[b] = 1
c

num[c] = 5

low[c] = 5

d
num[d] = 3

low[d] = 1

e
num[e] = 4

low[e] = 1

f
num[f] = 6

low[f] = 5

g
num[g] = 7

low[g] = 5

Fig. 4: Lower figure shows the DFS tree starting at a with num/low values for the input
graph in the upper figure.

The algorithm for finding articulation points is based on the following two
key facts:
1. The root of the DFS tree is an articulation point if and only if it has more

than one child (since every path from the left subtree of the root to its
right subtree must go through the root).

2. Any other vertex v is an articulation point if and only if v has some child
w such that low[w] ≥ num[v], i.e., there is a child w of v that cannot
reach a vertex visited before v. The number of such children determines
the connectivity of v (i.e., the number of connected components the graph
would break into if v is removed from the graph).

14 Roi Yehoshua, Noa Agmon

For example, in Figure 4, the root a is an articulation point because it has
two children, and connectivity[a] = 2. Vertex c is also an articulation point
because it has a child f with low[f] ≥ num[c], and its connectivity is 2. The
other vertices in this graph are not articulation points.

In order to find the blocks of the graph, the edges of G are placed on a
stack as they are traversed. When an articulation point is found, the corre-
sponding edges of its block are all on top of the stack. Procedure CreateBlock
is then used to pop the edges of this block from the stack. For that purpose,
it uses the standard stack operations Pop(S) which removes the top element
from the stack S, and Top(S) that returns the top element of S.

We have extended the classical algorithm with the following additions:

1. We compute the connectivity of each articulation point (lines 14, 20 and
22 in the algorithm).

2. We maintain for each articulation point a list of all the blocks that are
attached to it in the block-cut tree (lines 16 and 24). This information will
be needed in the guards assignment algorithm (Section 5.3).

Algorithm 2 FindArticulationPoints(v)
input: v – the current vertex
Global variables: S – the stack of visited edges, ArticulationPointList – the list of artic-
ulation points, counter – the current DFS visit number.
Global initialization: counter = 0, level[s] = 0, where s is the starting vertex.

1: counter ← counter + 1
2: num[v]← counter
3: low[v]← num[v]
4: for each neighbor w of v do
5: if w was not visited yet then
6: level[w]← level[v] + 1
7: Push(S, (v, w))
8: FindArticulationPoints(w) . recursively perform DFS at children nodes
9: low[v]← min(low[v], low[w])

10: if num[v] = 1 then . special case for root
11: if children[v] ≥ 2 then
12: if v /∈ ArticulationPointList then
13: Add v to ArticulationPointList
14: connectivity[v]← children[v]

15: B ← CreateBlock(S, v, w)
16: Add B to blocks[v]
17: else if low[w] ≥ num[v] then . v is an articulation point separating w
18: if v /∈ ArticulationPointList then
19: Add v to ArticulationPointList
20: connectivity[v]← 2
21: else
22: connectivity[v]← connectivity[v] + 1

23: B ← CreateBlock(S, v, w)
24: Add B to blocks[v]

25: else if level[w] < level[v]− 1 then . (v, w) is a back edge
26: low[v]← min(low[v], num[w])
27: Push(S, (v, w))

Capturing an Area-Covering Robot 15

1: procedure CreateBlock(S, v, w)
input: S – the stack of visited edges, v and w are vertices where w is a child of v

2: Create a new block B
3: while Top(S) 6= (v, w) do . Retrieve all edges in the component
4: (u1, u2)← Pop(S)
5: Add (u1, u2) to B
6: Add Pop(S) to B . Add (v, w) to B
7: return B

Algorithm 2 can be started with any vertex v of the graph, since by the
block decomposition theorem there is a unique block-cut tree for the graph G.
Choosing a different vertex as the root of the block-cut tree will only cause
the tree to rotate, but will not modify its structure.

The correctness of Algorithm 2 with respect to finding the articulation
points and blocks of the graph follows directly from the correctness of the
original algorithm by Hopcroft and Tarjan [17]. We also prove that the con-
nectivity of each articulation point is computed correctly by the algorithm.

Theorem 2 (correctness) Algorithm 2 computes correctly the connectivity of
each articulation point in the graph.

Proof. If the root of the block-cut tree has more than one child then it is
an articulation point, and the number of connected components its removal
splits the graph into is equal to the number of its child nodes (line 14 in the
algorithm). Any other vertex v is as an articulation point if and only if v has
some child w such that low[w] ≥ num[v], i.e., there is a child w of v that cannot
reach a vertex visited before v (line 17). The first time this condition is true for
v, it is added to the articulation points list and its connectivity is set to 2 (line
20), since removing v from the graph would split it into at least two connected
components: one that contains the vertices visited before v and another that
contains w and its descendants in the DFS tree. In each subsequent time this
condition becomes true for v, it means that we have found another child w′ of
v, such that v separates w′ from the vertices visited before v, thus removing
v from the graph would create another connected component in the graph
(the subtree rooted in w′). Hence, the connectivity of v is increased by 1 (line
22).

The runtime complexity of the original algorithm for finding the articu-
lation points is O(|V | + |E|). Since we need to add only O(1) operations to
compute the connectivity of each articulation point, the runtime complexity
of Algorithm 2 remains linear in the size of the graph.

5.2.2 Finding the vertex cuts and their connectivity

Similarly, we extend the definition of a vertex cut to a k-connected vertex cut.

16 Roi Yehoshua, Noa Agmon

Definition 11 A k-connected vertex cut is a vertex cut whose removal
from the graph would split it into k connected components.

For example, in Figure 3 the set of vertices 〈9, 11〉 is a 2-connected ver-
tex cut, since its removal from the graph would split it into two connected
components: 〈1, ..., 8, 12, ..., 15〉 and 〈10, 16, 17, 18〉.

Algorithm 3 can be used to find all the vertex cuts of a given size in the
graph and their connectivity.

Algorithm 3 FindVertexCuts(G, d)
input: G – the graph representing the environment, d – vertex cut size

1: Create a new list of vertex cuts L
2: for every subset S of nodes with size d in G do
3: Find the connected components in G− S by running DFS
4: n← the number of connected components
5: if n > 1 then
6: Add the subset S to L
7: connectivity[S]← n

8: return L

The runtime complexity of FindVertexCuts is as follows. The number of sub-
sets of d nodes in G is

(|V |
d

)
. For each subset, we find the connected components

in G without the subset by running DFS, whose runtime is O(|V |+|E|). Hence,

in the worst case the total runtime of the procedure is O
((|V |

d

)
· (|V |+ |E|)

)
.

Note that for a constant cut size d (which is not dependent on |V |), the
runtime complexity of the procedure is polynomial in the graph size. On the

other hand, if d depends on |V | (for example, if d = |V |
2), then the runtime is

exponential.

We also note here that for finding vertex cuts of size k = 2 (separating
pairs) there is a more efficient algorithm with linear time complexity, which is
based on finding the triconnected components of the graph [16]. However, its
implementation is far more complicated, and for the relatively small environ-
ments that we have used in the experiments, there was no need to implement it.

Using the above definitions and algorithms from graph theory, we now
present strategies for a zero-knowledge defender acting against an offline cov-
ering robot (Section 5.3) and against an online covering robot (Section 5.4).

5.3 Capturing an Offline Covering Robot

In this section we consider the case in which the defender has zero knowledge
on the robot’s coverage path (but has the map of the environment), while the
robot has a map of the environment that includes the exact locations of the
obstacles and the guards placed by the defender. We will often refer to such a

Capturing an Area-Covering Robot 17

defender as an “offline defender”, although the term offline here refers to the
covering robot and not to the defender.

The defender’s strategy is based on the following two key observations,
that establish a connection between the connectivity of the articulation points
and vertex cuts of the graph representing the environment, and the number
of times the robot must visit them along its coverage path.

First, we prove a lower bound on the number of times each articulation
point in G must be visited along any coverage path (Theorem 3). For that
purpose, we will need the following definitions:

Definition 12 The backbone subpath of the coverage path is a simple
subpath (with no repeating vertices) from the starting vertex of the coverage
path to its ending vertex.

The way to get the backbone subpath of a coverage path P is by removing
all the vertices that appear between two occurrences of the same vertex in P .
For example, in the graph depicted in Figure 3, if the robot’s coverage path is
P =< 1, 2, 3, 4, 2, 5, 6, 7, 8, 12, 13, 15, 8, 14, 8, 9, 11, 10, 16, 10, 17, 18 >, then the
backbone subpath of P is < 1, 2, 5, 6, 7, 8, 9, 11, 10, 17, 18 >.

Theorem 3 Any coverage path must visit every k-connected articulation point
at least k times, except for articulation points that belong to the backbone
subpath of the coverage path, which must be visited at least k − 1 times.

Proof. Consider a k-connected articulation point v. Removing v from the
graph breaks it into k connected components C1, ..., Ck. The robot must visit
each of these connected components along its coverage path, and in order
to move between these connected components it must go through v. Assume
without loss of generality that the order of these components by the first time
the robot visits them along its coverage path is C1, ..., Ck. Thus, the coverage
path must have the following structure: P = C1 v C2 v ... Ck.
Hence, the coverage path must go through v at least k − 1 times.

We now show that if v does not belong to the backbone subpath of the
coverage path, then it must be visited once more. First, we denote the starting
vertex of the coverage path by s and its terminating vertex by t. Now, let w
be the last vertex on the backbone subpath that is visited before v (such a
vertex must exist, since the starting vertex s always belongs to the backbone
subpath).

We now claim that after visiting v, the coverage path must return to w.
We prove this by contradiction. Let us assume that the coverage path does
not return to w. Since vertex v does not belong to the backbone subpath,
then there must be another vertex u that is visited both before v and after
v along the coverage path. Thus, if the coverage path does not return to w
after visiting v, then there must be another vertex u between w and v, which
belongs to the backbone subpath and that the coverage path returns to after
visiting v. This contradicts the fact that w is the last vertex on the backbone
subpath that is visited before v.

18 Roi Yehoshua, Noa Agmon

Therefore, the coverage path must have the following structure: s w
v w t. We also know that removing v from the graph breaks it into k
connected components C1, ..., Ck. Again we assume without loss of generality
that the order of the components by their first visit is C1, ..., Ck. Thus, w ∈ C1,
and the coverage path must have the following structure: P = s C1 v
C2 v ... Ck v C1 t. Hence, the coverage path must go through
v at least k times.

To demonstrate the implications of Theorem 3, let us examine the graph
in Figure 3. This graph has two 3-connected articulation points (c1, c4) and
two 2-connected articulation points (c2, c3). The number of times each artic-
ulation point is visited depends on where the robot terminates its coverage.
Let us assume that the robot starts the coverage at vertex 1. Thus, it could
terminate the coverage in one of the blocks: b2, b5, b6 or b7. For example, if the
coverage terminates at block b7, then the backbone subpath of the coverage
path would be: b1 c1 b3 c2 b4 c4 b7. In this case, c1, c2, c4
belong to the backbone subpath, thus c1 and c4 must be visited at least twice
(since they are 3-connected) and c2 might be visited only once (since it is only
2-connected). In addition, c3 does not belong to the backbone subpath, thus
it must be visited at least twice.

Theorem 3 implies that the optimal coverage strategy for the robot is to
choose to end its coverage path in the block-cut subtree with the maximum
number of articulation points, as proven by the next corollary.

Corollary 1 The robot’s optimal strategy is to choose to end its coverage path
in the block-cut subtree with the maximum number of articulation points.

Proof. The optimal behavior of the robot is to complete the coverage of a
subtree Ti of the block-cut tree once it enters into it. This is because moving
to a different subtree Tj in the middle of the coverage of Ti will just make the
robot revisit nodes in Ti that have already been visited, when it comes back
to finish the coverage of Ti. By Theorem 3 the number of visits to articulation
points in the last covered subtree is one less than the number of visits to
articulation points in the other subtrees of the block-cut tree. Hence, choosing
to finish the coverage in the block-cut subtree with the maximum number of
articulation points will minimize the number of visits to articulation points in
the graph.

Similarly, we now establish a lower bound on the number of times each
vertex cut in the graph must be visited along the coverage path.

Theorem 4 Let U be a k-connected vertex cut. Then any coverage path must
visit U at least k − 1 times. In addition, if the starting vertex of the coverage
path belongs to U , then U must be visited at least k times.

Proof. Consider a k-connected vertex cut U . Removing U from the graph
breaks it into k connected components C1, ..., Ck. The robot must visit each

Capturing an Area-Covering Robot 19

of these connected components along its coverage path, and in order to move
between these connected components it must go through one of the vertices
in U . Assume without loss of generality that the order of these components
by their first visit along the coverage path is C1, ..., Ck. Denote the starting
vertex of the coverage path by s. Now, consider two cases:

Case 1. s 6∈ U . In this case s ∈ C1. Thus, the coverage path must have the
following structure: p = C1 U C2 U ... Ck. Hence, the coverage
path must go through U at least k − 1 times.

Case 2. s ∈ U . In this case s does not belong to any of the connected
components Ci. Thus, the coverage path must have the following structure:
p = s C1 U C2 U ... Ck. Hence, the coverage path must go
through U at least k times.

From Theorem 4, we can conclude the following.

Definition 13 Let U be a group of vertices in the graph G. A repetitive
visit of a coverage path P in U is any visit within U that lands on a vertex
that has already been visited by P at least once before.

Corollary 2 Let U be a k-connected vertex cut with m < k vertices. Then, U
will have have at least k −m− 1 repetitive visits along any coverage path.

Proof. By Theorem 4, any coverage path must visit U at least k − 1 times.
In addition, the coverage path must visit each of the m vertices in U at least
once. Thus, the number of repetitive visits of the coverage path to vertices in
U will be at least k − 1−m ≥ 0.

Note that Corollary 2 guarantees a minimum number of visits in the vertex
cut, but it does not specify which vertices in it will be visited multiple times
by the covering robot.

Based on these key observations, we now present algorithm CapturingOf-
flineCovering Robot (COCR, shown in Algorithm 4), which specifies the as-
signment of guards for a defender acting against a robot with full knowledge
of the environment. The algorithm works in polynomial time and provides an
optimal solution in some types of environments (see Section 5.3.1 for a full
analysis).

The algorithm consists of the following main steps:

1. Place guards at articulation points that must be visited by the robot more
than once, while giving precedence to points that must be visited more
frequently.

2. Place guards at vertex cuts of the graph, in which some of the vertices
must be visited by the robot more than once, giving precedence to vertex
cuts that must be visited more frequently.

3. If there are any more guards left to place after taking the first two steps, use
heuristics to choose additional vertex cuts in which to place the remaining
guards.

20 Roi Yehoshua, Noa Agmon

Algorithm 4 CaptureOfflineCoveringRobot(G,S)
input: G – the graph representing the environment, S – the set of guards

1: if starting location of the robot is known then
2: s← starting vertex of the robot
3: else
4: s← choose one of the vertices in G arbitrarily

5: APList← FindArticulationPoints(s)
6: T ← CreateArticulationPointsTree(s)
7: PlaceGuardsAtArticulationPoints(T, S)
8: if S 6= ∅ then
9: PlaceGuardsAtVertexCuts(G,V C, S)

The algorithm first chooses the vertex s that will be the root of the block-
cut tree. If the defender knows the starting location of the robot, s would be
its starting vertex. Otherwise, the defender chooses one of the vertices to be
the root arbitrarily. In sections 5.3.1 and 6, we prove both theoretically and
empirically that selecting a different root from the robot’s starting location
does not have a great impact on the probability of the defender to capture the
robot.

We now describe each of the procedures used in the algorithm. First, the
procedure CreateArticulationPointsTree is used to build a DFS tree that con-
tains only the articulation points of the graph and is rooted at the starting
vertex of the coverage path. Let us denote this tree by T . For each articulation
point v in T we store the field childAPs[v], which holds all the articulation
points contained in all the attached blocks of v.

1: procedure CreateArticulationPointsTree(v)
input: v – the articulation point at the root node

2: for each block B in blocks[v] do
3: for each articulation point p in B do
4: if p 6= v then
5: Add p to childAPs[p]
6: parent[p]← v
7: CreateArticulationPointsTree(p)

The procedure PlaceGuardsAtArticulationPoints describes a strategy for plac-
ing guards at the articulation points of the graph. Going from the highest
connectivity of articulation points in T to the lowest, the algorithm calls the
procedure RunBFSOnAPTree to place guards at articulation points with a given
connectivity.

The procedure RunBFSOnAPTree assigns guards to articulation points that
have a specific connectivity. By Corollary 1, the covering robot will prefer to
finish its coverage path in the branch of the block-cut tree that contains the
maximum number of guarded articulation points. Hence, the optimal strategy
for the defender is to spread its guards evenly across the different branches of
the block-cut tree, in order to minimize the number of guarded articulation

Capturing an Area-Covering Robot 21

1: procedure PlaceGuardsAtArticulationPoints(T, S)
input: T – the articulation points tree, S – the set of guards

2: cmin ← the minimum connectivity of any articulation point in T
3: cmax ← the maximum connectivity of any articulation point in T
4: v ← root[T]
5: c← cmax

6: while c ≥ cmin and S 6= ∅ do
7: RunBFSOnAPTree(APList, T, c, S)
8: c← c− 1

points in the terminating branch of the robot’s coverage path. For that pur-
pose, the procedure runs BFS on the articulation points tree, and assigns the
guards sorted by their strength (from the guards with the highest probability
of capturing the robot to the guards with the lowest probability) according to
the BFS visit order.

In addition, if the defender knows the starting location of the robot, it
can refrain from placing guards at articulation points that reside on the path
leading from the root of the block-cut tree to the first split node (the first
articulation point with more than one child node). This is because these artic-
ulation points are only 2-connected and they belong to the backbone subpath
of the coverage, thus by Theorem 3 they could be visited only once by the
robot. We mark these articulation points by using a field named keepFree[v].

1: procedure RunBFSOnAPTree(APList, T, c, S)
input: APList – list of articulation points, T – the tree of articulation points, c –
connectivity, S – the set of guards

2: v ← root[T]
3: if defender knows starting location then
4: while |childAPs[v]| = 1 do
5: v ← single child of v
6: keepFree[v]← true

7: Create an empty queue Q
8: Enqueue(Q, v)
9: while not IsEmpty(Q) do

10: v ← Dequeue(Q)
11: if conectivity[v] = c then
12: g ← argmaxi∈S pi . strongest guard left
13: Place guard g at v
14: S ← S − {g}
15: if S = ∅ then return
16: for each node u ∈ childAPs[v] do
17: Enqueue(Q, u)

Procedure PlaceGuardsAtVertexCuts describes how to place the remaining
guards at the vertex cuts of the graph. It starts with placing guards at vertex
cuts of size 2 (separating pairs), and then increases the size of the vertex
cuts used, until all the remaining guards are positioned. The reason for this
strategy is that any vertex cut of size k is also part of a vertex cut of size
k + 1 (adding any vertex in the graph to it creates a vertex cut of size k + 1),

22 Roi Yehoshua, Noa Agmon

and by Corollary 2 smaller vertex cuts have potentially more revisits (ideally,
we would have to first find all the vertex cuts that satisfy the conditions of
Corollary 2, but computing all the vertex cuts takes exponential time). For
vertex cuts of a given size, the algorithm first prefers vertex cuts that have
higher connectivity, and then prefers those that are more spread across the
environment, i.e., whose vertices are farther apart from each other. We define
the spread of a vertex cut as the sum of the distances between the vertices
in the cut. This heuristic has provided better results in practice than just
choosing randomly between the vertex cuts.

1: procedure PlaceGuardsAtVertexCuts(G,V C, S)
input: G – the graph representing the environment, V C – the list of vertex cuts, S –
the set of guards

2: d← 2 . the current cut size
3: while S 6= ∅ do
4: V C ← FindVertexCuts(G, d)
5: Sort the vertex cuts in V C first by their connectivity and then by their spread

(both in descending order)
6: for each vertex cut C ∈ LC do
7: for each vertex v ∈ C do
8: g ← argmaxi∈S pi . strongest guard left
9: Place guard g at v

10: S ← S − {g}
11: if S = ∅ then return
12: d← d + 1

Runtime complexity: The runtime of Algorithm 4 depends on the num-
ber of guards that need to be assigned, and on whether there are enough ar-
ticulation points in the graph for their assignment. Let us denote the number
of vertices in the graph by |V | = n, and the number of edges by |E| = m.

The algorithm begins with finding all the articulation points in the graph,
which costs O(n + m) (see Section 5.2.1) and building the articulation points
tree, which costs additional O(n). Then, for each connectivity level, the algo-
rithm runs BFS on the articulation points tree, which takes O(n+m). Thus, if
c is the number of connectivity levels, this step takes in total O(c(n+m)). In
grid environments, where each cell has at most four neighboring cells, c ≤ 4,
and the number of edges is m = O(n), thus in such environments the time
complexity of the last step is O(n). Therefore, if there are enough articulation
points for placing all the guards, the total runtime of Algorithm 4 is O(n).

However, in case that are not enough articulation points for placing all
the guards, the vertex cuts of the graph also need to be used. The time for
computing the vertex cuts of size d is O

((
n
d

)
· (n + m)

)
(see Section 5.2.2).

In the worst-case scenario, the largest vertex cut that needs to be found is
of size that equals the number of guards. Thus, if k is the number of guards,
then the time needed to compute the vertex cuts is O

((
n
k

)
· (n+m)

)
. However,

in practice, there was no need to use vertex cuts larger than 2 in any of the
tested environments. Thus, assuming maxd = 2 and m = O(n), the time

Capturing an Area-Covering Robot 23

needed to compute the vertex cuts is O
((

n
2

)
·n
)

= O(n3). Since the procedure
PlaceGuardsAtVertexCuts also sorts the vertex cuts before deciding where to
place the guards, its total runtime is O(n3 log n).

Hence, in the worst case, where both the articulation points and the vertex
cuts of the graph are used for the guards’ assignment, the entire complexity
of Algorithm 4 is O(n3 log n).

5.3.1 Analysis of the Defender Offline Strategy

In this section we show that for certain values of k, the adversarial strategy
depicted in Algorithm 4 is optimal, in the sense that its probability of stopping
a robot that follows an optimal coverage strategy has the maximum possible
value. We start with the following theorem, that provides an upper bound on
the maximum number of times an optimal coverage path (i.e., a coverage path
with minimum length) must visit every vertex of the graph.

Theorem 5 Denote the degree of a vertex v by deg(v). An optimal coverage
path of a graph G = (V,E) visits every vertex v ∈ V at most deg(v) times,
except for vertices that reside on the backbone subpath of the coverage path
which are visited at most deg(v)− 1 times.

Proof. First, we prove that every vertex v ∈ V which is not on the backbone
subpath is visited at most deg(v) times along the optimal coverage path. We
prove by contradiction. Let Popt be an optimal coverage path of G. Assume
that there is a vertex v that does not belong to the backbone subpath of the
coverage, and is visited by Popt more than deg(v) times. We will show that it
is possible to build a coverage path P ′ that is shorter than Popt.

Let us denote by s the starting vertex of the coverage path and by t its
terminating vertex. Let m = deg(v). We know that vertex v is visited at least
m + 1 times along Popt. We also know that v is not part of the backbone
subpath, thus there must be at least m + 1 entries into v along the coverage
path (since there must be a vertex w that is visited before and after v). Thus,
Popt has the following structure: Popt = s p1 v p2 v ... pm+1 v t.

Since v is connected to only m different edges in G, by the pigeonhole
principle at least two of the subpaths p1, ..., pm+1 terminate with the same
edge e = (u, v). Let us denote these subpaths by pi, pj (i < j). Let us denote
the first vertex of pi by w (w might be different from v, since pi could be equal
to p1). Thus, p1 = w u→ v. Since pj starts and ends at vertex v, it has the
following structure: v u → v, thus we can reverse the order of its vertices,
i.e., we can change pj to p′j = v → u v. Now, if j 6= i + 1, then we can
replace subpaths p′j and pi+1, thus the coverage path will have the following
structure: s w u→ v → u v t. Thus, we can make this path shorter
by removing the redundant visit to v, i.e., we can build the following coverage
path P ′ = s w u v t. The path P ′ visits all vertices in the graph,
but |P ′| < |Popt|. This contradicts the optimality of Popt.

Now, let us assume that v does belong to the backbone subpath of the
optimal coverage path. We will show that v must be visited at most m − 1

24 Roi Yehoshua, Noa Agmon

times. By contradiction, let us assume that v is visited at least m times. Thus,
the coverage path has the following structure: Popt = s p1 v p2 v ... pm

v t. Since v is part of the backbone path, there are only m−1 distinct entries
into v along the coverage path, since out of the m edges that are connected to
v, one must be used only to exit from v. Thus, two of the subpaths p1, ..., pm
must terminate with the same edge e = (u, v). We can use the same argument
as above to show that there is a shorter coverage path than |Popt|, which
contradicts the optimality of Popt.

Using Theorem 5, we can now discuss the cases in which Algorithm 4 is
guaranteed to produce the optimal defender’s strategy.

Theorem 6 Let the maximum degree in the graph G be d. If the number of
articulation points in G whose connectivity is d is equal to or greater than the
number of guards k, then the defender’s strategy described in Algorithm 4 is
optimal.

Proof. By Lemma 5, an optimal coverage path visits every vertex v ∈ V at
most d times, or d − 1 times if v resides on the backbone subpath of the
coverage path. By Theorem 5, any such coverage path must visit every d-
connected articulation point at least d times, or d − 1 times if it is on the
backbone subpath. Thus, the optimal coverage path visits every d-connected
articulation point precisely d times if it is not on the backbone subpath, or
d − 1 times if it is on this subpath. Hence, d-connected articulation points
are the most frequently visited vertices along the optimal coverage path. As a
consequence, placing all the given k guards at these articulation points, sorted
by their connectivity, is guaranteed to maximize the probability of capturing
a robot that follows an optimal coverage path.

We now show that the defender’s ability to capture the robot is only mildly
affected by its knowledge of the starting location. Before that, we introduce
the following definition:

Definition 14 The starting subpath of the coverage path is a simple sub-
path (with no repeating vertices) from the starting vertex of the coverage path
to the first split node in the block-cut tree (the first node in the tree that has
more than one child).

Theorem 7 Knowing the starting location of the robot may change only the
placement of guards that are located at articulation points that reside on the
starting subpath of the robot.

Proof. According to Algorithm 4, the knowledge of the starting location of the
robot has the following two effects on the placement of guards:
1. Choosing the robot’s starting location as the root of the block-cut tree

(lines 1–4 in Algorithm 4).
2. The placement of guards at the starting subpath of the coverage (lines 3–6

in procedure RunBFSOnAPTree).

Capturing an Area-Covering Robot 25

The choice of the root of the block-cut tree does not affect the placement of
the guards, since by the block decomposition theorem, the block decomposition
of a graph is unique. Thus, the locations and the connectivity of both the
articulation points and the vertex cuts of the graph are not affected by choosing
a different root for the block-cut tree. Therefore, the only guards that may
change their location as a result of knowing the robot’s starting location are
those that are placed at articulation points that belong to the robot’s starting
subpath. This is because when the defender knows the starting location of
the robot, it does not place any guards at articulation points that belong the
starting subpath, since these are part of the backbone subpath of the coverage,
and thus may be visited only once by the robot (Theorem 3). On the other
hand, when the defender does not know the starting location of the robot, it
cannot assume that these articulation points may be visited only once by the
covering robot (since they may belong to different branches of the block-cut
tree).

In practice, most of the articulation points reside outside the starting sub-
path of the robot, thus the defender’s ability to capture the robot is barely
affected by its knowledge of the starting location of the robot (as we show
empirically in Section 6).

5.4 Capturing an Online Covering Robot

In this section we propose a strategy for a defender acting against an online
covering robot, that has no map or a-priori information about the environ-
ment (shown in Algorithm 5). This strategy provides the defender a better
chance of capturing the robot as compared to the offline strategy presented in
Section 5.3, since it takes advantage of the robot’s limited sensing capabilities
in order to make it visits guarded places more frequently (see Section 6 for the
comparison results).

Since the robot gets only one chance of exploring the target area, we as-
sume that it employs a greedy policy, i.e., that at each step it chooses the
best action that can be taken given the robot’s current knowledge of the en-
vironment. More specifically, we assume that the robot would prefer to visit
all the unguarded locations that are reachable from its current location be-
fore moving to other areas via guarded locations, since leaving an unguarded
area in the middle would make the robot return to it via one of the guarded
locations, which will increase the number of visits to guarded places. In ad-
dition, we assume that when the robot needs to choose between two guarded
places, it would prefer to visit first the place guarded by the weaker guard
(the one with the lower probability of capturing the robot), since by Theorem
3 locations that are left to the end of the coverage may be visited less times
by the robot. In [25] we have described an algorithm for an online adversarial
coverage, which in each step leads the robot to an unvisited location with the
safest possible path from its current location, and thus fulfills the assumptions

26 Roi Yehoshua, Noa Agmon

described above. We will use this algorithm to test the defender’s strategy
against in Section 6.

We also assume that the defender knows the starting location of the robot
(which is the case for many real-world scenarios, e.g., when securing a building
that has only one entrance). In this case, the defender can employ the following
two strategies to increase its chances of capturing the robot. First, the defender
can block the entrance to the branch in the block-cut tree with the minimum
number of articulation points (by placing a strong guard at its root), thus
forcing it to terminate its coverage path at this branch, which in turn will
make the robot visit the articulation points in the graph the maximal number
of times (according to Theorem 3). Second, the defender can place weaker
guards (guards with lower probabilities to capture the robot) closer to the
robot’s starting position, thus making the robot move back and forth between
different branches of the block-cut tree in order to visit all the places guarded
by the weaker guards, before going into deeper levels of the tree that contain
stronger guards.

Therefore, the strategy described in Algorithm 5 consists of the following
main steps:

1. Find the highest subtree of the block-cut tree with the minimum total con-
nectivity of articulation points. Place guards at all the cells that are within
the sensing range r of the robot from the root of this subtree (referred from
here as the blocked subtree), and mark at least one cell as free of guards
within the sensing range of the robot from the roots of the other subtrees
that share the same parent node. This step will make the robot visit the
subtree with the minimum total connectivity of articulation points at the
end of its coverage path.

2. Sort the articulation points in the graph by the order of their connectivity.
3. For each connectivity, starting from the highest one, place guards at articu-

lation points with that connectivity, while giving precedence to articulation
points that belong to the unblocked subtrees.

4. For each subtree, use BFS (Breadth First Search) to scan the subtree and
place the guards by the order of the BFS levels, starting from the weakest
guards at the topmost level and finishing with the strongest guards at the
bottommost level.

5. If there are any more guards left to place, use the vertex cuts of the graph
to choose additional locations in which to place the remaining guards (as
in the offline case).

We now describe each of the new procedures that appear in the algorithm.
The procedure FindSubtreeWithMinAPConnectivity finds the highest subtree in
the block-cut tree that contains the minimum total connectivity of articulation
points. For that purpose, it first invokes the recursive procedure ComputeTo-
talAPConnectivity, which computes the total connectivity of the articulation
points in every subtree. For each vertex v, the total connectivity in the subtree
rooted at v is stored in a field named tc[v]. Then, it finds the highest node

Capturing an Area-Covering Robot 27

Algorithm 5 CaptureOnlineCoveringRobot(s,O, S)
input: s – the starting vertex of the coverage, O – robot’s observation function, S – the set
of guards

1: APList← FindArticulationPoints(s)
2: T ← CreateArticulationPointsTree(APList)
3: Tmin ← FindSubtreeWithMinAPConnectivity(T)
4: U ← subtrees of T that share the same parent with Tmin

5: BlockSubtree(Tmin, U,O)
6: cmin ← minimum connectivity of any articulation point
7: cmax ← maximum connectivity of any articulation point
8: c← cmax . iterate over all connectivities
9: while c ≥ cmin and S 6= ∅ do

10: RunBFSOnAPTreeOnline(APList, Tmin, c, S)
11: for each tree t ∈ U do
12: RunBFSOnAPTreeOnline(APList, t, c, S)

13: c← c− 1

14: if S 6= ∅ then
15: PlaceGuardsAtVertexCuts(G,V C, S)

in the block-cut tree that has more than one child, and returns the subtree
rooted at the child with the minimum total connectivity.

1: procedure FindSubtreeWithMinAPConnectivity(T)
input: T – the articulation points tree
output: the subtree with minimum total connectivity of articulation points

2: ComputeTotalAPConnectivity(root[T])
3: v ← root[T]
4: while childAPs[v] = 1 do
5: v ← single child of v

6: w ← argminu∈childAPs[v] tc[u]
7: return the subtree rooted at w

1: procedure ComputeTotalAPConnectivity(v)
input: v – current vertex in the articulation points tree

2: tc[v]← connectivity[v]
3: for each u ∈ childAPs[v] do
4: tc[v]← tc[v] + ComputeTotalAPConnectivity(u)

The procedure BlockSubtree “blocks” the entrance to the subtree with the
minimum total connectivity of articulation points (denoted by Tmin), in order
to make the robot finish its coverage path within this subtree. This is achieved
by placing a guard at the root of Tmin, and making sure that all the guards
at the roots of the other subtrees are weaker than this guard. If there are not
enough weaker guards (e.g., all the guards have equal probability of capturing
the robot), then we also place guards at all the cells that can be sensed by the
robot from the root of Tmin, while keeping at least one of the cells that can

28 Roi Yehoshua, Noa Agmon

be sensed by the robot from the roots of the other subtrees free from guards.
This way, the robot will prefer to visit all these subtrees before entering the
blocked subtree (since the number of safe cells that can be sensed from the
roots of these subtrees is greater by at least 1). See Section 5.4.1 for a formal
analysis.

1: procedure BlockSubtree(T, U,O)
input: T – the subtree to be blocked, U – subtrees that share the same parent as T , O
– the observation function

2: Place a guard with highest pi at root[T]
3: w ← number of guards with probability pi < pmax

4: if w < |U | then
5: {Place guards within the sensing range from root[T]}
6: for each vertex v ∈ O(root[T]) do
7: if v ∈ T then
8: Place a guard with probability pmin at v

9: for each subtree A ∈ U do
10: {Keep one of the cells within the sensing range from root[A] safe}
11: v ← a vertex in {u|u ∈ descendants of A and u ∈ O(root[A])}
12: keepFree[v]← true

The procedure RunBFSOnAPTreeOnline assigns guards to the articulation
points of the graph by running BFS on the articulation points tree. In contrast
to the offline version of this procedure, here the guards are assigned according
to the levels of the BFS tree, and not according to the BFS visit order of the
nodes. The strength of the assigned guards (i.e., their probability of capturing
the robot) is matched to the level of the BFS tree at which they are located, i.e.,
if the guards have m different probabilities of capturing the robot p1, ..., pm,
then all the guards that have probability pi of capturing the robot should be
located at level i of the BFS tree. This allocation is intended to make a myopic
robot move back and forth between the different branches of the block-cut
tree before going into deeper levels. Since the number of guards that have
probability of pi of capturing the robot is not necessarily equal to the number
of articulation points at level i of the tree, we allow level i of the tree to contain
guards that have probability of at least pi of capturing the robot.

For each vertex v we keep the following fields: min level[v] – the minimal
probability level that the guard assigned to v should have, and level[v] – the
probability level that the guard located at v belongs to. These fields make sure
that the assigned guards to the child nodes of v are stronger than the guard
assigned to v.

The procedure FindMinGuardLevelForAPs finds the minimum probability
level that should be used for assigning guards at articulation points with a
given connectivity. In case that there are more guards than articulation points,
we would like to use the strongest guards for the articulation points and leave
the other ones for the vertex cuts of the graph.

Capturing an Area-Covering Robot 29

1: procedure RunBFSOnAPTreeOnline(APList, T, c, S)
input: APList – list of articulation points, T – the tree of articulation points, c –
connectivity, S – the set of guards

2: v ← root[T]
3: while |childAPs[v]| = 1 do
4: v ← single child of v
5: keepFree[v]← true

6: Create an empty queue Q
7: min level[v]← FindMinGuardLevelForAPs
8: Enqueue(Q, v)
9: while not empty(Q) do

10: v ← Dequeue(Q)
11: if connectivity[v] = c and not keepFree[v] then
12: g ← a guard in S with probability of at least pmin level[v]

13: Place g at v
14: level[v]← the level of guard g
15: S ← S − {g}
16: if S = ∅ then return
17: for each node u ∈ childNodes[v] do
18: if connectivity[v] = c and v contains a guard then
19: min level[u]← level[v] + 1
20: else
21: min level[u]← level[v]

22: Enqueue(Q, u)

1: procedure FindMinGuardLevelForAPs(APList, c, S)
input: APList – the list of articulation points, c – connectivity, S – the set of guards

2: Sort the guards in S in a decreasing order of their probability of stopping the robot
3: k ← |{v|v ∈ APList and connectivity[v] = c and not keepFree[v]}|
4: if |S| ≤ k then
5: g ← argmini∈S pi . the weakest guard
6: else
7: g ← S[k] . the guard at the kth place

8: return the level of g

Runtime complexity: We now analyze the runtime complexity of Algo-
rithm 5. As in the offline case, the algorithm’s runtime depends on the number
of guards that need to be assigned, and on whether there are enough artic-
ulation points in the graph for their assignment. The algorithm begins with
finding all the articulation points in the graph and building the articulation
points tree, which takes time of O(n) (see Section 5.3). Computing the total
connectivity of every subtree of the block-cut tree using the recursive proce-
dure ComputeTotalAPConnectivity takes O(n+m) (as every edge of the graph
is traversed only once), and finding the subtree with the minimum total con-
nectivity costs additional O(n). The runtime of the procedure BlockSubTree
depends on the number of subtrees that share the same parent as the blocked
subtree, and the sensing radius of the robot, and in the worst case it is O(n).
Then, for each connectivity level, the algorithm runs BFS on each of these
subtrees. Since the subtrees do not share any vertices, the runtime of running
BFS on all of them is O(n+m). Thus, if the number of connectivity levels is c,

30 Roi Yehoshua, Noa Agmon

the total runtime of this step is O(c(n+m)). In grid environments, c ≤ 4, and
the number of edges is m = O(n). Therefore, in case that there are enough
articulation points for placing all the guards, the total runtime of Algorithm
5 is O(n).

However, if there are not enough articulation points for placing all the
guards, the vertex cuts of the graph also need to be used. As in the offline
case, the algorithm calls the procedure PlaceGuardsAtVertexCuts, whose run-
time complexity is O(n3 log n) (see Section 5.3). Therefore, the total runtime
complexity of the algorithm is O(n3 log n), the same as the algorithm in the
offline case (Algorithm 4).

5.4.1 Analysis of the Defender Online Strategy

In this section we provide a theoretical analysis of the online defender’s strat-
egy described in Algorithm 5. Specifically, we show that it is optimal for certain
values of k (the number of guards), in the sense that its probability of stopping
an online covering robot with a sensing range r is maximized. First, we denote
by Tmin the blocked subtree with the minimum total connectivity of articula-
tion points and by T the subtrees that share the same parent with Tmin. Let
us also denote by v the common parent of the subtrees in T . We start with
the following lemma, that proves that an optimal coverage path of the robot
must end in the blocked subtree Tmin.

Lemma 1 Given the guards assignment by Algorithm 5, an optimal coverage
path of a robot with sensing range r must end in the subtree Tmin.

Proof. When the robot first visits the vertex v, it needs to choose between
going into subtree Tmin or one of the subtrees in T that share the same parent.
Since the robot can observe only r nodes from its current location, its decision
of which subtree to choose can be only based on the number of guards that
it can detect from v. The procedure BlockSubTree places guards in Tmin such
that the number of guards in Tmin that the robot can sense from v is greater
by at least one guard than the number of guards that can be sensed from v
in all the other subtrees. Thus, it makes the robot choose Tmin as the last
subtree to be covered. In addition, it places a guard at the roots of all the
subtrees that are children of v (which are all articulation points). Thus, after
the robot enters into a given subtree t ∈ T it has no incentive of leaving it and
moving to another subtree, since this will make it revisit the vertex containing
this guard and some of the other nodes that have already been visited in this
subtree at least twice more (once on its way back to v and the second time
when it needs to go back to this subtree in order to finish its coverage). This
will make the coverage path suboptimal, since the same coverage path without
going out from this subtree and getting back would still cover all the nodes in
the graph but will visit a node protected by a guard at least one time less.

We now use Lemma 1 to establish a lower bound on the number of times
each articulation point in G must be visited by the optimal coverage path of
the robot.

Capturing an Area-Covering Robot 31

Theorem 8 Given the guards assignment by Algorithm 5, an optimal cov-
erage path of a robot with sensing range r must visit every k-connected ar-
ticulation point in a subtree t ∈ T at least k times, and every k-connected
articulation point in the subtree Tmin at least k − 1 times.

Proof. By Theorem 3, any coverage path must visit every k-connected artic-
ulation point at least k times, except for articulation points on the backbone
subpath of the coverage path, which must be visited at least k − 1 times. By
Lemma 1, an optimal coverage path of a robot with sensing range r must end
in the subtree Tmin, thus all the articulation points that belong to the other
subtrees are not part of the backbone subpath. This is because the robot must
visit v (the common parent of the subtrees) before and after each of these
articulation points, thus they cannot be part of a simple path that leads from
the starting vertex of the coverage to its terminating vertex. Therefore, the
robot must visit every k-connected articulation point in the subtrees t ∈ T at
least k times and the articulation points in the subtree Tmin at least k − 1
times.

Next, we prove that the Algorithm 5 is optimal with respect to the assign-
ment of guards to the articulation points in the graph.

Theorem 9 The assignment of guards by Algorithm 5 maximizes the number
of times a robot with sensing range r must visit each articulation point in G
along its coverage path.

Proof. Denote by v the parent of subtree Tmin. v is chosen as the highest
node in the block-cut tree with more than one child. Thus, all the articulation
points that reside on the path from the root of the block-cut tree to v need
to be visited by the robot only once, and need not be protected by guards.
Indeed, Algorithm 5 places guards only at articulation points that belong to
the subtrees that are children of v. The guards are placed in the order of
the articulation points’ connectivity. Thus, articulation points that are more
frequently visited by the covering robot receive a guard assignment before
those that are less frequently visited. In addition, for each connectivity k,
the algorithm assigns guards to all the k-connected articulation points in the
unblocked trees T before assigning guards to k-connected articulation points
in Tmin, which may be visited one time less than the articulation points in T
(Theorem 8).

As in the offline case, we can now prove that for certain number of guards k
and in certain types of environments, the online defender strategy is optimal.

Theorem 10 Let the maximum degree in the graph G be d. If the number of
articulation points in G whose connectivity is d is equal to or greater than the
number of guards k, then the defender’s online strategy described in Algorithm
5 is optimal.

32 Roi Yehoshua, Noa Agmon

Proof. By Lemma 5, an optimal coverage path visits every vertex v ∈ V at
most d times, except for vertices that belong to the backbone subpath that
are visited at most d − 1 times. By Theorem 8, given the guard assignment
by Algorithm 5, an optimal coverage path of a robot with sensing range r
must visit every d-connected articulation point at least d times, except for
d-connected articulation points on the backbone subpath of the coverage that
must be visited at least d− 1 times. Thus, when the maximum degree of each
articulation point is d, the optimal coverage path visits every d-connected
articulation point precisely d times, except for d-connected articulation points
on the backbone subpath that are visited precisely d − 1 times. Hence, d-
connected articulation points are the most frequently visited vertices along
the optimal coverage path. As a consequence, placing all the given k guards at
these articulation points, while giving precedence to articulation points that
belong to one of the subtrees in T (and thus are not part of the backbone
subpath), is guaranteed to maximize the probability of capturing a robot that
follows this path.

6 Empirical Evaluation

In previous sections we have theoretically analyzed the two proposed defender
strategies against an offline and an online covering robot, and provided var-
ious optimality bounds on their solutions. As we have shown, some of these
bounds are not tight, and others are tight only in certain types of environments.
Therefore, in this section we evaluate the performance of these strategies in
various types of simulated environments and compare them with a baseline
strategy, which scatters the guards randomly across the environment. We use
specific maps to illustrate the operation of the algorithms and we also report
on the statistical analysis of their behavior based on multiple randomly gen-
erated maps with varying parameters, such as number of obstacles, number of
guards, etc.

In the offline case, we evaluate the defender’s strategy against the robot’s
state-of-the-art offline coverage algorithm GAC (Greedy Adversarial Coverage)
[28], and for small instances we also evaluate it against the robot’s optimal
coverage strategy, which can be computed using Value Iteration [27]. In the
online case, we evaluate the defender’s strategy against the state-of-the-art
online coverage algorithm OAC (Online Adversarial Coverage) [25]. Note that
in the online case, the robot’s optimal coverage strategy cannot be computed
in advance, since the robot’s knowledge of the environment is changing during
the coverage.

We first use a specific grid map of size 10× 10 to illuminate the differences
between the defender’s strategies. 25% of the map’s cells contain obstacles,
whose locations are randomly chosen. Figure 5 shows the sample map, and the
block-cut tree of its representative graph. Each articulation point is marked
with the prefix AP followed by its index, and each block is marked with the

Capturing an Area-Covering Robot 33

B0

AP1 AP10 AP12 AP13

AP2

B1

AP3

AP4 AP5

B2 AP6

AP7 AP8

B3 AP9

B4

AP11

B5

B6 B7

Fig. 5: The sample map (left) and the block-cut tree of its underlying graph (right).

prefix B followed by its index. We assume here that the covering robot starts
at cell (1, 1), and its starting location is known to the defender.

As can be seen, the block-cut tree of this map contains 13 articulation
points, two of which are 3-connected (located at cells (8, 3) and (10, 3)) and
all the others are 2-connected.

In our sample run, the defender possesses 15 guards, which belong to 5
groups with probabilities of capturing the robot ranging from p1 = 2% to
p5 = 10% (in intervals of 2%). Changing the absolute values of these prob-
abilities affects only the scaling of the results, but not how the defender’s
strategy works. Figure 6 shows where the defender has chosen to place its
guards (the magenta cells) according to its offline strategy (left figure) and
its online strategy (right figure). Each articulation point is marked with the
prefix AP followed by its connectivity, and each guarded vertex cut is marked
with the prefix VC followed by its spread.

Since the defender owns 15 guards, 13 of them have been assigned to the
13 articulation points and the remaining two have been assigned to the vertex
cut consisting of cells (1,6) and (4,3), which has the largest distance between
its vertices amongst all the vertex cuts.

34 Roi Yehoshua, Noa Agmon

Fig. 6: The locations of the guards as determined by the defender’s strategies. Cells colored
with darker shades contain guards with higher probabilities of capturing the robot. The left
figure shows the offline defender strategy while the right figure shows the online strategy on
the same map. The robot starts the coverage in cell (1,1). Each articulation point is specified
by the prefix AP followed by its connectivity, and each vertex cut is specified by the prefix
VC followed by its spread.

Both strategies place two of the strongest guards at the 3-connected artic-
ulation points, and spread the other guards evenly across the various branches
of the block-cut tree. In the online strategy, the defender places one of the
strongest guards at the articulation point (4,5) in order to block the entrance
to the branch that consists of cells (4,5) and (3,5). This branch contains the
least number of articulation points, thus blocking it would cause the robot to
visit the articulation points in all the other branches the maximal number of
times. In addition, the strength of the guards match the depth of the block-cut
tree at which they are placed. For example, if we examine the BFS subtree that
is rooted at cell (6,4), the guard placed at this root has probability p1 of cap-
turing the robot, while the cell (7,4) which belongs to the second level of the
subtree contains a guard with probability p2, the cells (8,2) and (9,3) which
belong to the third level contain a guard with probability p3, the cells (10,2)
and (10,4) which belong to the fourth level contain a guard with probability p4.
Lastly, the cell (10,5) contains a guard with probability p4 and not p5, since all
the strongest guards have already been used (for blocking the branch with the
minimum number of articulation points and for the 3-connected articulation
points).

Figure 7 shows the results of running the robot’s coverage algorithm OAC
using a sensor with r = 2 against both defender’s strategies. The number in
each cell indicates the number of visits by the robot in that cell.

The defender’s probability of capturing the robot when using its offline
strategy on this map is 83.27%, whereas its probability of capturing the robot
is 87.21% when it uses its online strategy. As can be seen in Figure 7, in the
online strategy the blocking of the branch that consists of cells (4,5) and (3,5)
caused the robot to visit all the 3-connected articulation points 3 times and all

Capturing an Area-Covering Robot 35

Fig. 7: The number of times an online covering robot visits each of the cells of the sample
map, when acting against a defender with an offline strategy (left) and a defender with an
online strategy (right).

the 2-connected articulation points at least twice, since the robot finished the
coverage at the blocked branch. This in turn increased the number of times
the robot has visited guarded cells from 28 to 33.

Next, we evaluate the defender’s strategy against an offline covering robot
(Algorithm 4) on 50 randomized maps of size 20× 20. 30% of the cells in each
map contain obstacles, whose locations were randomly chosen. The number
of guards that have been placed on the map varied between 1 and 100, and
they belonged to 5 different groups with probabilities of capturing the robot
ranging from 0.6% to 3% (in intervals of 0.6%). A low probability was chosen
so we could measure the effect of adding a large number of guards to the graph,
up to 25% of the map’s size. Figure 8 shows the probability that the defender
will be able to capture the robot along its coverage path when using one of
the following three strategies:

1. The random baseline strategy, in which the guards’ locations are chosen
randomly.

2. The defender’s offline strategy (Algorithm 4), when the defender does not
know the starting location of the robot.

3. The defender’s offline strategy (Algorithm 4), when the defender knows the
starting location of the robot.

The graphs are shown with standard deviation error bars.
The suggested defender’s strategy clearly outperforms the random baseline

strategy. On average, it improves the chances of capturing the robot by 33.8%,
and for specific numbers of guards, it can increase those chances by more
than 100% (e.g., for k = 5 the increase is 108%). The difference between the
strategies is statistically significant (ANOVA test yields p = 5.88 · 10−5).

As the number of allocated guards gets higher, the difference between the
strategies’ performances gets smaller. This is because when the environment

36 Roi Yehoshua, Noa Agmon

0 10 20 30 40 50 60 70 80 90 100
Number of guards

0

10

20

30

40

50

60

70

80

90

100

P
ro

b.
 o

f c
ap

tu
rin

g
th

e
ro

bo
t %

Random strategy
Unknown initial location
Known initial location

Fig. 8: The probability of capturing an offline covering robot when the defender uses its
offline strategy with and without knowledge of the robot’s starting location vs. using the
random baseline strategy.

is filled with guards, their specific locations has a smaller affect on the overall
probability of capturing the robot. In addition, we can notice that the knowl-
edge of the starting location does not change much the ability of the defender
to capture the robot.

For small-sized maps (up to 7×7) it is possible to compute the optimal cov-
erage path for the robot, i.e., the coverage path with minimum probability of
being captured [27]. Thus, to ensure the robustness of the defender’s strategy,
we have again tested it against the random baseline strategy, but now when
the robot is following an optimal coverage path. For this experiment we have
used 50 randomized maps of size 5×5 with the same settings as in the previous
experiment, except for the number of guards that varied between 1 and 15 (due
to the smaller map size). Figure 9 shows the results. Clearly, the defender’s
offline strategy outperforms the random strategy in this case too. However,
the gap between the strategies’ performances is narrower here. This is due to
the smaller environment sizes, in which there are very few vulnerability points
(e.g., articulation points) that can be exploited by the defender.

We now evaluate the defender’s strategies against an online covering robot.
We have used the same map settings as in the previous experiment. The robot’s
sensing range was set to r = 2. The robot’s starting location was randomly

Capturing an Area-Covering Robot 37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of guards

0

5

10

15

20

25

30

35
P

ro
b.

 o
f c

ap
tu

rin
g

th
e

ro
bo

t %

Random strategy
Offline strategy

Fig. 9: The probability of capturing a robot following an optimal coverage path when the
defender uses its offline strategy vs. using the random baseline strategy.

chosen. However, this time we assumed that the defender knows the starting
location of the robot. Figure 10 shows the probability of capturing the covering
robot, when the defender is using its offline strategy (Algorithm 4), online
strategy (Algorithm 5) and the random baseline strategy.

As anticipated, for both strategies the probability of stopping the robot
increases as we add more guards to the map. Both the offline and online
defender’s strategies show significant improvement over the random baseline
strategy. When the number of guards is lower than 20, the online and the offline
strategies provide similar results. This is because there is a small number of
guards that belong to each probability level, thus the online strategy cannot
exploit the depth of the block-cut tree in order to match the strength of the
guards with the levels of the tree. However, when the number of guards gets
above 20, the online strategy dominates the offline strategy; on average the
online strategy increases the probability of capturing the robot by 1.64%. The
difference between the strategies is statistically significant (ANOVA test yields
p = 6.685 · 10−5).

The relatively small gap between the offline and the online strategies can
be explained by the fact that in both cases the adversary has zero knowledge
on the robot’s coverage strategy. The only added information the defender has
in the online case is that it knows the sensing radius of the robot, but this

38 Roi Yehoshua, Noa Agmon

0 10 20 30 40 50 60 70 80 90 100
Number of guards

0

10

20

30

40

50

60

70

80

90

100

P
ro

b.
 o

f c
ap

tu
rin

g
th

e
ro

bo
t %

Random strategy
Defender offline strategy
Defender online strategy

Fig. 10: The probability of capturing an online covering robot when the defender uses its
online strategy vs. the offline strategy and the random baseline strategy for various number
of guards.

parameter alone has almost no affect on the defender’s ability to capture the
robot (as will be shown in Figure 12). Moreover, in both cases the defender
assigns guards to locations that must be visited multiple times by any covering
robot (regardless of its sensing capabilities or its coverage strategy).

Next, we wanted to examine the effect of changing the obstacle densities
in the environment on the ability of the defender to capture the robot using
the three different strategies. We have run the defender’s strategies on 50
randomly-generated maps of size 20× 20 with obstacle ratios between 0% and
35%, in steps of 1% (in higher ratios of obstacles, most of the generated maps
are disconnected). The defender was given 30 guards in all maps. Figure 11
shows the results.

As can be seen in Figure 11, the random baseline strategy is not affected
much by the obstacles density, since it does not exploit the topology of the
environment. The increase in the capture probability when the obstacle ratio
gets above 20% is due to the fact that in higher obstacle ratios, there are less
free cells for the robot to cover, thus its chance of being caught by the same
number of guards increases, regardless of the strategy used. On the other hand,
the success rate of the other two strategies grows consistently with the increase
in the number of obstacles. This is because the more obstacles there are in the
environment, the more places that the robot has to visit multiple times (more

Capturing an Area-Covering Robot 39

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Obstacle ratio

40

45

50

55

60

65

70

75
P

ro
b.

 o
f c

ap
tu

rin
g

ro
bo

t %

Random strategy
Defender offline strategy
Defender online strategy

Fig. 11: The probability of capturing an online covering robot when the defender uses its
online strategy vs. the offline strategy and the random baseline strategy for various obstacle
densities.

articulation points and vertex cuts in the graph), which both strategies take
advantage of.

We also wanted to examine the effect of changing the robot’s sensor range
on its ability to complete the coverage. For that purpose, we have evaluated
the defender’s online strategy against an online covering robot with varying
sensor ranges between 1 and 10, using the same settings as in the previous
experiments (50 randomly-generated maps with size 20× 20, 30% of the cells
contain obstacles and 5 levels of guards). The number of guards the defender
could use was fixed to 30. Figure 12 shows the results. As evident, the sensing
radius of the robot has almost no affect on its probability of completing its
coverage task. There is a two-fold explanation for this fact. First, the defender
needs to use its knowledge of the robot’s sensing capabilities only in rare cases.
The only place in Algorithm 5 where the robot’s observation function is used is
in the procedure BlockSubtree, and only in the case that there are not enough
guards that are weaker than the strongest guard to assign to the roots of
the non-blocked subtrees. In most environments the number of non-blocked
subtrees is smaller than the number of weak guards, thus the knowledge on
the sensing radius of the robot is usually not used. Second, the robot’s general
coverage policy is also not greatly influenced by its sensing radius. The robot

40 Roi Yehoshua, Noa Agmon

employs a greedy policy which leads it to visit the branches of the block-cut
tree in a BFS order, since it gives precedence to visiting all the places guarded
by weaker guards which are located at the higher levels of the tree, before
going into deeper levels of the tree that contain stronger guards. Changing the
robot’s sensing radius might change the order in which the robot visits the
nodes in the tree that belong to the same BFS level (which contain guards of
the same strength), but not the order by which it visits the tree levels, which
determines the number of visits to each guarded location.

1 2 3 4 5 6 7 8 9 10
Sensor Range

68

69

70

71

72

73

74

P
ro

b.
 o

f c
ap

tu
rin

g
th

e
ro

bo
t %

Fig. 12: The probability of capturing an online covering robot with various sensor ranges.

Lastly, we have measured the runtime needed to compute the defender’s
offline and the online strategies for increasing environment sizes: from a grid
of 10 × 10 squares to a grid of 40 × 40 squares. The average CPU runtime
was measured on a single core of an Intel Core i7-3770 with 3.4GHz and 8GB
RAM. Figure 13 shows the results.

As expected by the runtime complexity analysis, the runtime graph fits
the graph of polynomial of degree 3 (found using the Matlab function polyfit).
The runtime of the offline and the online strategies is approximately the same,
since the part that takes the longest time is the computation of the vertex
cuts of the graph, which is common in both algorithms.

Capturing an Area-Covering Robot 41

200 400 600 800 1000 1200 1400 1600
Grid size

0

20

40

60

80

100

120

R
un

tim
e

(s
ec

)

Offline strategy
Online strategy

Fig. 13: The runtime for computing the defender’s offline and online strategies in various
environment sizes.

7 Discussion and Future Research

In this paper we have presented the coverage defending problem and discussed
its various aspects. First, we have shown that there is an optimal and eas-
ily computed strategy for a full-knowledge defender, who knows the coverage
path of the robot ahead of time. Second, we have shown that finding an op-
timal strategy for a zero-knowledge defender is an NP-Hard problem. Third,
we proposed a strategy for a zero-knowledge defender that takes advantage of
the target area’s topology in order to make the covering robot visit guarded
locations more frequently. We have proven that this strategy, which can be
computed in polynomial time, is optimal with respect to the probability of
capturing the robot in certain types of environments and for certain numbers
of guards. We have also compared the performance of this strategy to a ran-
dom baseline strategy, in which the guards are randomly scattered across the
environment. We have shown empirically that our suggested strategy increases
the chances of capturing the robot by 33.8% on average, and sometimes by
more than 100% (for a small number of guards).

We have also discussed different models of the covering robot: an offline
covering robot, which possesses a map of the target area, vs. an online cov-
ering robot, which has no prior knowledge of the area. We have shown that
when protecting an area from an online covering robot, the defender can take

42 Roi Yehoshua, Noa Agmon

advantage of the limited sensory abilities of the robot in order to control the
order in which it covers the various parts of the target area, thus increasing
the number of times that it visits the guarded locations in the area.

There are several areas we plan to pursue in future work. First, we would
like to develop new coverage strategies for the robot, assuming that it knows
the defender’s strategy ahead of time. Second, we would like to extend the
defender’s model to cases where it needs to protect its territory from being
covered by a multi-robot group instead of a single robot. Finally, we would like
to consider stronger models of the guards, e.g., when the guards have some
finite range of detecting the robot or when they are allowed to move.

References

1. Arkin, E.M., Fekete, S.P., Mitchell, J.S.: The lawnmower problem. In:
Canadian Conference on Computational Geometry (CCCG-93), pp. 461–
466 (1993)

2. Basilico, N., De Nittis, G., Gatti, N.: Adversarial patrolling with spatially
uncertain alarm signals. Artificial Intelligence 246, 220–257 (2017)

3. Bochkarev, S., Smith, S.L.: On minimizing turns in robot coverage path
planning. In: IEEE International Conference on Automation Science and
Engineering (CASE-16), pp. 1237–1242 (2016)

4. Borie, R., Tovey, C., Koenig, S.: Algorithms and complexity results for
graph-based pursuit evasion. Autonomous Robots 31(4), 317–332 (2011)

5. Choset, H.: Coverage for robotics–a survey of recent results. Annals of
mathematics and artificial intelligence 31(1-4), 113–126 (2001)

6. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mo-
bile robotics. Autonomous robots 31(4), 299–316 (2011)

7. Colegrave, J., Branch, A.: A case study of autonomous household vacuum
cleaner. AIAA/NASA CIRFFSS p. 107 (1994)

8. Fekete, S.P., Friedrichs, S., Kröller, A., Schmidt, C.: Facets for art gallery
problems. Algorithmica 73(2), 411–440 (2015)

9. Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas
by a mobile robot. Annals of Mathematics and Artificial Intelligence 31(1-
4), 77–98 (2001)

10. Gabriely, Y., Rimon, E.: Competitive on-line coverage of grid environ-
ments by a mobile robot. Computational Geometry 24(3), 197–224 (2003)

11. Galceran, E., Carreras, M.: A survey on coverage path planning for
robotics. Robotics and Autonomous Systems 61(12), 1258–1276 (2013)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman (1979)

13. Girard, A.R., Howell, A.S., Hedrick, J.K.: Border patrol and surveillance
missions using multiple unmanned air vehicles. In: IEEE Conference on
Decision and Control (CDC-04), vol. 1, pp. 620–625 (2004)

14. Harary, F.: Graph theory. Addison-Wesley, Reading, MA (1969)

Capturing an Area-Covering Robot 43

15. Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in
coverage for multiple robots. Robotics and Autonomous Systems 56(12),
1102–1114 (2008)

16. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected compo-
nents. SIAM Journal on Computing 2(3), 135–158 (1973)

17. Hopcroft, J.E., Tarjan, R.E.: Efficient algorithms for graph manipulation.
Communications of the ACM 16(6), 372–378 (1973)

18. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems.
IEEE Transactions on Information Theory 32(2), 276–282 (1986)

19. Luo, C., Yang, S.X., Stacey, D.A., Jofriet, J.C.: A solution to vicinity
problem of obstacles in complete coverage path planning. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA-02), vol. 1, pp.
612–617 (2002)

20. Messous, M.A., Senouci, S.M., Sedjelmaci, H.: Network connectivity and
area coverage for UAV fleet mobility model with energy constraint. In:
IEEE Wireless Communications and Networking Conference (WCNC-16),
pp. 1–6 (2016)

21. Nicoud, J.D., Habib, M.K.: The Pemex-B autonomous demining robot:
perception and navigation strategies. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS-95), vol. 1, pp. 419–424
(1995)

22. Pita, J., Jain, M., Marecki, J., Ordóñez, F., Portway, C., Tambe, M.,
Western, C., Paruchuri, P., Kraus, S.: Deployed ARMOR protection: the
application of a game theoretic model for security at the Los Angeles
International Airport. In: International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-08), Industry Track, pp. 125–
132 (2008)

23. Portugal, D., Rocha, R.: A survey on multi-robot patrolling algorithms. In:
Technological Innovation for Sustainability, pp. 139–146. Springer (2011)

24. Yehoshua, R., Agmon, N.: Adversarial modeling in the robotic coverage
problem. In: International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-15), pp. 891–899 (2015)

25. Yehoshua, R., Agmon, N.: Online robotic adversarial coverage. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS-15), pp. 3830–3835 (2015)

26. Yehoshua, R., Agmon, N., Kaminka, G.A.: Robotic adversarial coverage:
Introduction and preliminary results. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS-13), pp. 6000–6005 (2013)

27. Yehoshua, R., Agmon, N., Kaminka, G.A.: Frontier-based RTDP: A new
approach to solving the robotic adversarial coverage problem. In: Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-15), pp. 861–869 (2015)

28. Yehoshua, R., Agmon, N., Kaminka, G.A.: Robotic adversarial coverage of
known environments. International Journal of Robotics Research 35(12),
1419–1444 (2016)

44 Roi Yehoshua, Noa Agmon

29. Zelinsky, A., Jarvis, R.A., Byrne, J., Yuta, S.: Planning paths of complete
coverage of an unstructured environment by a mobile robot. In: Interna-
tional Conference on Advanced Robotics (ICAR-93), vol. 13, pp. 533–538
(1993)

