
Plan Recognition in Continuous Domains

Gal A. Kaminka, Mor Vered, Noa Agmon
Computer Science Department

Bar Ilan University, Israel
{galk,veredm,agmon}@cs.biu.ac.il

Abstract

Plan recognition is the task of inferring the plan of an agent,
based on an incomplete sequence of its observed actions.
Previous formulations of plan recognition commit early to
discretizations of the environment and the observed agent’s
actions. This leads to reduced recognition accuracy. To ad-
dress this, we first provide a formalization of recognition
problems which admits continuous environments, as well as
discrete domains. We then show that through mirroring—
generalizing plan-recognition by planning—we can apply
continuous-world motion planners in plan recognition. We
provide formal arguments for the usefulness of mirroring, and
empirically evaluate mirroring in more than a thousand recog-
nition problems in three continuous domains and six classical
planning domains.

Introduction
Plan, activity, and intent recognition (PAIR) (Schmidt, Srid-
han, and Goodson 1978; Sukthankar et al. 2014) is a fun-
damental research area in artificial intelligence, tackling the
problem of inferring the hidden mental attitudes of an ob-
served agent. Given a partial sequence of observations of an
agent, PAIR algorithms infer one or more of the following:
a complete sequence of the agent’s actions and their effects,
future actions, a classification of the observed activity, and
the intended goal(s).

To date, PAIR approaches have focused on discrete de-
scriptions of the agent’s interactions with its environment,
via plan libraries. Continuous domains were traditionally ad-
dressed by a separate discretization component, translating
angles, positions, motions—sometimes entire trajectories—
into discrete symbols. This facilitates the use of power-
ful algorithms that use a variety of recognition algorithms
that utilize plan libraries: hierarchical graphs (Kautz and
Allen 1986; Avrahami-Zilberbrand and Kaminka 2005), de-
terministic and probabilistic grammars (Pynadath and Well-
man 2000; Geib and Goldman 2011; Sadeghipour and Kopp
2011; Mirsky and Gal 2016), and other probabilistic mod-
els (Charniak and Goldman 1993; Bui 2003; Pynadath and
Marsella 2005; Ramırez and Geffner 2011).

Unfortunately, early commitment to a fixed discretization
within the plan library leads to inherent information loss. We

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

show below that once discretization is fixed, there are always
cases where the information loss will degrade performance.

One approach to avoid such early commitment is to apply
PAIR methods based on domain theories, rather than plan li-
braries. Such methods dynamically generate recognition hy-
potheses as needed, thus in principle avoid the early commit-
ment made in plan libraries. In particular, Plan Recognition
as Planning (PRP) (Ramı́rez and Geffner 2010; Sohrabi,
Riabov, and Udrea 2016; Freedman and Zilberstein 2017;
Vered, Kaminka, and Biham 2016), uses off-the-shelf (OTS)
planners in recognition. Thus potentially, using a motion
planner such as RRT* (Nieto et al. 2010) in PRP could en-
able direct recognition in continuous spaces. However, cur-
rent PRP methods are limited to discrete classical-planning
domains, and cannot use OTS motion planners.

We present Mirroring, an alternative formulation of plan
recognition as planning suitable for continuous domains, as
well as discrete domains. The Mirroring formulation relies
on an extension of classical planning to continuous domains,
which includes discrete settings as a special case. We empiri-
cally evaluate the recognition formulation in over a thousand
plan recognition problems, spread across three continuous
domains and six classical planning domains, often used for
benchmarking plan recognition methods.

Motivation
Most past approaches to plan recognition utilize a given plan
library representing all known plans to achieve known goals.
In this manner the observations are matched against existing
plans to determine the most likely plan candidate (see (Suk-
thankar et al. 2014) for a thorough recent survey). A com-
mon theme is that they address continuous domains only
through fixed, a priori discretization.

However, as shown also in related tasks (such as
path planning) the loss of information inherent in dis-
cretization can be detrimental (Nash and Koenig 2013).

Figure 1: Discretized
goal recognition.

As an example, consider the 2D
recognition problem in Figure 1.
The initial agent position is repre-
sented by the letter I and the prob-
lem is to recognize towards which
one of two goals A,B the agent is
heading. The space has been dis-
cretized using a grid, and thus ob-

servations are of grid cells of size ε×ε. The actual trajectory
of the agent (shown in the dark line, starting at top-left cor-
ner) clearly favors goal B (under assumption of rationality).
The discretized observation sequence of grid cells (gray) do
not convey this information; the goal can be recognized only
when the agent moves into a grid cell containing either A or
B. If the recognizer could set ε ad-hoc, it could potentially
recognize the goal earlier. Note that this is true for any given
ε-grid (Thm. 1), and clearly analogous examples can be cre-
ated for non-grid a priori discretizations. Of course, it is also
the case that given any recognition problem in a continu-
ous domain, we can always find a discretization that works
(Thm. 21). Thus the problem is not that a recognizer must
not commit to a discretization level; it is that it should not
commit to it early, before it is given the recognition prob-
lem.

Theorem 1. For every grid cell size ε there exists a goal
recognition problem R such that goals in R are indistin-
guishable in the discrete domain, yet distinguished in the
continuous domain.

Proof. (Sketch.) The recognition problem example de-
scribed above, using Figure 1, can be constructed for any
given ε. In other words, a recognition problem exists for any
ε such that the goals are distinguishable in the continuous
case (e.g., by choosing ε after receiving the observations),
and are not distinguishable in the discrete case.

Theorem 2. For every goal recognition problem R where
goals in R are distinguishable in the continuous domain,
there is a grid size ε, such that the goals can be distinguished
also in the discrete domain.

Proof. (Sketch.) The reverse case is also easily shown. Sup-
pose we know the continuous observations and the goals
they distinguish. This means that there exists two points on
the line in Figure 1 which allow us to distinguish between
the goals based on some recognition procedure. We can then
choose a sufficiently small ε such that two observations are
separated by a distance greater than ε, which would allow us
to distinguish the points, and hence their use as evidence for
the goals.

Recognition (PAIR) approaches which rely on a domain-
theory, rather than a plan library, may offer an opportunity to
avoid the early discretization commitment, as they generate
recognition hypotheses dynamically, ad-hoc. Some compute
specialized invariants and heuristics from the domain theory
and incoming observations (Hong 2001; Martin, Moreno,
and Smith 2015). Others use the domain theory to com-
pute planning landmarks, and then use them to rank goal
hypotheses and speed up the recognition process (Pereira,
Oren, and Meneguzzi 2016). All of these work with discrete
domain theories, and do not directly translate to continuous
domains.

Other domain-theory methods are very relevant to our
approach. Plan recognition as planning (PRP) (Ramı́rez
and Geffner 2009; 2010; Freedman and Zilberstein 2017;

1We thank an anonymous reviewer for pointing this out.

Masters and Sardina 2017) uses domain theories with plan-
ners to dynamically generate hypotheses for plan recogni-
tion. The (2009) formulation relied on modified planners and
could not probabilistically rank the hypotheses. The (2010)
formulation uses off-the-shelf (OTS) classical planners to
probabilistically rank goals. However this formulation is in-
herently limited to discrete domains, as it requires comput-
ing an optimal plan that necessarily deviates from the ob-
servations. This requirement is meaningless in continuous
domains, as any small ε deviation from an optimal plan that
matches the observations would fulfill this requirement, at
the expense of the ranking procedure used in this PRP for-
mulation.

Most closely related to our work here is Sohrabi et.
al (2016) which modified the PRP formulation—still in dis-
crete domains—to allow observation of effects, and without
computing the plan pO. Instead, they use a single call to a
k-best planner to sample the plans explaining the observa-
tions. While this allows them to address erroneous obser-
vations which we do not address, it requires a specialized
planner, and still assumes actions with instantaneous, dis-
crete effects. Vered et al. (2016; 2017) developed an online
navigation goal recognition method for continuous domains
which uses OTS motion planners. It shares certain elements
with the formulation we present, but does not generalize to
discrete domains.

The approach we take relies on a model of planning that
extends classical planning to model domains with continu-
ous and/or discrete variables. This is done in order to ad-
mit a broad class of motion planners, e.g., from the OMPL
library (Şucan, Moll, and Kavraki 2012). As a result, the
model does not offer facilities for explicitly representing
more advanced planning models and languages, e.g., sup-
porting conditional effects, inequality tests in preconditions
of actions, sensing actions, etc. In contrast, some modern
task planners utilizing PDDL 2.1 and above (Fox and Long
2003) admit such advanced features, while also allow plan-
ning in mixed continuous-discrete domains. Investigations
of planning models allowing mixed domains are on-going
(see, e.g., (Hoffmann 2003; Li and Williams 2008; Coles et
al. 2012; Fernández-González, Karpas, and Williams 2015;
Scala et al. 2016; Illanes and McIlraith 2016). Of these, our
model is closest to the latter, and it also borrows some of the
constraints of Transitional Normal Form for planning (Pom-
merening and Helmert 2015). We leave recognition in mixed
domains, and non-classical planning extensions (e.g., non-
deterministic effects, sensory actions) to future work.

Plan Recognition in Continuous Domains
We present ”Mirroring” a new extended formulation for plan
recognition. We first extend a classical planning model to
continuous domains. Then, we define plan recognition prob-
lems using this model. Finally we present the Mirroring so-
lution method.

Plans in Continuous Domains
We define domain theories as collections of states. Discrete
actions transition between and through them. We then define

plans in these domains as sequences of actions that take the
agent from a specified initial state to a specified goal state.

Domain Theories: States, Actions, and Transitions. In the
rich tradition of factored representations in planning, a do-
main theory W is defined as a tuple 〈F, V,A, cost〉, where
F is a finite set of fluents (described below), V is a set of
sets {Vf |f ∈ F} (each set Vf holds the range of values
potentially associated with f), and A is a discrete, possi-
bly infinite set of actions, which encode feasible transitions
between states, (i.e., transform values of fluents). cost is a
metric, allowing such transformations to be measured.

We allow describing states via numeric-valued fluents,
somewhat similarly to (Illanes and McIlraith 2016). Actions
in A may transition from one state to another via paths
through the state space, rather than through discrete state
as in classical planning. This is because in continuous state
spaces, a transition from a state (point) a to a state b may go
through countless other states in between.

FLUENTS AND STATES. A fluent f(e0, ..., en) ∈ F is an ex-
pression where f is the fluent name, n ∈ N (inc. 0) the fluent
arity, and ei are constant entities in a known set. For brevity,
we often refer to the fluent by its name. A fluent literal (for
brevity: a literal)is a pairing of a fluent and a specific value
v ∈ Vf , the fluent range. We denote a literal as f = v. For
our purpose here, fluents in F may have a boolean value, or
they may have numeric values (e.g., in R).

Fluents in F are used as the basis for describing states. A
set of fluent literals is inconsistent if it contains at least two
literals f = v1, f = v2, where v1 6= v2. Otherwise, the set
is consistent. A state s induced from F is a maximal consis-
tent set of fluents literals. Put differently, a state s is a set of
fluents from F , each paired with a value from its associated
Vf , such that: |s| = |F |, and s is consistent. A non-maximal
consistent set of fluent literals is a partial state, and may be
used to formally collect all states of which it is a subset.

For example, the pose (position and orientation) of a robot
r on a 2D floor may be described by the fluent set

F , {x(r), y(r), θ(r)}
where r is a constant symbol for the robot. A set of fluent
literals s = {x(r) = 50.34, y(r) = 24.0, θ(r) = 90◦} is a
state: it is consistent, and assigns a value to all fluents in F .
However, the set s1 := s∪ {y(r) = 32.45} is not consistent
(two different values for y(r)), and the set s2 := s\{θ(r) =
90◦} is a partial state (describes all states where the robot
is in location (50.34, 24.0), regardless of θ’s value). The set
of all possible literals of f ∈ F is Lf := {f} × Vf . The
complete set of states in W is: SW :=×f∈F Lf .

ACTIONS. An action a ∈ A transforms fluent literals,
changing their values. We define PREa, the preconditions of
a, as a set of fluent literals. a is applicable in a state s when
PREa ⊆ s. The results of applying an applicable action a in
s, are specified by a function δ(s, a).

In discrete domains, the function δ(s, a) yields a single
new state snew. To generate this new state, classical plan-
ners typically rely on two additional sets of fluent literals
associated with every action a: ADDa, a set of literals to be

added to s, and DELa, a set of literals to be deleted. Then
δ(s, a) := (s \ DELa) ∪ ADDa.

However, continuous domains raise two challenges to
this. An example for those is a navigation motion planner
in 2D/3D which outputs a path (i.e., a plan) from an initial
position I to a goal position g. Often, motion planners rep-
resent such plans by an ordered finite sequence of waypoints
(I, s1, . . . , sk, g). Each transition from one waypoint to the
next, itself defining a path between the waypoints, is as-
sumed to be managed by the robot, and would be considered
an atomic MOVETO action (we ignore smoothing and other
constraints for simplicity). Waypoints discretize the domain
by sampling, but the sampling decision is made ad-hoc, e.g.,
the number of waypoints can vary even given the same pair
I, g. This reality of how motion plans are represented—even
for this simplified case—raises two challenges to modeling
this process in a manner compatible with classical planning
formulations.

First, motion actions almost invariably go through other
states of the domain as they are applied. A robot moving
from waypoint A to waypoint B, regardless of how close
they are, necessarily moves through infinite points that lie in
between. Thus the effects of an action taken in a continuous
domain is not just the ending state, but an |F |-dimensional
path defined by the ordered (potentially infinite) sequence of
states.

Second, as motion planners delay their discretization,
they do not accept a finite set of actions A. The position
and number of waypoints varies depending on factors such
as a required minimal refinement, constraints on the mov-
ing body, time available, the sampling algorithm of the plan-
ner, etc. (see the OMPL website for a large sample of differ-
ent planners which explore such decisions). This means that
we cannot model them as accepting a finite set A, which
commits to a fixed discretization. Instead, we model them
as choosing actions from an infinite, discrete set of actions
A. In reality, of course, they do so implicitly, by generating
the discretization which implies choosing the actions, e.g.,
transitioning between waypoints.

To model actions and plans in continuous domains, we
first extend the definition of actions a ∈ A to allow ef-
fects as paths, rather than just points. We use the follow-
ing notation. A path p is a (possible infinite) ordered se-
quence of states (s0, . . . , sm), m ∈ I ⊂ N+, the set of
indexes. I is obtained by a monotonically increasing map-
ping fa : [0, 1] 7→ N+, representing the relative position of
the intermediate si along the path from s0 to sm. By defi-
nition, s0 is in relative position 0 (fa(0) = 0) and similarly
fa(1) = m. Otherwise, and 0 < fa(0 < i < 1) < m. Thus
si is the i’th state in p, given the indexes I , generated by the
mapping fa. We notate si ≤ sj when i ≤ j, i.e., si is ear-
lier in the sequence defining p. BEG(p) is s0, and END(p) is
the final state sm. The concatenation of two paths p, q is de-
noted by the operator ⊕, such that r := p⊕ q is a path with
BEG(r) = BEG(p), END(r) = END(q). If END(p) 6= BEG(q)
then r is called partial.

Using this notation, we now redefine δ(s, a) as returning
a path p, with BEG(p) = s, END(p) = snew. The index-
generating mapping is not necessarily given to the planner.

We require that it exists, but it is possible for the planner to
determine it ad-hoc. This allows generating the intermediate
states (between s and snew) in any desired granularity.

Given a specific set of indexes I (i.e., a specific granu-
larity), we generate δ(s, a) :=

⊕
i∈I((si−1 \ DELa(si)) ∪

ADDa(si)) where DELa(si) and ADDa(si) are sets of flu-
ent literals as described above, representing the interme-
diate delete and add effects (respectively) between state
si−1 into state si. Note that the discrete representation is
a special case. Setting I = {0, 1}, yields δ(s, a) = (s0 \
DELa(snew)) ∪ ADDa(snew).

Plans are sequences of actions. Specifically, a plan
π from initial state s0 to goal state sg is a finite se-
quence of actions (a1, . . . , ak), such that: (i) a1 is
applicable in s0, (ii) each action ai, 0 < i ≤ k is
applicable in si−1

new, the final state of its predecessor
in the sequence, and (iii) the resulting path pπ :=
δ(END(δ(END(. . . δ(END(δ(s0, a1)), a2) . . .), ak−1), ak)),
has END(pπ) = sg . The path pπ is called the execution trace
of π, denoted TRACE(π). The metric cost(p) associates a
non-negative cost to a path p, defined such that for any two
paths p, q, cost(p) + cost(q) = cost(p⊕ q), even if p⊕ q is
partial. We define cost(π) = cost(TRACE(π)).

Plan Recognition Problems
We begin by defining a general recognition problem with-
out reference to a particular objective, nor a solution method
(e.g., calling a planner or using a plan library). For brevity,
in this and future elaborations, we informally refer to a state
(or partial state) s ∈ W , when we mean s ∈ S (or s ⊂ S,
resp.) where S is the set of all possible states induced by
F in W = 〈F,A, cost〉. Similarly, we informally refer to
actions or plans in W (and may write a ∈W , π ∈W).
Definition 1 (Recognition Problem). A recognition problem
is a tuple R := 〈W,O, I,G〉 where W is a domain theory
as defined above, O a sequence of observations, I ∈ W an
initial state, G a set of goals in W . Observations and goals
are defined below.

Each goal g ∈ G is a (possibly partial) state sg , associ-
ated with a prior probability P (g). This definition of a goal
essentially defines it as a disjunction of states. sg defines ei-
ther a single state (if sg is not a partial state), or a set of
induced states Sg ⊂ S in W , all of which have the exact
same fluent literals as in sg , and are interpreted as a disjunc-
tion: an action resulting in any one of them is considered to
have achieved the goal g.

We denote O, the sequence of observations as
[o0, . . . , on], where n ∈ N, and o0 := I . Every oi is
a state. Thus observations are of effects, not actions. When
n is known, R is called an offline problem, otherwise R is
an online problem.

A recognition problem may be used as the basis for dif-
ferent tasks. We define the plan recognition task for offline
problems:
Definition 2 (Plan Recognition). Let R be an offline recog-
nition problem. The plan recognition task is to determine
πR,

πR = argmax
π∈W

P (π|O)

i.e., πR is the plan hypothesis π with maximal probability,
given the observation sequence. Lacking any dependence
between the observations and plans in W , deciding on πR
ignores O. The dependence between observations and plans
is made explicit by the notion of matching (partial) observa-
tions to plans, in particular also taking their goals into ac-
count.
Definition 3 (Matching Observations to a Plan). Let π be a
plan, σ = TRACE(π). Let O be an observation sequence
defined in the recognition problemR. We define the path p =⊕

o∈O o, i.e., the (partial) path created by concatenating all
observations, in order.

The matching ofO to π is a mappingmO
π : [0, 1] 7→ p×σ,

such that:
• mO

π (0) := (BEG(p), BEG(σ))

• mO
π (1) := (END(p), σΩ)), where σΩ ≤ END(σ), i.e., may

not be the last state in σ
• ∀r ∈ (0, 1),∃i, j s.t. mO

π (r) = (pi, σj) and j < Ω.
• Let mO

π (r) = (pi, σj),m
O
π (l) = (ph, σk), where r, l ∈

(0, 1). If i < h then j < k, and r ≤ l.
• Let mO

π (r) = (pi, σj),m
O
π (l) = (ph, σk), where r, l ∈

(0, 1). If j < k then i < h, and r ≤ l.
This defines a matching such that the first state in the first

observation is matched to the beginning of the plan π, and
the end of the final observation to an arbitrary final state
σΩ. This agrees with our notion that observations are typ-
ically partial, at least in that they often do not include π’s
final goal state. The last two conditions dictate a dual-sided
monotonicity of the matching.

In general, potentially infinite matchings exist. The key is
to determine a plan π whose matching with the observations
maximizes P (π|O). To do this, we consider the goal of the
plan. Let πg denote a plan π ∈ W with the goal g ∈ G.
Under the assumption that the observed agent is pursuing a
single goal g ∈ G (thus P (πq 6=g|g) = 0), we use Bayes rules
to compute

P (π|O) = βP (O|π)P (π)

= βP (O|π)P (π|g)P (g)

P (g) is given in R. β is a normalizer depending on P (O)
only. Maximizing this expression therefore entails maximiz-
ing P (O|π) while also maximizing P (π|g). We utilize two
principles in this process.

The first principle is the principle of rationality. Follow-
ing (Ramı́rez and Geffner 2009) and others, assuming it is
pursuing a goal g, the observed agent is assumed to pre-
fer cheaper plans πg . Thus the closer a plan π is to an op-
timal plan π̂g for a goal g, the more we should increase
P (π|g) (Ramı́rez and Geffner 2009, Theorem 7). Rather
than matching the actual plans to test for equality, we use
their costs:

∀g ∈ G,P (π|g) :=
cost(π̂g)

cost(π)

As cost(π̂g) is minimal (π̂g is optimal), P (π|g) is well de-
fined probability function, equal to 1 only when the observed
plan is optimal, otherwise between 0 and 1.

The second principle is used to maximize P (O|π). This is
the heart of the matching between observations and a plan.
We want to determine an optimal matching, as one that min-
imizes some matching error metric. Intuitively, if O com-
pletely overlaps with π then the matching error should be
minimized, and P (O|π) maximized.

To do this, we define a state-distance metric E over the
matching m (Definition 3). For any r ∈ [0, 1], we have
m(r) = (pi, σj). Then: E(m(r)) := E(pi, σj), where E
is a distance metric (norm). Intuitively, E measures the er-
ror in any single point in the matching. We then use it over
the entire matching to determine the matching error between
the observations and the plan π. In the navigation domains
used in the experiments, we used the Euclidean distance.
Definition 4 (Matching Error and Best Matching). Given
a plan π, an observation sequence O, and a matching mO

π
between them (Definition 3), the matching error is given by

error(mO
π) =

∫
r∈[0,1]

E(mO
π (r)) dr

The best matching m̂O
π is given by

m̂O
π = argmin

mOπ

error(mO
π)

The matching error of the best matching for O, π is
therefore error(m̂O

π) We then estimate P (O|π) := 1 if
error(m̂O

π) = 0. Otherwise, P (O|π) := 1

1+error(m̂Oπ)
.

A Solution Method and Shortcut
Determining a plan π that maximizes the estimates defined
above can be expensive. In particular, the second principle
seems to require an expensive search for hypotheses that
minimize matching errors, e.g., by multiple calls to a planner
to generate candidates.

We offer a shortcut to generating hypotheses which are
guaranteed to minimize matching errors. Instead of generat-
ing hypothesized plans and then test them for their matching
error, we synthesize a plan hypothesis πOg for each g ∈ G,
such that πOg passes through the observations and continues
to g. The concatenation of all observations forms a skele-
ton path, which can be used as a constraint on generating
an optimal plan passing through it. The final segment of this
path will be from the last point of the last observation, to
the goal g, thus creating a full plan from I to g. As the re-
sulting plan is generated to match the observations perfectly,
it will have a matching error of 0, and therefore a maximal
P (O|πOg) = 1. Note that this is true of all plans πOg .

The generation of optimal plans πOg for all g is straight-
forward in most OTS discrete-domain planners, and indeed
used in (Ramı́rez and Geffner 2010). In continuous domains,
this is done by using OTS motion planners that allow in-
putting way-points and other path constraints that must be
respected in the output, e.g., (Mirabel et al. 2016).

Thus now we have a set of solution candidates: a set of
|G| plans, each πOg , g ∈ G maximizing P (O|π). All that
remains is to compute the optimal plan π̂—in service of the

principle of rationality—so that their costs can be compared
as described before. This requires a single call to a planner,
on the planning problem defined by I and g, which are given
in R. Plans maximizing P (π|g) will be selected as πR.

One caveat with this shortcut method is that while it han-
dles missing observations (i.e., gaps in the observations, in-
cluding from the last observation to the goal), it may be sus-
ceptible to noisy observations, which should have been ig-
nored. We do not address this here; see Sohrabi et al. (2016)
for a potential treatment in discrete domains; the continuous
domain case is open.

Evaluation
We empirically evaluated the performance of the plan recog-
nition procedure described above in several continuous and
discrete domains. Indeed, we measure its performance in
over a thousand recognition problems, spread over three
continuous domains, and six discrete. In all cases, we used
unmodified OTS planners. In some cases, observations were
revealed incrementally, rather than given all at once. For
these, we utilized multiple calls to the planner, to re-evaluate
hypotheses as more observations were available, essentially
solving multiple offline recognition problems. Vered and
Kaminka (2017) propose an efficient method for doing so;
we followed their baseline, non-heuristic approach, to sav-
ing planners calls.

The effects of planner choice
We first evaluate our approach by comparing the recogni-
tion success of several different planners in recognizing the
navigation goals in a benchmark 3D environment, where the
target is to recognize navigational goals as soon as possible
while the observations, i.e. observed agents’ positions, are
incrementally revealed. We used the Open Motion Planning
Library (OMPL (Şucan, Moll, and Kavraki 2012)) cubicles
environment along with the default robot, and experimented
with four off-the-shelf OMPL planners.

Each call to the planner was given a time limit of 1 sec.
For cost, we measured the length of the path. We set 11
points spread through the cubicles environments. We then
generated two observed paths from each point to all others,
for a total of 220 = 110 × 2 recognition problems. Each
plan consisting of between 20-75 points. The observations
were obtained by running the asymptotically optimal plan-
ner RRT* on each pair of points (time limit of 5 minutes).

In general, finding the optimal plan is not trivial. We ex-
perimented with several planners that differ in their optimal-
ity guarantees. Two from the RRT (Rapidly-exploring Ran-
dom Trees) family (Nieto et al. 2010) offer some guarantees:
RRT* guarantees asymptotic optimality; TRRT only guar-
antees asymptotic near- optimality preferring shorter solu-
tions. The two other planners used offer no optimality guar-
antees: RRTConnect, and KPIECE1 (Şucan and Kavraki
2010).

We use the following criteria: (1) Conv., the convergence
measured as percentage of the number of observations from
the end where the recognizer converged to the correct hy-
pothesis (including 0 if it failed). Higher values indicate ear-

lier convergence and are therefore better;(2) Rank, the num-
ber of times they ranked the correct hypothesis at the top
(i.e., rank 1), which indicates their general accuracy, hence
a larger value is better;and (3) Time, the average run-time
percent. This refers to a percentage of the total time made
available to the planners. Smaller values indicate a more ef-
ficient process.

Table 1, columns 1–3, contrasts the results of the four
planners, when used in our PRP formulation. The first
two columns measure recognition performance. Each of the
columns shows the mean recognition results over the same
set of recognition problems with higher values denoting im-
proved results. We see that TRRT and RRT* are clearly
and significantly better for online goal recognition of paths
generated by RRT* than RRTConnect and KPIECE. RRT*
and TRRT both tend to produce paths closer to optimal,
RRT* being asymptotically optimal and TRRT guaranteeing
asymptotic near-optimality.

However, the two top planners differ from each other very
much in run-time (Table 1, column 3). Every call to the plan-
ners was limited to one second of run-time. But given that a
planner is called with each new observation, for each one of
the goals, the mean total time can grow very quickly. As we
can see RRT* takes (by design) 100% of the time allotted,
but others do not. Indeed, we see that TRRT is the second
quickest, and is beaten only slightly by RRTConnect.

10 Goals (220 Problems) 19 Goals (380 Problems)
Conv Rank Time Conv Rank Time

TRRT 25.82 35.02 28.10 16.11 22.95 36.56
RRT* 22.52 32.55 100.40 13.26 21.24 100.46

RRTConnect 8.21 21.20 22.11 3.45 13.42 21.33
KPIECE 9.69 21.59 34.11 4.74 13.56 49.86

Table 1: Recognition with various planners.

We conclude that the recognition results greatly improve
with the optimality of the planner utilized in the recognition
process. This is due to the fact that we used an optimally
converging planner (RRT*) to generate the observations pro-
viding tight dependence between the planner used to gen-
erate the observations and the planner used in the recogni-
tion process. Moreover, in the 3D navigation domain, TRRT
seems to offer a remarkable choice for this task: It produces
good results, while being very fast.

Sensitivity to recognition difficulty
In online, continuous domains, the difficulty of the recog-
nition problem—which stems from ambiguity in matching
hypotheses—can affect recognition performance (e.g., ac-
curacy) as well as efficiency (e.g., run-time). We wanted to
evaluate the sensitivity of the results shown above to the dif-
ficulty of the recognition problems. We therefore added 9
goal points to the recognition problems in the navigation do-
main (i.e., 19 potential goals in each recognition problem)
for a total of 380 recognition problems. These extra points
were specifically added in close proximity to some of the
preexisting points, such that navigating towards any one of
them appears (to human eyes) to be just as possible as any
other. This increased ambiguity leads to greater recognition

difficulty, as more hypotheses agree with the observations,
over a longer observation sequence.

Table 1, columns 4–6, compares the different planners
performance (%) over the now harder clustered goals prob-
lems. We can see that the relative performance success or-
dering remains as it was for the original scenario. TRRT
and RRT* once again significantly outperform KPIECE and
RRTConnect, in both convergence and ranked first mea-
sures.

From the results we can also compare the deterioration
(%) along each of the performance criteria across the dif-
ferent planners over the 380 harder problems. A lower re-
sult here is better, indicating less deterioration in perfor-
mance. We see that for the ranked-first measures all plan-
ners deteriorated equally with deterioration percents ranking
from 34.4%–37.18%. However, for the convergence mea-
sure TRRT deteriorated by only 37.59%, followed closely
by RRT* with 41.13% while KPIECE and RRTConnect de-
teriorated considerably with 51.12% and 57.97%.

Discrete vs. Continuous
We further evaluate the use of the formulation in both dis-
crete and continuous domains.

Testing in Six Discrete Domains. To demonstrate the
generality of the approach, we re-ran the entire set of
benchmark plan-recognition problems used in (Ramı́rez and
Geffner 2010) and then in (Sohrabi, Riabov, and Udrea
2016; Pereira, Oren, and Meneguzzi 2016). All in all
there are 450 problems in six classical planning domains:
KITCHEN, BLOCKS WORLD, LOGISTICS, INTRUSION DE-
TECTION, IPC-EASY, and CAMPUS. We used the default
hsp f planner (Haslum 2006). We used mirroring to rank
the goal hypotheses (cost of ideal plan vs cost of optimal
plan that goes through the observations), and compared the
results to the ranking generated by the PRP formulation
in (Ramı́rez and Geffner 2010) (cost of optimal plan that
deviates from observations vs cost of optimal plan that goes
through the observations).

Out of the 450 problems, there were only two where the
results differed: In two variants of the same problem (with a
full set and a partial set of observations), the original formu-
lation ranked the true goal as the winner. Our method ranked
it as a winner, along with two others. In additional 4 prob-
lems, the calls to the planner failed in generating the plan
that goes through the observations. Since both formulations
require this plan, both methods failed.

We note in passing that in general, run-times using mirror-
ing were slightly better than using PRP. We are investigating
potential reasons for this, but also clarify that the differences
may not be significant.

Robot Cooperation Task in ROS. We used
ROS (Quigley et al. 2009) to utilize our recognition
algorithm to recognize the goals of navigation in 3D worlds
using the ROS MoveBase default planner. An alternative
interface—to discrete planners—is described in (Cashmore
et al. 2015). We used the ROS standard Gazebo simulator

Goal 1 Goal 2 Goal 3 Goal 4
C D C D C D C D

I1 Conv 0.90 0.86 0.88 0.65 0.46 0.00 0.21 0.00
Rank 0.93 0.86 0.89 0.66 0.47 0.05 0.30 0.00

I2 Conv 0.87 0.82 0.94 0.74 0.32 0.00 0.60 0.15
Rank 0.90 0.83 0.96 0.75 0.51 0.03 0.79 0.57

I3 Conv 0.96 0.67 0.53 0.40 0.82 0.35 0.87 0.26
Rank 0.96 0.68 0.54 0.44 0.82 0.31 0.89 0.43

Table 2: Continuous vs. discrete results (193 Problems). Rows marked I denote initial locations. C,D (columns) denote contin-
uous and discrete recognizers.

Average Convergence Percent Average Ranked First Percent
1 10 20 40 Cont 1 10 20 40 Cont

Octagon 0.67 0.42 0.50 0.13 0.67 0.75 0.42 0.50 0.13 0.75
Septagon 0.62 0.38 0.29 0.14 0.62 0.62 0.38 0.29 0.14 0.62
Hexagon 0.56 0.33 0.33 0.33 0.56 0.56 0.61 0.61 0.61 0.61
Pentagon 0.50 0.60 0.40 0.40 0.60 0.60 0.60 0.40 0.50 0.60
Square 0.75 0.75 0.50 0.25 0.75 0.75 0.75 0.50 0.25 0.75

Triangle 0.33 0.44 0.44 0.33 0.44 0.44 0.56 0.44 0.33 0.56

Table 3: Shapes continuous vs. discrete results

to simulate an environment of a soccer field, free of any
obstacles, with two robots operating as team members. One
robot (observed) was given an initial goal to travel to, and
would head there as soon as an experiment trial began.
Another robot was positioned elsewhere, and observed the
motions of the other robot. Its task was to head towards
and position itself in one of several pre-selected locations,
to support its teammate. The observed robot always started
at the same initial point in the middle of the field, while
we experimented with 3 different starting points for the
observing robot; two points behind the observed robots
position and in parallel sides (init point 1 and two Figure 2)
and one point past the observed robot in the middle (init
point 3). We ran 10–20 runs from each initial position to
each of the goals for a total of 193 problems.

Figure 2: Experiment setup (via RVIZ)

We compared the recognition performance of the recog-
nizer when using the continuous planner, to that when the
recognition is carried out on a discretized grid. In particular,
We divided the environment into robot-sized grid cells and
converted all consecutive points along the path to the middle
of each of the corresponding cells in the grid. In the same
manner we also converted the goal locations.

We use the same two measures of recognition perfor-
mance as before (convergence and number of times the true
goal was ranked first), though instead of reporting on per-
centages, Table 2 uses ratios (thus 90% is reported as 0.90).

We remind the reader that higher values indicate earlier con-
vergence and are therefore better.

Each column in Table 2 marked C reports on the results
from using the continuous-planner in recognition. Each col-
umn marked D reports the results from the discretized recog-
nition process. We see that for all problems the results are
higher for the continuous recognizer over the discrete in-
stance. This arises from the fact that the discrete recog-
nizer may lose information in the discretization process. It is
safe to say that with a reduction of the discretization factor
these differences will decrease until the performance will be
equivalent. However finding just the right amount of granu-
larity could prove wasteful and domain specific. This illus-
trates further the substantial need for specified recognizers
fit to operate in continuous domains.

Shape Recognition. We additionally evaluated our con-
tinuous goal recognizer on the shape sketch recognition do-
main introduced in (Vered, Kaminka, and Biham 2016).
Here the task is to recognize 2D hand-drawn regular poly-
gons, as early as possible, as they are revealed one edge at a
time. We used the same human drawn, 18 shape data base the
same domain-dependent planner. These shapes were hand
drawn in various scales and rotations and naturally contained
quite a bit of noise in terms of angle and edge sizes.

The shape-drawing planner takes as input a partial draw-
ing (represented as a sequence of angles and edges), and
a goal shape type (equilateral triangle,square, etc.) and at-
tempts to complete the drawing to the goal shape or report
failure if cannot be done. To complete the drawing, the plan-
ner looks at the angles between edges that are already drawn
(if any), and adds edges that complete the regular polygon
whose angles best match the angles observed.

We contrast the performance of this continuous angle rep-
resentation with a discretization of the angle size into either
a 1◦, 10◦, 20◦or 40◦angle. For example, if the size of an ob-
served angle was 78◦, in terms of 40◦discretization it would

be translated to an 80◦angle. The results are displayed in Ta-
ble 3 using the previously mentioned performance evalua-
tion criteria. Columns 1–5 measure the average convergence
percent over of all shapes over all discretization factors, with
cont denoting the continuous representation. Columns 6–
10 measure the amount of time the recognizer ranked the
correct goal as first. As we are measuring convergence and
the correct ranking of the chosen goal, higher values indi-
cate earlier convergence to the correct result or more correct
rankings, hence are better.

Over all criteria the continuous recognizer outperformed
or performed just as well as all of the discretized recogni-
tion processes. Indeed we can see that over all criteria the
results achieved in Cont and 1 are fairly similar, this can be
understood as 1◦being a sufficient amount of discretization
granularity to recognize most of the shapes. However, for
the Pentagon and Triangle shapes convergence and Hexagon
and Triangle shapes correct rankings, the results differ, indi-
cating that a 1◦angle discretization is insufficient.

Summary
In this paper we presented mirroring a novel formulation
of plan recognition in continuous domains (and general-
izing to discrete domains). The key insight is that by us-
ing continuous-domain or motion planners in recognition,
we avoid early commitment to a granularity (discretization)
level, and thus can choose the best discretization for the
recognition problem at hand. By using a form of plan recog-
nition by planning, mirroring allows the use of off-the-shelf
unmodified planners. It gives rise to a recognition proce-
dure that uses two calls to a planner for each goal, and ac-
counts for missing observations. The formulation has been
compared in discrete domains to prior formulations (which
cannot address continuous domains), and has been evaluated
with four standard motion planners, one robotics planner,
and one domain-dependent planner—all without modifying
the planners in any way. Overall, we report on results from
9 domains. Future work involves extending towards, and
working with, mixed discrete-continuous planners (Coles et
al. 2012; Fernández-González, Karpas, and Williams 2015;
Scala et al. 2016; Illanes and McIlraith 2016), and investigat-
ing a principled approach to addressing noisy observations,
which the recognizer should ignore. Additionally, we would
like to tackle multi-agent plan recognition, so as to extend
the impact of this work in robotics.

Acknowledgments
We thank Kobi Gal, Miguel Ramirez, and Felipe Meneguzzi
for very valuable advice. This research was supported in part
by ISF grant # 1865/16. Thanks to K. Ushi.

References
Avrahami-Zilberbrand, D., and Kaminka, G. A. 2005. Fast
and complete symbolic plan recognition. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI-05).
Bui, H. H. 2003. A general model for online probabilistic
plan recognition. In IJCAI, volume 3, 1309–1315.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtós, N.; and Carreras, M.
2015. ROSPlan: Planning in the robot operating system. In
Proceedings of the International Conference on Automated
Planning and Scheduling, 333–341.
Charniak, E., and Goldman, R. P. 1993. A bayesian model
of plan recognition. Artificial Intelligence 64(1):53–79.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012.
COLIN: Planning with continuous linear numeric change.
Journal of Artificial Intelligence Research 44:1–96.
Fernández-González, E.; Karpas, E.; and Williams, B. C.
2015. Mixed discrete-continuous heuristic generative plan-
ning based on flow tubes. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 1565–
1572.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Freedman, R., and Zilberstein, S. 2017. Integration of plan-
ning with recognition for responsive interaction using clas-
sical planners. In AAAI, 4581–4588.
Geib, C., and Goldman, R. 2011. Recognizing plans with
loops represented in a lexicalized grammar. In Proceedings
of the AAAI Conference on Artificial Intelligence, 958–963.
Haslum, P. 2006. Improving heuristics through relaxed
search - an analysis of TP4 and HSP*a in the 2004 plan-
ning competition. Journal of Artificial Intelligence Research
233–267.
Hoffmann, J. 2003. The Metric-FF planning system: Trans-
lating“ignoring delete lists”to numeric state variables. Jour-
nal of Artificial Intelligence Research 20:291–341.
Hong, J. 2001. Goal recognition through goal graph analy-
sis. Journal of Artificial Intelligence Research 15:1–30.
Illanes, L., and McIlraith, S. A. 2016. Numeric planning
via search space abstraction. In Ninth Annual Symposium
on Combinatorial Search.
Kautz, H. A., and Allen, J. F. 1986. Generalized plan recog-
nition. In Proceedings of the Fifth National Conference on
Artificial Intelligence (AAAI-86), 32–37. AAAI press.
Li, H. X., and Williams, B. C. 2008. Generative planning
for hybrid systems based on flow tubes. In Proceedings of
the International Conference on Automated Planning and
Scheduling, 206–213.
Martin, Y. E.; Moreno, M. D. R.; and Smith, D. E. 2015.
A fast goal recognition technique based on interaction esti-
mates. In Proceedings of the International Joint Conference
on Artificial Intelligence, 761–768.
Masters, P., and Sardina, S. 2017. Cost-based goal recogni-
tion for path-planning. In Proceedings of the International
Joint Conference on Autonomous Agents and Multi-Agent
Systems, 750–758.
Mirabel, J.; Tonneau, S.; Fernbach, P.; Seppälä, A.-K.; Cam-
pana, M.; Mansard, N.; and Lamiraux, F. 2016. HPP: a
new software for constrained motion planning. In Proceed-
ings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems.

Mirsky, R., and Gal, Y. K. 2016. SLIM: Semi-lazy infer-
ence mechanism for plan recognition. In Proceedings of the
International Joint Conference on Artificial Intelligence.
Nash, A., and Koenig, S. 2013. Any-angle path planning.
AI Magazine 34(4):85–107.
Nieto, J.; Slawinski, E.; Mut, V.; and Wagner, B. 2010. On-
line path planning based on rapidly-exploring random trees.
In IEEE International Conference on Industrial Technology
(ICIT), 1451–1456. IEEE.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2016. Landmark-
based heuristics for goal recognition. In Proceedings of the
AAAI Conference on Artificial Intelligence. AAAI Press.
Pommerening, F., and Helmert, M. 2015. A normal form for
classical planning tasks. In Proceedings of the International
Conference on Automated Planning and Scheduling.
Pynadath, D. V., and Marsella, S. 2005. Psychsim: Model-
ing theory of mind with decision-theoretic agents. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-05), 1181–1186.
Pynadath, D. V., and Wellman, M. P. 2000. Probabilistic
state-dependent grammars for plan recognition. In Proceed-
ings of the Conference on Uncertainty in Artificial Intelli-
gence (UAI-2000), 507–514.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. Ros: an open-
source robot operating system. In ICRA workshop on open
source software. Kobe, Japan.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence, 1778–1783.
Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Proceedings
of the AAAI Conference on Artificial Intelligence.
Ramırez, M., and Geffner, H. 2011. Goal recognition over
pomdps: Inferring the intention of a pomdp agent. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence, 2009–2014. IJCAI/AAAI.
Sadeghipour, A., and Kopp, S. 2011. Embodied gesture pro-
cessing: Motor-based integration of perception and action in
social artificial agents. Cognitive Computation 3(3):419–
435.
Scala, E.; Haslum, P.; Thiebaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In
Proceedings of the European Conference on Artificial Intel-
ligence, 655–663. IOS Press.
Schmidt, C.; Sridhan, N.; and Goodson, J. 1978. The plan
recognition problem: an intersection of psychology and arti-
ficial intelligence. Artificial Intelligence 11:45–83.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 3258–
3264.
Şucan, I. A., and Kavraki, L. E. 2010. Kinodynamic motion
planning by interior-exterior cell exploration. In Algorithmic
Foundation of Robotics VIII. Springer. 449–464.

Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine 19(4):72–82.
Sukthankar, G.; Goldman, R. P.; Geib, C.; Pynadath, D. V.;
and Bui, H., eds. 2014. Plan, Activity, and Intent Recogni-
tion. Morgan Kaufmann.
Vered, M., and Kaminka, G. A. 2017. Heuristic online goal
recognition in continuous domains. In Proceedings of the
International Joint Conference on Artificial Intelligence.
Vered, M.; Kaminka, G. A.; and Biham, S. 2016. On-
line goal recognition through mirroring: Humans and agents.
The Fourth Annual Conference on Advances in Cognitive
Systems.

