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Abstract— Multi robot formation is a canonical problem in
robotic research. The problem has been examined in neutral
environments, where the robots’ goal is usually to maintain the
formation despite changes in the environment. The problem
of multi robot formation has been motivated by natural
phenomena such as schools of fish or flocks of birds. While
in the natural phenomena the team behavior is responsive to
threats, in robotics research of team formation, adversarial
presence has been ignored. In this paper we present the problem
of adversarial formation, in which a team of robots travels in a
connected formation through an adversarial environment that
includes threats that may harm the robots. The robots’ goal
is, therefore, to maximize their chance of traveling through the
environment unharmed, where the formation may be used as
a mean to achieve this goal. We formally define the problem,
present a quantitative measure for evaluating the survivability
of the team, and suggest possible solutions to a variant of
the problem under certain threat characteristics, optimizing
different team survivability criteria. Finally, we discuss the
challenges raised by transitioning the discrete representation
to a continuous environment in simulation.

I. INTRODUCTION

Multi-robot formation is a canonical task in robotic re-
search. A team of robots is required to achieve a formation,
and/or to maintain it. When achieving a formation, the goal
of the robots is to distribute about the given formation,
usually while minimizing time and avoiding collisions [1],
[2], [3]. After the robots are organized in a formation, they
are required to travel while maintaining it despite changes in
the environment, such as obstacles. Formation maintenance
usually aims at minimizing the deviation from the desired
formation during the execution [4], [5], [6].

The problem of robot formation was initially inspired by
natural phenomena, from animals (e.g., a school of fish or a
flock of birds [7]) and humans (e.g., a convoy or an infantry
unit [8]). In these natural phenomena, the formation of birds,
fish, vehicles or humans travel in environments where the
team is threatened by some adversarial existence. A school
of fish may be threatened by predatory fish, a flock of birds
may be targeted by a bird of prey. Similarly, a team of fire
fighters need to search and rescue casualties in a wildfire,
and a convoy of humanitarian aid in a disaster area may be
targeted by some external parties1.

1http://www.telegraph.co.uk/news/worldnews/asia/philippines/10445615/
Typhoon-Haiyan-aid-convoys-come-under-fire-as-relief-operation-becomes-
logistical-nightmare.html

Motivated by the adversarial presence in these natural
examples of formations, and by the current use of robots in
areas containing threats (from Mars rovers to UAV presence
in war zones), we introduce a new problem: robot formation
in adversarial environments (or adversarial formation, in
short). In this problem, the team of robots travels in an
adversarial environment, where possible threats exist and
may harm the robots. In this novel idea the adversary and the
environment influence the optimal formation that the group
should be traversing in. The goal of the research is to identify
possible types of threats the robots may face and the impact
of the formation, in which the robots travel in, on the safety
of each robot and the formation. This will give us the ability
to minimize the chance of each robot to get hurt and thus
maximize the formation survivability, i.e., the chances of the
robots to pass through the area unharmed. To the best of our
knowledge, adversarial influences have so far been ignored
in robotic formation research.

The paper presents a broad definition of the problem, pro-
viding building blocks for possible instances of the problem,
in different domains and under different optimization criteria.
We define the problem of Safe Robotic Adversarial Forma-
tion (SRAF), which aims to find the formation that optimizes
different survivability criteria, mainly the probability of the
team members to pass through the environment unharmed.
We show that while in general the problem is most likely
intractable, under some assumptions the problem may be
solved optimally in polynomial time.

We have implemented algorithms for determining a for-
mation that optimizes survivability in ROS/Stage 2, and fol-
lowing extensive simulation experiments, we have adjusted
the initial model in order to account for transition from
a discrete representation to a continuous environment. We
present simulation results showing that the adjusted model
performs significantly better than the discrete one, yielding
a complete, optimal, representation of realistic scenarios.

II. BACKGROUND AND RELATED WORK

The study of multi-robot formation is wide and consists
of two main problems: getting a group of robots to create
a given formation [1], [2], [3], [9] and maintaining it while
traversing an environment [4], [5], [6], [10], using several
methods and techniques.

2http://wiki.ros.org/
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Papers on formation control and maintaining the formation
configuration while moving to a goal, avoiding obstacles
and collisions with other robots are extensive. In [4], [11]
behaviors, or motor-schemas [12], of move-to-goal, avoid-
static-obstacles, avoid-robot and maintain-formation were
introduced. Those schemas are implemented by each robot
in the formation and generate a behavioral response for the
robot which include direction and magnitude of movement.
In [5] the balance between global information and local
information is being presented. These conjunctions between
different levels of local and global knowledge are imple-
mented on the task of maintaining a formation. Our study
deals also with maintaining a formation while avoiding other
robots but also need to include an additional behavior of
minimizing the exposure to an external threat.

Desai et al. [13] coined and defined the phrase control
graph as a labeled digraph whose vertices are the robots in
the formation and whose edges are connections between fol-
lowers and their leader. This research deals with controlling
and transforming one formation to another in order to avoid
obstacles. As opposed to [13] and other works which dealt
with obstacle avoidance and shape transformation ([4], [5],
[11], [6], [10], [14]), threats may not considered as obstacles
since robots can, and sometimes must, travel through them.
In this research we would like to determine the strength of
the formation rather than finding methods to avoid threats.

Papers that took into account the presence of an adversary
such as [15], [16], [17] present algorithms and methods
for risk avoidance. These works examine the path planning
problem of a single individual, in order to bypass and avoid
the adversary’s threats. Our study deals with multi-robot
systems that traverse through the threats, while maintaining
a connected formation. In [18], [19], [20], [21] a team of
robots is considered in the problem of robot navigation under
threats, but the robots carry out their traverses one at a time,
sequentially, and do not travel in a formation.

In [22] the problem of adversarial coverage is defined as
generating a path that visits each point in the grid world at
least once by a single robot, where the environment includes
threat points that may stop the robot. The environment is
a grid of n × n cells (with obstacles), where each cell is
associated with a probability that an existing threat will stop
the robot from continuing its movement. While our work is
similar in the existence of threat points, the task is inherently
different: while in [22] the robot travels through the entire
world, here the team must find the most efficient way to pass
through the world unharmed.

III. THE PROBLEM OF ADVERSARIAL FORMATION

In this section we formally define the problem of multi-
robot formation in adversarial environments, or adversarial
formation in short, which deals with finding a formation
and a path that, given a threat, maximizes the chances of
the robots to travel through the adversarial environment
unharmed. In order to do that, we first describe possible
threat characteristics.

A. The Environment and the Threats

There are different types of threats that the adversary can
execute and aim at the formation. These threats may not be
posed by an actual adversary, but similarly to the existence of
an adversary in distributed systems, this can model the “worst
case” behavior of the system given a threat [23]. Hence
modeled threats that are considered in this paper include
avalanche, lightnings, tsunami and bush fire, as well as sniper
fire and bomb attack.

The threats are characterized using two properties: time
and space.
TIME: Different threats have different duration while exe-
cuted, e.g., the duration of a bomb explosion is shorter than
an exposure to a radiation cloud. Threat duration is measured
on a continuous time-line scale where on one end of the scale
the execution time is instantaneous, and on the other end it
is indefinite. In addition, time-invariant threat is defined as
a threat that is not depended on time to be executed.
SPACE: This property is characterized by traversability,
concealment, spacial dimension and range of influence.
Traversability (in this context) indicates whether the envi-
ronment is crossable after execution. Concealment indicates
whether a robot can be concealed from the threat, either
by another robot or by an object in the environment. For
example, a robot that conceals its peers under a sniper threat
as opposed to an earthquake where all the team is exposed
to it. Spacial dimension of the threat can be of 1D, 2D
or 3D. Range of influence indicates the area that the threat
dominates and in which it can harm the team. It is assumed
that the probability of being hit by a threat is monotonically
non-increasing as the distance from the threat increases.

In this paper we consider time invariant, traversable
threats. We model the environment as an obstacle-free grid,
in which each cell is of the size of a robot, and the robots
travel through one cell per time cycle. Each threat may
influence a subset of the environment, and it is assumed that
we are given a grid map of the world in which each cell is
associated with a probability that a robot passing through it
may be harmed (similar to the map in [22]).

B. Problem Definition

A team of k robots R = {r1, . . . , rk} needs to traverse
through an adversarial environment. We denote the position
of a robot ri in the environment at time t by pi(t). The
probability that a threat exists at a point p at time t is denoted
by PE

p (t) , 0 ≤ PE
p (t) ≤ 1. The probability that robot ri is

stopped by the threat at time t, denoted by PH
i (t), depends

on the type of the threat, its distance from the robot and
other possible factors. We say that a robot survives a threat,
if it manages to pass through it unharmed. We assume that
PE
p (t) and the threat characteristics are known.
The survivability measure is composed of two parameters:

the survivability of each single robot, and the survivability
of the team.

Definition 1: Individual Survivability (ISt
i): the proba-

bility that a robot ri passes a threatened point p at time t
unharmed. For each ri ∈ R, this is calculated as:
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ISt
i = (1− (PE

p (t) · PH
i (t)))

The Team Survivability Criterion (TSC) at a given time
t may be defined either according to the most vulnerable
individual, denoted by TSVIt, or by the product of the
individual survivability of all team members, denoted by
TSPRt. Formally,
TSVIt = min{ISt

1, IS
t
2, · · · , ISt

k}
TSPRt =

∏k
i=1 IS

t
i

Note that TSVI,TSPR are probabilities, thus resides be-
tween [0,1].

Definition 2: A Path is a sequence of different positions
of the teammates in the environment. The path is the pro-
gression of the team from the source to the target spot,
lasting T time steps, and is denoted by S. Clearly, the
number of different paths depends on the environment, and
is exponential in the state space.
The Path Survivability Criterion (PSC) is a measure that
calculates the robustness of the team along the path, subject
to the team survivability criterion:
• PMM: Choose a path that maximizes the step with

minimal survivability, i.e.,
PMM = argmaxS{min(TSCt |1 ≤ t ≤ T )}

• PTS: Choose a path that maximizes the total surviv-
ability of the robots along the path, i.e.,
PTS = argmaxS{

∏T
t=1 TSCt}

We define the Safe Robotic Adversarial Formation
(SRAF) problem as follows:

Definition 3: Given a team of k robots that travel through
an adversarial environment E under given threat characteris-
tics, find the formation and the path in which the team should
travel in, subject to a given TSC and PSC.

IV. SOLVING THE ADVERSARIAL FORMATION PROBLEM

In the general case of the SRAF problem, a team of robots
needs to traverse along the threat points, where in every
time step each teammate (except for the global leader) needs
to sense at least one teammate, meaning the control graph
must be connected. The general case does not indicate the
configuration and the pattern of the formation, that is the
formation of the robots adjusts to the path it needs to travel
in, and specifically: the formation may change along time. A
variant of SRAF where the pattern is indicated before will
be examined in the next two cases:

1) Rigid Formation Problem: A rigid formation is a layout
of robots that stays fixed throughout the traversing
period, without rotation of the formation (e.g., the four
common formation types: column, line, wedge and
diamond).

2) Rotating Rigid Formation Problem: A rotating rigid
formation is a rigid formation with the ability to turn
around and rotate while traversing. Throughout the
traversing period the pattern of the formation stay the
same (see Fig. 3). The resolution of the rotation defines
the accuracy of the survivability.

We suggest a two step process for solving the SRAF
problem:

Step 1: Constructing a graph induced from the formation
placed in different parts of the environment. The graph is a
weighted digraph where the weight of every incoming edge
is the survivability of its vertex (see Fig. 1).
Step 2: Finding a path on the graph from the source point
to the target point that solves the SRAF problem.

Fig. 1. The constructed graph used for path finding. The weights on
every incoming edge is the survivability of its vertex. The weights
of all incoming edges to the target vertex equal 1

A. Rigid Formation

In the Rigid Formation Problem, given a formation and
the threat characteristics, we would like to find the path in
which the team should travel in, in order to fulfill its TSC
and PSC. This special case can be solved in polynomial
time. The first step in the algorithm is constructing a graph
that its vertices are all possible positions of the formation
pattern in the environment, and the vertices utility are the
team survivability when placed at a specific position. The
edges of the graph are the possible moves from one position
to another, while maintaining the rigid configuration. The
graph represents all possible positions the formation can be
located in the environment, and the edges are the transition
from any adjacent positions at one time step (see Fig. 2).
The second stage of the algorithm is to find the best path
from the starting position, through the environment, towards
the end position that meets the desired PSC (see Algorithm
1). The input to the algorithm is the designated formation
and the environment map (grid).

B. Rotating Rigid Formation

In the Rotating Rigid Formation Problem, given a for-
mation pattern and threat characteristics, we would like to
find the path in which the team should travel while rotating
and manipulating the formation (but preserving the given
pattern) in order to fulfill the TSC and PSC. This special
case can also be solved optimally in polynomial time. The
first step in the algorithm is to obtain all possible formations
that can be created from the pattern by rotating it, where
the number of possibilities depends on the resolution of the
rotation that we would like to use: higher resolution will
yield a large number of possibilities and a lower resolution -
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Fig. 2. A graph construction of the Rigid Formation Problem. This
example contains an environment of 6 × 6 grid cells, and a team
of three robots in a column formation. Each vertex in the graph
is one of the possible positions of the column formation in the
environment and the edges are the transitions from one position to
its adjacent positions

Algorithm 1 Rigid Formation Path Finding
1: Input:RF The configuration of the rigid formation
2: Input:Env The environment with threat distribution (size m × n)
3: Let Graph← ∅
4: Step 1:
5: Place RF on the Upper-Left corner of Env
6: for i← 1 to n + FormationV erticalSize do
7: for j ← 1 to m + FormationHorizontalSize do
8: V ertex(j, i)← Survivability of RF on the current Env position
9: Graph← V ertex(j, i)

10: Shift RF one step to the right
11: end for
12: Place RF on the left side of the next line
13: end for
14: Link every vertex in Graph with its adjacent vertices. Set the weight of every

outgoing edge to be the adjacent vertex’s TSC
15:
16: Step 2:
17: if PSC == PMM then
18: Perform Widest Path Algorithm on Graph
19: else if PSC == PTS then
20: Perform Shortest Path Algorithm on Graph
21: end if

a small number of possibilities. For each possibility, a graph
is constructed in a similar way that it is done in the Rigid
Formation Algorithm. In the next step we would like to link
vertices from different graphs that contains a joint agent,
meaning an agent that is located at the same position on
both graphs and is acting as a pivot of the rotation. Linking
all possible vertices will produce a multi-layer graph and
on that graph we will find the best path from the starting
position, through the environment, towards the end position
that meets the desired PSC. (see Algorithm 2).

Constructing a graph for the Rigid Formation is done in
polynomial time. Expanding it to contain the Rotating Rigid
formation, it is still done in polynomial time in the resolution
of rotation.

C. Path Survivability Criterion - Complexity Analysis

Given a graph that its vertices are all the possible positions
of the rigid or rotating rigid formation, finding a path that

Fig. 3. The possible rotating options of the column formation in a given
resolution. With each possibility a graph is constructed using the Rigid
Formation algorithm

Algorithm 2 Rotating Rigid Formation Path Finding
1: Input:FP The formation pattern
2: Input:Env The environment with threat distribution (size m × n)
3: Let MultiGraph← ∅
4:
5: Step 1:
6: Let V ectorrf ← All possible Rigid Formations created by rotating FP
7: for each RF in V ectorrf do
8: Let Graphrf ← ∅
9: Place RF on the Upper-Left corner of Env

10: for i← 1 to n + FormationV erticalSize do
11: for j ← 1 to m + FormationHorizontalSize do
12: V ertex(j, i)← Survivability of RF on the current Env position
13: Graph← V ertex(j, i)
14: Shift RF one step to the right
15: end for
16: Place RF on the left side of the next line
17: end for
18: Link every vertex in Graphrf with its adjacent vertices and set the weight

of every outgoing edge to be the adjacent vertex’s TSC
19: MultiGraph← Graphrf

20: end for
21:
22: for each Graphrfa and Graphrfa+1

in MultiGraph do
23: Mutually link vertices from Graphrfa containing joint agents that are also

placed on the same positions in vertices from Graphrfa+1

24: end for
25:
26: Step 2:
27: if PSC == PMM then
28: Perform Widest Path Algorithm on MultiGraph
29: else if PSC == PTS then
30: Perform Shortest Path Algorithm on MultiGraph
31: end if

meets the desired PSC is done by using graph theory
method, with polynomial time complexity:

1) The PMM criterion: finding a path that its minimal
edge is the maximal one among all other possible
paths, is equal to the Widest Path problem, which can
be solved in a polynomial time with some modification
to shortest path algorithms [24].

2) The PTS criterion: finding a path that maximizes
ΠT

t=1TSCt, is equal to running the shortest path al-
gorithm (runs in polynomial time) [25]. In the shortest
path problem the goal is to find a path that minimizes
ΣT

t=1W
t, where W t is the weight of the visited edges

(t). The equivalence between min Σ and max Π is
obtained by using − log(), which gives:

max ΠT
t=1TSCt ≡ min ΣT

t=1 − log(TSCt)

D. From Discrete To Continuous

The costs of the edges that were set in the above algo-
rithms consider a discrete model of the world. In order to
use the algorithm in a more realistic manner, the edges’ costs
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should be altered to depict a continuous model of the world.
The distance that a robot is passing in a horizontal or a
vertical path is shorter from the distance it is traveling in a
diagonal path. This distance is not taken into account when
setting the edges’ costs. Furthermore, the threats that the
robot is exposed to when passing through a diagonal path
are not considered in the edge’s cost (see Fig. 4).

Fig. 4. The two possible paths (without loss of generality) a robot can
take in order to move between cells. Left: a diagonal path where the robot
is moving from a cell with survivability s1 to a cell with survivability s3,
and passing along the way the cells with survivability s2 and s4. Right:a
vertical way where the robot is moving from the cell with s1 survivability
to the cell with s2 survivability.

In a more realistic model of the world, at every time t
different parts of the robot are located on different cells. To
find the survivability of the movement we should calculate
the survivability at each time step t until the robot reaches
either an adjacent (up/down/right/left) or diagonal cell.

1) Moving to a diagonal cell: If a cell size (and robot
size) is aXa, then the robot needs to pass a distance of

√
2a

for reaching the center of a diagonal cell. While leaving the
origin cell, the area of the robot that is exposed as a function
of x (distance) is: f(x) = (a − x√

2
)2. While reaching the

target cell, the area of the robot that is exposed as a function
of x (distance) is: f(x) = ( x√

2
)2, and the area of the robot

that is passing on an adjacent cell is : f(x) = ( x√
2
)·(a− x√

2
)

The survivability of a robot in continuous mode, (denoted
as Surv), while crossing a diagonal path is ln (Surv) =√

2a∫
x=0

ln(s3
( x√

2
)2 · s2

( x√
2

)·(a− x√
2

) · s4
( x√

2
)·(a− x√

2
) · s1

(a− x√
2

)2
).

(Where s1,s2,s4 and 3 are the survivability of the origin,
adjacent and the target cells respectively, see figure 4).

This equation is inspired from the survivability in the

discrete model: Surv =
length of path∏

which is equivalent

to ln (Surv) = ln(
length of path∏

) =
length of path∑

ln()
Therefore, we will get: ln (Surv) =√

2a∫
x=0

ln(s3
( x√

2
)2 · s2

( x√
2

)·(a− x√
2

) · s4
( x√

2
)·(a− x√

2
) · s1

(a− x√
2

)2
) =

0.4714 · a3 · ln(s3) + 0.2357 · a3 · ln(s2) + 0.2357 · a3 ·
ln(s4) + 0.4714 · a3 · ln(s1).

Surv = s3
0.4714·a3 · s2

0.2357·a3 · s4
0.2357·a3 · s1

0.4714·a3

.
2) Moving to a vertical or horizontal cell: If the cell

size (and robot size) is aXa then the robot needs to pass
a distance of a before reaching the center of an adjacent
cell. While leaving the origin cell, the area of the robot that
is exposed as a function of x (distance) is: f(x) = a · x.

While reaching the target cell the area of the robot that is
exposed as a function of x (distance) is: f(x) = a2 − a · x.

The survivability of a robot in continuous mode, (denoted
as Surv), while crossing a vertical or horizontal path is

ln (Surv) =
a∫

x=0

ln(s2
a·x · s1

a2−a·x). (Where s1,s2 are the

survivability of the origin cell and the target cell respectively,
see figure 4).

This equation is inspired from the survivability in the dis-
crete model which was shown in the previous section. There-

fore, we will get: ln (Surv) =
a∫

x=0

ln(s2
a·x · s1

a2−a·x) =

0.5 · a3 · ln(s1) + 0.5 · a3 · ln(s2).
Surv = s1

0.5·a3 · s2
0.5·a3

.
3) Extending ISt

i definition: The survivability that was
calculated here does not change the main outlines of the
algorithms above, but rather extends the definition of Indi-
vidual Survivability (ISt

i). The Individual Survivability with
its extended definition takes into account also the direction
from which the robot arrived (the previous immediate cell)
and not merely the survivability imprinted in each cell.
E. Experiments and Results

We performed a total of thirty experiments on three
environments. Each environment had a different set of ran-
dom threat probabilities scattered around in it. One set of
experiments tested the algorithm under the continuous model
of the world (see Fig. 5), while the second set tested the
algorithm under the discrete model of the world (see Fig. 6).
The results show the improvement of the team survivability
when moving from discrete to continuous calculation of the
survivability criterion.

1) The environment: Figures 5 and 6 show an example
of an experimental environment, which are an obstacle-free
grid of 20 × 20. Each cell is associated with a probability
for being stopped, ranging from light blue (for 0) to black
(for 1), i.e., a darker color depict a higher probability that a
robot passing through it may be harmed.

Fig. 5. One of the experimental environments (simulated with ROS/Stage).
The red lines are an optimal paths followed by team of robots in a column
formation while using the continuous representation algorithm. The team is
progressing from the bottom (figure 1) to the top (figure 4).

2) The results: The experiments simulated (using
ROS/Stage) a group of robots in a column formation with
team survivability criterion TSPR, and path survivability
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Fig. 6. The same environment as presented in 5, but showing the optimal
paths selected by the algorithm using the original discrete representation.
Again, the red lines are the paths that a group of robots in a column
formation is following, where the group is progressing from the bottom
(figure 1) till the top (figure 4).

criterion PTS. In every time step a sample of several points
on each robot is taken. The results are a summation of all the
sampled points along the path the robots traveled, produced
from the algorithms. Each point is the − log(survivability)
of the cell it resides in. The calculated summation is then
being divided by the number of samples. Due to the nature
of ΣT

t=1−log(survivability)
#samples , the lower the result are, the better

(see Fig. 7). In all three environments, continuous modeling
is significantly more effective compared to discrete modeling
(using t-test, p− value < 0.1 in Environment 1 and 2, and
p− value < 0.5 in Environment 3).

Fig. 7. The results of the experiments of all three environments. The
red bars are of the discrete world modeling and the blue bars are of the
continuous world modeling. The lower the result is the better.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced the problem of Adversarial
Formation, where a team of robots is required to travel in a
formation through an area that poses threats on the robots,
while maximizing the chances of the robots to pass through
this area safely. We have formally defined the problem, in-
cluding possible threats posed by the adversary and examined
the time complexity of finding a formation that maximizes
the probability that the robots will not be harmed by the
threat. This work sets the building blocks for a new problem,
leaving numerous exciting directions for future work. One
such direction includes introducing dependencies between
the robots’ locations. An important advantage of traveling
in a formation is the ability of the robots to shield one
another from danger. Adding such dependencies increases
the complexity of finding an optimal solution on one hand,
but significantly improves the chances of survivability on the

other. Other team survivability measures can be considered,
for example reorganization time after leaving the adversarial
environment and cost of creating disconnected components
in the control graph along the way.
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