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Abstract
Multi-robot adversarial patrolling is a well stud-
ied problem, investigating how defenders can op-
timally use all given resources for maximizing the
probability of detecting penetrations, that are con-
trolled by an adversary. It is commonly assumed
that the adversary in this problem is rational, thus
uses the knowledge it has on the patrolling robots
(namely, the number of robots, their location, char-
acteristics and strategy) to optimize its own chances
to penetrate successfully. In this paper we present
a novel defending approach which manipulates the
adversarial (possibly partial) knowledge on the pa-
trolling robots, so that it will believe the robots have
more power than they actually have. We describe
two different ways of deceiving the adversary: Win-
dow Deception, in which it is assumed that the ad-
versary has partial observability of the perimeter,
and Scarecrow Deception, in which some of the pa-
trolling robots only appear as real robots, though
they have no ability to actually detect the adver-
sary. We analyze the limitations of both models,
and suggest a random-based approach for optimally
deceiving the adversary that considers both the re-
sources of the defenders, and the adversarial knowl-
edge.

1 Introduction
The problem of defending a valuable asset from adversaries
using patrolling robots is well studied. This problem is of
great importance, as algorithms developed are used to protect
airports, ports, natural reserves and train stations from crimi-
nals, thieves and terrorists [Sun et al., 2011; Delle Fave et al.,
2015; Felemban, 2013].

There are many characteristics defining this problem, such
as robots’ movement and sensing abilities, communication
between robots, and knowledge they have on the world
and on the adversary. Researches studied the influence of
each characteristic, and showed for every case how the ad-
versary acts and what is the best defence strategy against
this behavior [Machado et al., 2002; Agmon et al., 2008a;
∗This research was funded in part by ISF grant 1337/15.

Paruchuri et al., 2006; Elmaliach et al., 2009]. The adversar-
ial model, on the other hand, is usually based on its knowl-
edge about patrolling robots. Specially, the adversary is com-
monly assumed to be rational, and acts in order to optimize
its own utility given the knowledge it has on the patrolling
robots.

In this research we study the problem of multi-robot
perimeter patrolling, in which a rational adversary does not
have perfect information about the patrolling robots. We ex-
amine how the information held by the adversary can be de-
liberately manipulated, and show how it is possible to de-
ceive the adversary by pretending to have more power than
the robots actually have, specifically: make the adversary
think there are more patrolling robots, and by that decrease
its chances of penetrating successfully.

We study two different mechanisms of conducting decep-
tion. The first is Window Deception, where the adversary
can see only some portion of the entire perimeter (window).
We show how along the window we can simulate patrols usu-
ally performed by more robots than we have. The second is
Scarecrow Deception, where not all patrolling robots have
the ability to detect intrusion (have no sensing abilities), and
the adversary does not know they exist. In both cases, we
examine what is the best way to guarantee that the adversary
will not detect the fraud (if possible), and analyze the pene-
tration detection rate achieved by using the deception mech-
anism. Results show that guaranteeing undiscovered decep-
tion without changing the characteristics of the robots, can be
made only for random patrols. We have fully implemented
the deception mechanisms, and following an empirical eval-
uation, report the tradeoff between deception and probability
of penetration detection along the perimeter in several cases.

2 Related Work
The basic problem of multiagent or multi-robot patrol is long
investigated, describing optimal placements and patrolling
paths of robots in different scenarios [Elmaliach et al., 2008;
2009; Agmon et al., 2011; 2012]. The goal function in pre-
vious researches can be either maximizing the visiting fre-
quency at each point in the target area, referred to as fre-
quency based patrolling, or maximizing the rate of intrusion
detection referred to as adversarial patrolling, which is the
focus of this paper.
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In the problem of multi-robot adversarial patrolling, which
is a part of a research topic of security games [Agmon et al.,
2008b; 2011; 2008a; Paruchuri et al., 2006], a rational ad-
versary with full knowledge of the defenders’ patrol path and
positions will penetrate at the weakest point of the defence -
a point with minimum attendance probability. Therefore, an
optimal patrol strategy is the one that maximizes the minimal
penetration detection rate, achieved by calculating for every
point its ppd- the probability that a penetration through that
segment is revealed by some patrolling robot. It is proven
that the best patrolling strategy when facing adversaries of
different models is based on a symmetric placement of the
robots along the perimeter, namely, having them maintain
uniform spatio-temporal distance between them throughout
the execution. If the distance between every two robots is
less than penetration time of the adversary, then the robots
should adopt a deterministic strategy (never turn), and other-
wise they use random decision making. In those researches
the adversary has full information, or partial knowledge on
the entire perimeter.

An adversary having full knowledge about the defender
only in some portion of the segments was studied by [Zhang
and Luo, 2014; An et al., 2013; 2012]. There, the adversary
chooses targets he wishes to observe because learning the de-
fenders’ behavior in the entire perimeter is either too expen-
sive or too dangerous. The defender is aware of this adversar-
ial behavior and applies his best response. Furthermore, the
adversary can also update his belief model about the defender
based on his observations. In both researches, the adversary
has fixed observation duration, and if the defender knows this
time he can use it and maximize his detection probability. In
our research the adversary does not have the ability to choose
his surveillance area, and this is the base for our Window De-
ception model.

Another way to model the imperfect knowledge of the ad-
versary is to assume that his sensing ability is not perfect. In
[Yin et al., 2011], nature-created noise in both execution and
observation of adversary is presented. They developed RE-
CON, an algorithm based on an assumption that the noise na-
ture chooses is the one maximally reduces defenders’ profit.
In [Agmon et al., 2011] the case of imperfect sensing of the
defending robots is discussed and mathematical analysis of
velocity uncertainties is suggested when patrolling along a
open polygon. In all these researches, the defender does not
try to change the adversarys’ beliefs about his strategy or his
ability, as we do in this research.

3 Window Deception Model
In this research we study a group of k homogeneous robots
defending a perimeter of some closed polygon P from pen-
etrations. We divide P into N identical time segments S =
{si, 0 ≤ i ≤ N − 1}, i.e., each robot passes through one seg-
ment si per time cycle while monitoring it. In this linear envi-
ronment, at each time step a robot has two movement-options:
same-direction with probability p, or change-direction with
probability 1−p, which takes τ time units. We say the robots
are moving to the right side when they move counterclock-
wise, and to the left side when they move clockwise. The

Right directionLeft direction

s0 s1

sN−1

sd′

s|W |

F

W

Figure 1: Perimeter including window and fence placements.

robots cannot jointly occupy the same segment, thus they do
not change their relative order along the perimeter during the
patrol.

It takes the adversary t ≥ 1 time units to penetrate the
perimeter, and during this time it may be observed by the
patrolling robots. We denote by ppdi the probability that
an adversary passing through segment si will be detected
by some robot. Following the optimality proofs presented
in [Agmon et al., 2008b], we refer to a patrolling algorithm
that maintains uniform spatio-temporal distance between ev-
ery two consecutive robots throughout the execution such that
if they decide to turn (with probability p) they do so simulta-
neously, as basic patrol. We refer to a basic patrol with p = 1
(deterministic, and never turning) as a perfect patrol.

The first deception model we study is the Window De-
ception model. Here, the adversary does not see the entire
perimeter, but only a part of S called window, denoted by
W (of length |W |), and will penetrate through it. The rest
of perimeter, which is unseen to the adversary, is referred to
as fence, denoted by F (of length |F |), namely F = S\W .
We define the farthest left segments in the window to be s0,
the successive window segment to be s1, and so on (see Fig-
ure 1). We would like to preserve a perfect deception inside
the window so that the adversary will believe that this is the
true behavior also throughout the fence, and would not have
incentive to try penetrating through segments he can’t con-
tinuously observe, thus we cannot use open polygon (fence)
patrolling algorithms alongW (e.g., [Elmaliach et al., 2008]).

Our goal is to execute a patrol algorithm by the robots
along W so that the adversary will believe indefinitely that
there are k′ > k robots patrolling around the perimeter. In
this case we will say that the patrol algorithm achieves a de-
ception. Namely, there are no anomalies in the patrol execu-
tion along W , which will cause the adversary to realize that
there are less than k′ robots patrolling around the perimeter.

The adversary observes W and expects to see a basic pa-
trol, i.e., that all robots are fully coordinated with uniform
spatio-temporal distance between every two robots, and hav-
ing same momentary direction and speed. Since the num-
ber of robots determines the distance between them along the
closed perimeter of N segments, the way of achieving decep-
tion is by having the robots maintain a uniform distance of
some d′ = |W |

kW
between every two consecutive robots along

W (kW being the number of robots observed at one glance
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to W ), instead of d = N
k (which reflects the true number

of robots). Therefore, the deception algorithm allocates kW
robots to patrol W , referred to as window robots, and the rest
of kF = k − kW are used to preserve the deception and de-
fend F , referred to as fence robots. Note that each robot is
not limited to patrol inside a certain segment or sequence of
segments, but kW and kF are fixed throughout the execution.

3.1 Window Deception - Deterministic Patrol

Recall that a perfect patrol is a deterministic basic patrol with
p = 1. Clearly, if d ≤ t, then the perfect patrol maximizes the
probability of adversarial detection, guaranteeing that ppdi =
1 in every segment si ∈ S, i.e., every intrusion is detected.
We therefore begin our window deception research by trying
to perform deterministic patrols along W with d′ ≤ t. We
assume, without loss of generality, that the window robots
move to the right (counterclockwise).

Perfect patrol
Unfortunately, for perfect patrols we have the following neg-
ative result:

Theorem 3.1. It is impossible to simulate perfect patrol of
k′ > k robots along W for infinite time if the robots travel in
uniform velocity along P . 1

Proof sketch. Proving this theorem is based on examin-
ing the behavior of robots passing through F : every time the
rightmost window robot reaches s|W |−1 there should be some
fence robot waiting at sN−1 ready to enter W , otherwise the
deception is revealed at the next step. As the distance be-
tween robots inW is d′, once every d′ time units there should
be a fence robot waiting as described. Consider the first time
a robot leaves W . It will take it |F | time units to enter W
again, duration where only kF robots can preserve the de-
ception and enter W when needed. During |F | time units
|F |
d′ = N

d′ −
|W |
d′ ≥ k − kW = kF robots leave W . We con-

clude a robot leaving W does not reach its expected position
on time so the deception is revealed.

Changing Velocity
Perfect patrol by k′ > k robots cannot be simulated along W
since the robots exitingW cannot pass through F fast enough
to enter W again on time. Therefore, we now examine a way
to handle this restriction, by assuming that the robots have
the ability to travel in velocity vmax, faster than the constant
velocity of one segment per time unit.

Using this new movement ability, the robots travelling
through F can be ready to enterW only |F |

vmax
time units after

leaving W (instead of |F |). We get that it is possible to simu-
late only k′ ≤ Nvmax

|F |+|W |vmax
k robots patrolling alongW . This

bound is monotonically increasing as vmax increases, mean-
ing the faster the robots can move, the bigger k′ value we can
simulate.

1We omit some proofs due to lack of space. If accepted, the
proofs will be added in an 8-page version of the paper.

s0

Wandering robots
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Figure 2: Readiness areas settings (adjacent to window) and two
patrol regions. In this case d′ = 3, RAc = 1.

3.2 Window Deception - Random Patrol
We have shown that in perfect patrol the only way to sim-
ulate k′ > k robots patrolling W and maintaining the de-
ception is by changing robots’ movement velocity, meaning
making changes to the robots’ model. In this section we
wish to demonstrate the power of random behavior, which
allows us to implement deception based only on the patrol al-
gorithm (without changing the robots’ model). Recall that the
robots continue straight with probability p at each time step
(and turn with probability 1 − p). A patrol algorithm with
p = argmax{min ppdi}, i.e., one that maximizes the mini-
mal ppd along the perimeter [Agmon et al., 2011], is referred
herein as maxmin-random patrol (mrand, in short).

We wish to perform infinite time deception that can han-
dle every set of movement-options chosen randomly, i.e., for
p < 1. In the very unlikely case that all chosen movement-
options are same-direction option, Theorem 3.1 establishes
that no algorithm can preserve the deception indefinitely. To
avoid this case, we describe in the following section the basic
requirements from a mrand patrol execution.

Enabling Deception in Random Patrol - Basic
Assumptions
When executing a mrand patrol, movement-options are cho-
sen based on Binomial distribution. A patrol algorithm that
simulates a mrand patrol should satisfy the distribution de-
mand: the algorithm must have the same mean value of
movement-options distribution as a mrand patrol along W ,
so it seems as a mrand patrol to the adversary.

As stated, no algorithm can handle infinite same-direction
movement-options sequentially. We therefore define a contin-
uous demand: an adversary observing the algorithm can see
movement in the same direction that involves insertion of up
to RAc robots one after the other into W , where RAc is cho-
sen by the defender (determining RAc’s value is established
later in this section), but the algorithm cannot handle more
thanRAc×d consecutive same-direction movement-options.

To fulfill the continuous demand we place RAc robots
at each side of W (outside of W ) with distance d′ from
one another and from all window robots, and they perform
exactly like the window robots. Each sequence of seg-
ments where those robots patrol, {s|W |, ..., s|W |+d′RAc−1}
and {sN−d′RAc

, ..., sN−1}, is called readiness area. We refer
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to fence robots not populating readiness areas as wandering
robots. See illustration in Figure 2.

The patrolling robots can leave the readiness areas, so
the wandering robots are needed to repopulate them. We
therefore demand there exist at least one wandering robot,
meaning 2RAc ≤ kF − 1. As wandering robots can
be needed in both readiness areas and therefore cannot be
too far away from both of them, we define for each of
them a set of segments they should patrol in, referred to
as patrol regions. We also relate to each readiness area
as composed of RAc patrol regions, each of size d′. We
conclude there is total number of kF regions marked by
RAi, 0 ≤ i < kF (readiness areas are represented by regions
PR0, ..., PRRAc−1, PRkF−RAc

, ..., PRkF−1), and the size
of each region should be at least d′ (equal to or greater than
the distance between window robots). All region sizes are
fixed through the entire patrol, and at any time there is exactly
one robot allocated to patrol at each region, elected according
to fence robots’ relative distance to the window.

The patrol purpose of all fence robots is the same: each
robot should be at its currently allocated region facing the
same direction as all window robots (if the region is part of
some readiness area, the robot should also be at the correct
segment forming distance d′ from window robots), and at
any time to use the same movement decision as the window
robots use, only without leaving the region (so if needed it can
choose to stay at the same segment). When all fence robots
fulfill their patrol purpose we say the system is in a steady
state, and the deception is preserved.

Sometimes fence robots are not in a steady state, so the
prime task of each robot is to move into its correct region.
This process can take a while, and sometimes eventually de-
ception is revealed during that time. We therefore define the
terms that require we interfere in the random decision making
and return back into a steady state, a process called stabiliz-
ing phase. In order to satisfy the continuous demand, there
should always be at least RAc robots in both readiness areas
that satisfy their patrol purpose, all adjacent to the window
robots and to one another. We denote the minimal time it
would take all fence robots to return into a steady state by θ
and require that θ ≤ 2d′RAc, to guarantee that during sta-
bilizing phase the RAc robots are able to preserve the de-
ception. As a result, the number k′ of robots is bounded by
k′ ≤ 2N

|F |+2|W |k < 2k.
If a movement-option chosen at random results in a vio-

lation of those conditions, stabilizing phase begins. In or-
der to minimize the length of the stabilizing phase, regions
PRRAc

, ..., PRkF−RAc−1 should be of the same size2.

Deception by Random Patrol (Seemingly)
We now describe how the stabilizing phase is implemented,
satisfying all demands described. At the end of the stabiliz-
ing phase, each fence robot should be in its current segment,
satisfying his patrol purpose, and facing the same direction
as it was at the beginning of the phase. We, in fact, demand
that each window robot will start and finish stabilizing phase
at the same segment facing the same direction. We refer to a

2Full proof exists but was omitted due to paper size restriction

sequence of movement-options as a path, and a path in which
each window robot starts and finishes at the same segment
facing the same direction as a closed path. Closed paths must
contain an even number of movement-options and an even
number of change-direction movement-options.

During the stabilizing phase we also wish to satisfy the dis-
tribution demand, so the path we use is based on the origi-
nal Binomial distribution of p in the following manner: we
choose values out of the Binomial random variable until the
time it takes to perform the resulting path is equal to or
greater than θ. The number of movements chosen should be
even, otherwise the path could not be closed, so if needed
we choose one more random value. The time to perform
the resulting path is bounded by 2d′RAc + 2τ . Algorithm
1 describes how to convert the path described into a set of
movement-option returning all robots into steady state:

Algorithm 1 Seemingly Random Patrol

1: Closed path stage: edit the path to be a closed path.
2: Validation stage: make changes to the path so deception

is not revealed.

Closed path stage
We first wish to take the given path and create a closed path
that satisfies the demands described above. The following
lemma shows that the required number of changes to the orig-
inal path is minimal:
Lemma 3.2. Closed path stage takes the described path and
makes up to one order change and one movement-option
change to create a closed path out of it.

Proof sketch. The number of change-direction movement-
options must be even in a closed path, so if needed we
must convert one movement-option in the path, while still
fulfils the stabilizing phase demands. The converted de-
cision chosen is the one that optimally fulfilling distribu-
tion demand. We randomly replace one change-direction
movement-option into same-direction movement-option, and
using intermediate value theorem, there exist some same-
direction movement-option that if converted the resulting
path is a closed path.

We denote by χ the closed path received after performing
this change. All changes done are required and minimal, and
recalling that changing the order of decisions that were picked
randomly does not change expected value and variance of the
random variable, thus we satisfy distribution demand.

Validation stage
The validation stage takes χ and converts it into a path pre-
serving the deception, as some paths can cause all window
robots to move too much into one direction until there are no
robots ready to enter W when needed. We wish to choose up
to two movement-options that need a different placement in
χ.

At the beginning of the stabilizing phase, each window
robot can move up to δright ≥ 0 segments to the right and
up to δleft ≥ 0 segments to the left without revealing the de-
ception. Looking at one window robot (as they perform coor-
dinated patrol) starting at segment sdstable

, we mark by sdmax
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(a) closed path stage result
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(b) validation stage result

Figure 3: Validation stage demonstration. At 3a deception is
revealed while at 3b not.

and sdmin the maximal and minimal segments he would reach
executing χ, by treveal the first time he moves pass segments
sdstable+δright

or sdstable−δleft
, and by tsafe ≥ treveal the

first time his current and all next positions are in the range
between sdstable−δleft

and sdstable+δright
(see Figure 3).

We assume, without loss of generality, that
χ reveals the deception at the right side. We
mark several movement decisions at χ =
χ0, ..., χil , ..., χireveal

, ..., χimax
, ..., χisafe

, ..., χ2n−1:

1. χireveal
: Movement-decision finished at time treveal,

causing the first movement to sdstable+δright+1.

2. χil : We denote by sdl , dl ≤ dstable the leftmost seg-
ment the robot reaches before time treveal. χil is the
last change-direction movement-option from left to right
that happens before χireveal

at sdl .

3. χimax : Change-direction movement-option from right to
left after reaching sdmax for the last time.

4. χisafe
: Movement-option finished at time tsafe, causing

the last movement to sdstable+δright
.

Consider the movements happening between χimax
and

χisafe
. We marked by sdedge , dedge ≤ dstable+δright the left-

most segment the robot reaches during this time and let ρ =
dstable+δright−dedge

2 . We define δ = dmax−dstable−δright+
ρ. We denote by χh the first movement from sdmax−δ+1 to
sdmax−δ after tsafe.

There is at least one movement-option before treveal that
is changing-direction movement-option from left to right, so
χil must exist. We denote by χg the first movement from

sdl+δ−1 to sdl+δ after χil . Furthermore, χg must happen
before χireveal

as dstable + δright ≥ dl + δ. We look at χ̄ =
χ0, .., χil−1, χil+1, .., χg, χil , χg+1, .., χimax−1, χimax+1, ..,
χh, χimax

, χh+1, .., χ2n−1.
Theorem 3.3. It is possible to simulate mrand patrol of k <
k′ ≤ 2N

|F |+2|W |k robots along W for infinite time.

Proof sketch. χ̄ is a closed path, based on summing the
total distance the robot passed. During movement, the robot
does not pass segment sdstable−δright

, and only reaches to it,
so the deception is not revealed at any stage of movement.
The expected value of p the adversary observes is based on
the random decision of Binomial variable.

4 The Scarecrows Deception Model
In this section we wish to study another way a defender
can deceive the adversary, this time using scarecrow robots-
robots that look like real robots in the eye of the adversary,
but actually have no sensing abilities, and therefore are much
cheaper, require less communication resources and easier to
maintain compared to real robots, and we ignore them when
calculating the probability of penetration detection (they con-
tribute 0 to the calculation). We denote the number of scare-
crow robots by ks and the number of regular robots by k. We
study the case where k < N

t (otherwise we could have per-
formed a perfect patrol), and show how using scarecrows we
can successfully simulate perfect patrol.

We assume that the adversary does not know we use scare-
crows against him. The adversary sees Ω = k + ks robots
patrolling with distance d = N

k+ks between them, and since
he is rational, he will try penetrating through one of the seg-
ments where min ppdi is obtained: in perfect patrol where all
segments have ppdi = 1 in the eye of adversary, penetration
occurs at random through any segment with uniform distribu-
tion, and in mrand patrol when using k + ks robots and op-
timal p, penetration occurs through segments with min ppdi.
We wish to find the placement of scarecrows resulting in max-
imal expected ppd of the above segments (all or ones with
minimal ppd, in perfect of mrand patrol, respectively).

4.1 Combining Scarecrows in Perfect Patrol
Whenever d ≤ t the adversary expects to see a perfect patrol.
Allocation of scarecrows in this case is equivalent to dividing
all ks scarecrows into min{k, ks} groups, and placing each
group between two real robots along the perimeter. We wish
to find the optimal group sizes resulting in maximal expected
probability of penetration detection over all segments.

Let m = b tdc − 1, m represent the maximal group size we
can place between two real robots and still have ppdi = 1 at
all segments. If all scarecrows can be divided into groups of at
mostm scarecrows we would get ppdi = 1 at all segments, so
the placement is optimal. Otherwise, the difference between
every two group sizes should be at most 1, or by mediating
those group sizes we get bigger expected probability of pen-
etration detection in contradiction to division optimality. We
get that the optimal division into groups in this case is: k − b
groups of size bk

s

k c ≥ m and b groups of size bk
s

k c+ 1 > m.
Calculating the resulting expected penetration detection rate,
Theorem 4.1 follows.
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s0 s1 sd−1 s0

Right side robotLeft side robot min ppdi

Figure 4: A section of d segment with robots at so. The robot on
the left is a real robot, while the robot on the right is a scarecrow.

Theorem 4.1. Let m = b tdc − 1, b = (ks) mod k. When
performing perfect patrol of k real robots and ks scarecrows
placed optimally as described, the resulting expected proba-
bility of penetration detection along P is:

Exp
[
PPDks

]
=


kst
N + k−ks

k+ks 0 = bk
s

k c,m = 0
kt
N 0 ≤ m < bk

s

k c
(k−b)(m+1)d+bt

N 1 ≤ bk
s

k c = m < dk
s

k e
1 dk

s

k e ≤ m,m ≥ 1

4.2 Combining Scarecrows in mrand Patrol
We now combine scarecrows in mrand patrol, meaning t <
d. The optimal p used by the mrand patrol algorithm depends
on Ω. Furthermore, the more robots patrolling, the bigger
min
i
ppdi is. We wish to calculate the expected penetration

detection rate through segments with min ppdi.
Consider a single section of d segments (due to the symme-

try of the perimeter, all such segments are identical through-
out the perimeter). During a period of t time units, each seg-
ment is visited by at most one robot, since t < d. Therefore,
when calculating ppdi of some segment, we sum the prob-
abilities that the robot on the right and the robot on the left
will reach that segment (see Figure 4), and only them (no
other robot can reach those segments within t time units). We
mark by Exp

[
PPDks

]
i

the expected probability of penetra-
tion detection rate at all si along P .
Lemma 4.2. Regardless of scarecrows allocations,
Exp

[
PPDks

]
i

= k
k+ks ppdi for all i.

As conclusion, min{Exp
[
PPDks

i

]
i
} = k

k+ks min ppdi.

Theorem 4.3. When combining scarecrows in random pa-
trol using any placement of scarecrows, Exp

[
PPDks

i

]
=

k
k+ks min ppdi.

Proof. We know the penetration occurs in segments where
ppdi = min ppdi because the adversary does not know there
are scarecrows participating. Hence, the expected penetra-
tion detection rate at those segments is Exp

[
PPDks

i

]
i

=
k

k+ks min ppdi. The average expected value of all those seg-
ments is Exp

[
PPDks

i

]
= k

k+ks min ppdi, as required.

Corollary 4.3.1. Using scarecrows does not change the lo-
cation of segments where min ppdi is obtained.

Corollary 4.3.1 suggests that even if the opponent would
have known there are scarecrows participating, he would not
have changed his penetration strategy.

We now fix the total number of robots to be Ω, as
this is what the adversary sees and acts according to, and
place the robots optimally as described. Analyzing the re-
sults of Theorems 4.1, 4.3 we conclude that the function

Figure 5: Demonstration of scarecrows influence on Exp [ppd],
using t = 6, τ = 1,Ω = 8. For 2 ≤ d ≤ 6 the robots performed
perfect patrol, and for 7 ≤ d ≤ 12 the robots performed mrand

patrol.

Exp
[
PPDks

]
(k) is monotonically increasing at k when us-

ing fixed Ω, hence as the number of real robots in Ω increases,
Exp

[
PPDks

i

]
= k

Ω min ppdi increases.
We have fully implemented our scarecrow-based deception

model. We used fixed values of t, τ an Ω, and calculated the
influence of different values of k ≤ Ω and d on the resulting
Exp [ppd] (recall that k < N

t and d ≤ 2t − τ + 1). In Fig-
ure 5 a partial set of results is demonstrated. The case when
k = Ω represents the belief of the opponent, and for all val-
ues of d result in higher penetration detection rate compared
to all other k values. Using this analysis, the defender can
choose the tradeoff between expected probability of penetra-
tion detection the adversary assumes, and the actual expected
probability of penetration detection achieved, based on his re-
sources.

5 Conclusions and Future Work
This paper examines the problem of adversarial deception
in the multi-robot adversarial patrolling problem, along a
perimeter. We presented two different deception models. The
first model is based on the inability of the adversary to view
and act along the entire perimeter, thus the robots deceive the
adversary to think there are more robots than there actually
are. This is achieved either by adjusting the robots’ model
(velocity) if using a deterministic patrol strategy, or by ad-
justing the behavior of the robots, if using a random strategy.
In the second model, the team of robots consists of both real
robots and scarecrows, that just appear as real robots, but ac-
tually have no detection capabilities. In this case we have
showed that integration of scarecrows in patrol enables opti-
mizing defenders’ utilization of resources.

There are many directions we wish to pursue in the future,
including combining the two deception models, analyzing the
influence of deception on penetration detection rate along F ,
and adding new deception models (for example: different
window outlines and creating honeypots).
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