
Artificial Intelligence 274 (2019) 1–25
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Multi-robot adversarial patrolling: Handling sequential attacks

Efrat Sless Lin, Noa Agmon ∗, Sarit Kraus

Department of Computer Science, Bar Ilan University, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 August 2016
Received in revised form 10 February 2019
Accepted 14 February 2019
Available online 19 February 2019

Keywords:
Multi-robot patrolling
Adversarial modeling

Robot teams are commonly used for security tasks, where they are required to repeatedly
monitor an area in order to prevent penetrations, initiated by an adversary. Current
research in this field focuses mainly on detecting penetration attempts, but not on
responding. Requiring the robots to also inspect and handle the penetrations has a
significant impact on the patrol, as each penetration attempt also influences the robots’
behavior, making them vulnerable to multiple attacks. Moreover, a knowledgeable adversary
can initiate two sequential attacks, where the second attempt exploits the vulnerable
points caused by the requirement that a robot handle the first penetration attempt. In
this work, we consider the problem of sequential attacks and examine different robot
policies against such adversarial behavior. We provide an optimal patrol strategy for
various penetration attempt patterns. Our novel approach considers a full history-length
policy, while previous work only handled very limited lengths of history. The use of a
longer history improves the results. Moreover, we show how to significantly reduce, in
practice, the exponential space state of the problem, while maintaining the optimality of
the solution.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Robotic patrolling is becoming more and more prominent in the field of security [1–5]. In such problems, a team of
robots is required to repeatedly monitor an area (a perimeter in our case) in the presence of an adversary who is trying to
penetrate it. Such patrolling is applicable for guarding high security facilities, neighborhood watch, and more.

Previous work has focused on the robots’ goal to detect penetration attempts [1,6,7]. That is, once a penetration is de-
tected, the detecting robot reports it and leaves the penetration point to continue its patrol. Therefore, sequential penetration
attempts, coordinated or not, do not influence the patrol strategy and its performance. However, in realistic scenarios, the
robot might be required to handle the penetration as well, instead of leaving it. Possible ways to handle a penetration, for
example, are to scan the penetration point with additional sensors or to confine the intruder.

In an optimal patrol strategy for patrolling a perimeter, as established by Agmon et al. [1], the robots are distributed
uniformly along the perimeter and follow the same strategy, in a coordinated manner. However, they did not consider the
need to handle a penetration attempt. Extracting a robot from the patrolling force to handle a penetration attempt means
that an attack changes the structure of the team and causes them to be vulnerable to a consequent attack. Therefore, an
adversary which knows the robots’ patrol strategy and their locations can initiate two coordinated attacks in order to exploit
the robots’ responses.

* Corresponding author.
E-mail addresses: efrat.sless.lin@gmail.com (E. Sless Lin), agmon@cs.biu.ac.il (N. Agmon), sarit@cs.biu.ac.il (S. Kraus).
https://doi.org/10.1016/j.artint.2019.02.004
0004-3702/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2019.02.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:efrat.sless.lin@gmail.com
mailto:agmon@cs.biu.ac.il
mailto:sarit@cs.biu.ac.il
https://doi.org/10.1016/j.artint.2019.02.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2019.02.004&domain=pdf

2 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
After initiating the first attack at one location, the adversary will try to penetrate again through the vulnerable points
that are caused by the need to handle the first penetration. Thus, the remaining robots should reorganize to an optimal
patrol strategy. In order for the robots to start reorganizing, they are required to communicate reliably, either with each
other, or to a center of command. Three different phases should be considered: Phase I, the steady state for k patrolling
robots prior to the penetration attempt and extraction of the robot; Phase II, the reorganization phase (transitioning from
having k to k − 1 patrolling robots); and Phase III, the steady-state for k − 1 patrolling robots.

An optimal behavior maximizing probability of penetration detection for each steady state (for k and k − 1 robots) is
well established (e.g., [1]), thus we focus on achieving optimal behavior during the reorganization phase (Phase II), in which
the robots are most vulnerable to additional attacks. As an optimal patrol strategy is achieved for k − 1 robots after the
reorganization phase ends [1], an intuitive solution would be to minimize the duration of this phase. However, the shortest
reorganization phase results in a deterministic solution, meaning it is the most vulnerable to a knowledgeable adversary.
Moreover, we show that when the second penetration time is unbounded a-priori, any single reorganization time creates a
vulnerable strategy and there is a need to randomize over different possible durations in order to achieve an optimal patrol.

There are two common approaches for the multi-robot patrolling problem. The first maximizes the point-visit frequency
criterion (e.g., [8,9]), assuming that the robots do not act against a knowledgeable adversary. The second maximizes the
robots’ probability of detecting penetrations through the patrol path, originated by an adversary (e.g., [1,6]). Since we are
dealing with knowledgeable adversaries we consider the latter approach for the patrol strategies. A patrol strategy defines
the probabilities for the robots’ next actions. The model for the patrol strategy is defined by the robots’ patrol policy, for
example a Markovian policy. The optimal patrol strategy is determined by the optimization criteria.

For the most part, only first-order Markovian models have been considered in the literature [1,3,10,11], which means
that the previous locations of the robots have no effect on their next action. It is clear that the longer the history length of
the paths, the results achieved from the patrol can only improve, i.e. better penetration detection (or the same, at worst).
However, as shown in previous work, the ability to increase the history length is very limited [2,6,12]. This is simply due
to the fact that increasing the history length exponentially increases the problem size, making it unsolvable. Whereas, we
manage to consider high-order Markovian policies for robots with full history lengths of their paths.

In this work we present a novel approach that is able to consider the full history length (the complete paths), even
when the use of smaller history lengths fails to produce results. Our approach is based on performing preprocessing over
all possible paths for each robot, which leads the robot from its current position to its final position where it finishes the
reorganization phase, and then we find the optimal probability distribution over the paths for each robot. As the number of
all possible paths is exponential in the amount of time allocated to the reorganization phase, we show that it is unnecessary
to consider all of them, but only a small portion, without harming the optimality of the solution. This leads to a significant
drop in the state space of the problem.

The main contribution of this work is that it addresses the problem of sequential attacks, in a full knowledge adversarial
environment. Requiring robots to both detect and respond to events has not been considered in previous work with other
adversarial models. An additional contribution is the technical ability to consider higher Markovian order policies for the
robots, whereas in most previous works only the first order Markovian has been considered. The results are also supported
by extensive simulations.

The rest of this work is organized as follows. In Section 2 we review previous works related to our research. Section 3
includes a description of the problem settings, the adversarial model and the patrol task. In Section 4 we define the re-
organization phase, and we lay the foundations for this work in Section 5. In Section 6 we provide a polynomial optimal
patrol algorithm for the case in which the time between the sequential attacks is bounded. The unbounded case is handled
in Section 7, where we present our optimal algorithm and a Pareto optimization method for reducing the problem size. In
Section 8 we show how we have implemented the optimization problem and conducted experiments with perimeters of
different lengths (up to 84 segments) as well as experiments with more than 11,000 settings to show the efficiency of the
Pareto optimization in practice. Finally, we conclude our work and suggest venues for future research in Section 9.

2. Related work

The problem of multi-robot patrolling has received considerable attention in the literature over the past decade. The
problem has been investigated in different areas, for example perimeter patrol [1], patrol along an open fence [13], 2D
continuous environments [9] and graphs [8,14,15]. The problem has also been examined with respect to two different
perspectives of the patrolling robots: frequency-based patrol [8,13–15], where the robots’ goal is to optimize some point-visit
frequency criteria, (e.g., by maximizing the average frequency along the area), and adversarial patrol [1,2,6], where the robots’
goal is to detect penetrations controlled by an adversary.

For optimizing frequency criteria, the Idleness notion was introduced in [8,14,15], which marks the time between two
consecutive visits of some robot at a point. Marier et al. [15] considered online algorithms for solving the multi-agent patrol
problem. They modeled the problem as a graph where the travel time of each edge is defined by a probability distribution
which is a generalization of a certain travel duration. However, online algorithms optimize only for the current state at each
time point (agents’ current locations and Idleness of points) and, in order to determine the next state, consider only a subset
of states reachable from said point. This, however, may lead to non-optimal results. Thus, in our approach we consider all
possible states in order to ensure optimality.

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 3
Elmaliach et al. [9] considered patrolling a 2D area, determined the cyclic path, and placed the robots uniformly in order
to achieve uniform frequency. In this type of problem, the resulting (optimal) patrol strategy would be deterministic. Such
an approach is good for non-adversarial domains, or for random behavior of the adversary. It has been shown by Agmon et
al. [16] that when the adversary has no knowledge about the patrolling robots and acts randomly, an algorithm maximizing
the probability of penetration detection is the one that maximizes the point-visit frequency. In more realistic scenarios,
the adversary has some knowledge about the patrol. Previous work considered different adversarial models. An adversary
with full knowledge was considered in [1,6], and an adversary with partial information was considered, for example, in [5].
Villacorta et al. [5] followed an experimental approach to study deviations from the optimal behavior of the adversary,
contrary to our assumption that a full knowledge adversary will be the best responder and attack the most vulnerable
point.

A setting similar to our problem was investigated by Agmon et al. [1]. They considered the problem of perimeter multi-
robot patrol in the presence of a full knowledge adversary. The authors modeled the problem as a Markov chain, and
developed a polynomial-time algorithm for determining the optimal patrol strategy that maximizes the robots’ chances of
detecting the adversary. However, their solution deals only with the task of detecting one attacker at a time.

Another approach to adversarial patrol applies game-theory [2,6,7,11,17,18]. In these works the problem is modeled as a
Stackelberg game – a game consisting of a leader that sets its strategy first, and a follower that sequentially responds. Basil-
ico et al. [6] considered a single robot patrolling along a graph which contains targets of varied interests of the adversary.
They modeled the problem as an extensive form game with an infinite horizon, and adopted a leader-follower solution con-
cept. The patrolling robot is considered the leader, and the adversary the follower that can observe the leader’s actions and
acts as the best responder. The adversary is considered to have full knowledge, and a penetration time greater than zero.
The authors formulated a non-linear optimization problem to find the robot’s optimal randomized strategy. As stated by the
authors, non-linear problems are generally NP-hard. Though likely to be NP-hard, non-linear formulations are common and
appear in addition in [3,7,11]. One of the models that we consider in our work is similar to the formulation devised by
Basilico et al. [11], which extended the work of Basilico et al. [6] to consider multiple robots, which required adding more
non-linear constraints to the previous formulation.

All of the aforementioned formulations considered a first order Markovian model, namely the next action depends only
on the current state. Such a model was considered also in [1,4]. In [6] the authors defined the strategy for a higher Marko-
vian order, but performed experiments only for a first order Markovian policy, due to computational reasons. Basilico et
al. [2] showed that a first order Markovian model performs well, even though not optimally, compared to a higher order.
While we examined policies with varied levels of Markovian order. In our case they were also time-dependent strategies,
based on the fact that reorganizing is time-dependent.

Kučera and Lamser [19] suggest a new approach for modeling and analyzing patrolling problems using regular strategies,
that are not based on a Markovian model. Their approach is still nontrivial to compute optimally (constructable in expo-
nential time), however they are able to adjust to different history lengths by using rounds of improvements to an original
strategy. While their approach seems promising, they are still limited to a single patroller, and do not handle sequential (or
dependent) attacks. Therefore handling such complicated scenarios by regular strategies is currently impractical.

Time-dependent patrolling strategies have also been considered in previous research. Yin et al. [17] considered multiple
agents patrolling a transit system in order to detect illegal passengers. Agents move by trains which causes the patrol
graph to change according to time, making the strategy time-dependent. They modeled the problem as a Stackelberg game,
and followed an assumption that the patrol units can be represented as flow units. Their assumption results in a linear
formulation. This does not hold in our case, as we assume that penetration is not instantaneous, thus multiple robots
covering the same segment contribute the same as a single robot. Another time-dependent strategy was considered by
Bošanský et al. [3] who extended the work of Basilico et al. [11] to a time-dependent strategy in order to consider moving
targets. They modeled the problem as a two player non-zero-sum game and formulated a non-linear optimization problem,
with the same computation complexity issues of such formulations, as mentioned earlier.

To the best of our knowledge, the problem of sequential attacks, i.e., handling more than one attack that affects the
patrol, has been considered previously only in the conference paper version of this work [20].

The problem of handling events was considered in a non-adversarial environment, or when the adversary has no knowl-
edge. The latter was considered, among others, by Elmaliach et al. [9] and by Fazli and Mackworth [4]. Elmaliach et al. [9]
considered the extraction of robots due to failure, where they focused on minimizing the reorganization time. In the work
done by Fazli and Mackworth [4], the robots’ goal was to detect events (equivalent to penetration attempts). The events
occurred randomly, and the robots learned their distribution. Planning their paths was done in a decentralized manner. This
is equivalent to an adversary with no knowledge, but with a pattern of its penetration attempts. Jensen et al. [21] extended
the algorithm for the frequency-based patrol, and examined the problem of extracting robots for re-charging. These events
are predictable, and can be taken into consideration in advance, as opposed to attacks by adversaries. In all of these cases,
the robots’ goal is to adjust to the new state with one less robot, as quickly and efficiently as possible, by adopting a deter-
ministic behavior. This behavior is necessarily vulnerable to additional penetration attempts by a knowledgeable adversary,
thus cannot be used in our case. Note that our suggested solution may be used in case a robot is extracted from the team
due to a failure (yet still able to temporarily monitor parts of his surrounding area), if it is known that an adversary may
take advantage of the vulnerability of the robots during their reorganization phase.

4 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
The final issue concerns the size of the problem, which is affected by the policy of the patrol. In [17] in order to
confront the exponential number of paths, the authors proposed a compact representation, in which the agents’ strategy
considers a history of a length of two. As mentioned above, this representation cannot be applied when the penetration is
not instantaneous. Basilico et al. [2] considered solving large instances of security games, and decreasing the problem size
without utility loss by discarding dominated strategies. This was done by a computational exponential algorithm, but the
computational time was shown to be negligible in practice. This method yields optimal results for medium sized problems.
Another method presented involves utility loss, which handles large instances with sub-optimal results. These methods were
applied to a first order Markovian model. The algorithm of Basilico et al. for removing dominated strategies works under
their problem settings and model assumptions. Their settings are somewhat similar to ours, but differ in the fact that in
our case every node is a target, and turning around is costly. Consequently their implementation cannot be applied in our
settings to reduce the problem size.

Recent work by Basilico et al. [22] have considered the problem of detecting penetrations controlled by an adversary,
where the environment has an alarm system, that informs the defender of a penetration. The alarm system is noisy, and may
produce false positive alarms and missed detections, and determining an optimal strategy for the defender is APX -hard.
In our case, one can consider an initial penetration attempt as a false alarm, forcing the system to react to it. However, we
consider a multi-robot setting, in which the robot inspecting the alarm (penetration) is extracted from the team, thus the
focus is on the behavior in the transition phase (and not on the optimal way to react to the alarm).

This paper extends the work in [20], with an optimal patrol algorithm for the bounded case, and different policies
considered for the robots for the unbounded case.

3. Problem settings

The problem of handling sequential attacks consists of general settings regarding the patrol. In this section we formally
describe the patrol settings, the adversarial model, the patrol task and provide a formal definition of the problem. Note that
all notations are summarized in Table 1.

3.1. Patrol settings

In our settings, there are k homogeneous robots R = {r0, . . . , rk−1} that are required to patrol along a perimeter, i.e.,
a cyclic path around a closed polygon. The perimeter is partitioned into n segments S = {s0, . . . , sn−1}, with endpoints
ep0, . . . , epn−1, such that si , 0 ≤ i < n − 1 starts at epi and ends at epi+1 and sn−1 starts at epn−1 and ends at ep0. Without
loss of generality, we assume that the sections are numbered from s0 to sn−1 in a clockwise order (see example in Fig. 1).
Each robot travels through one segment per time unit. The length of the segments and the robots’ speed can differ from one
segment to another, as long as the motion time required to travel through the segments is equal. A segment is said to be
visited at some time if at least one robot travels through that segment during that time. Each robot has a set of possible ac-
tions, denoted by A, and at every step can move forward, turn around or stay put, respectively A = {C O NT , T U RN, ST AY },
where turning around has an associated cost, modeled in time. We use τ to denote the number of time units it takes the
robots to turn around. When an attempt to penetrate is detected, a robot must investigate it until the threat is eliminated,
necessitating the extraction of the robot from the team. During this inspection time the robot is still able to observe part of
the perimeter (this value is quantified in Section 4.1).

3.2. Adversarial model

The system consists of two coordinated adversaries (this is equivalent to one adversary initiating two attacks). We as-
sume that the time it takes for each one of the adversaries to penetrate lasts t time units, during which it may be detected
and captured by a robot traversing the segment in which it resides. Their joint goal is that at least one of them will
successfully penetrate the perimeter (that is, without being detected by the robots). Therefore, there are three possible
outcomes for the adversaries: <penetrated,outside> (indicating that the first attempt succeeded, the second was not initi-
ated), <captured,penetrated> (first attempt detected, second succeeded), and <captured,captured> (both attempts failed,
adversary detected in both cases). Both adversaries earn the same utility if they manage to achieve their joint goal.

Their most preferred outcome is that one of them will penetrate and the other will stay outside the perimeter. It is not
acceptable to the adversary that, in order to ensure that one of the attackers will penetrate for sure, the other attacker will
always be captured, which could be achieved by a simultaneous attack. Basing this statement on the fact that patrolling
algorithms require robots to maintain a constant distance between them [1], then for example, if the robots r0 and r1 are
placed in segments s0 and s j s.t. j > t , then initiating penetration attempts in segments st and s j−t+τ+1 will result in at
least one definite penetration. This is since during t time units r0 cannot reach st and r1 cannot reach s j−t+τ+1, meaning
only r0 can capture a penetration at s j−t+τ+1 and r1 at st . However, since it is not acceptable, we assume sequential attacks,
i.e., the second attack will be launched only if the first attacker is captured.

We consider three cases for the knowledge of the defender on the second penetration with respect to the detection of
the first attempt (certain knowledge):

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 5
Table 1
Notations.

Notation Definition

R Set of robots

k Number of robots

r j Robot j

S Set of segments

n Number of segments

si Segment number i

epi Endpoint i

A Set of actions for robots

τ Turning cost

t Adversary’s penetration cost

ta Adversary’s penetration initiation time

t0 Start time for the reorganization phase

t1, t2 bounds for the range of possible penetrations

dm Uniform distance between m robots

l j The path length of r j

lmax The maximal path length

v0(r) The initial position of robot r in the reorganization phase

vend(r) The final position of robot r in the reorganization phase

ppd(s, ta) Probability of penetration detection of segment s initiated at time ta

G := (V , E) The graph that models the problem

u, v A vertex consist of endpoint and direction

u′, v ′ A vertex with the same endpoint as v but counter direction

W (u, v) The cost (time) to arrive from u to v

ρ Reorganization time

πr A path of robot r

h History of a robot actions

I(s,πr),I(s,h) The contribution of πr or history h to detecting a penetration attempt at segment s

ppdr(s, ta) Probability of penetration detection of segment s initiated at time ta by robot r

ppdr1 ...r j
(s, ta) Probability of penetration detection of segment s initiated at time ta by robots r1 . . . r j

Pr,ρ (π) The probability of robot r to follow path π of length ρ

Pρ The set of Pr,ρ

ppd(P , s, ta) The ppd when the robots use probability distribution P

tm
min The lower bound of t for m robots

ρub[t1, t2] The upper bound for ρ to optimize ppd(t1, t2)

π [t1 : t2] the sub-path of π from time t1 to time t2

|π | The length of π

|h| The length of the history h

H The set of histories

Pr,h,a The probability of robot r to perform action a based on history h

� set of ρs

1. Known penetration period. The second penetration attempt is initiated at some known time.
2. Bounded penetration time. The second penetration is bounded in time [t1, t2], after the first penetration attempt is

detected.
3. Unknown penetration time. The second penetration attempt is initiated at an unknown time.

We consider a strong adversarial model, in which the adversary has full knowledge of the patrol strategy and the robots’
positions at the time of the first attack. The adversary chooses the segments to penetrate and the timing of both attacks
prior to the initiation of the first attempt. This assumption is applicable to cases where the adversary is required to organize
itself in advance (for example due to terrain challenges, and/or the need to remain unobserved), and thus commit to certain
penetration locations, without the ability to change those easily on the fly.

3.3. Patrol task

We define the Probability of Penetration Detection in a segment s of a penetration initiated at time ta , denoted by
ppd(s, ta), as the probability that an adversary trying to penetrate through s will be detected by some robot traversing s

6 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
during t time units of the penetration attempt (the t time units necessary for the adversary to complete the penetration).1

We would like to find a patrol algorithm that finds the optimal patrol strategies for the robot team when confronting
a strong adversary that will necessarily penetrate through the segment with the minimal ppd(s, ta) at time ta , i.e., an
algorithm that will maximize the minimal probability of penetration detection throughout the perimeter. More formally, the
optimization criterion is maxmins,ta ppd(s, ta).

Agmon et al. [1] proved that the optimal patrol algorithm that maximizes the minimal ppd along the perimeter for a
team of k robots is one in which the robots are spread out uniformly (in time, thus in segments) along the perimeter.
The distance between every two consecutive robots for k robots is denoted by dk (dk = n

k), i.e., the number of segments
between the robots. They also showed that the minimal value of t such that the robots can have a probability greater than
zero of detecting the adversary is dk+τ

2 . This value is denoted by tk
min . In their work, they defined a nondeterministic patrol

framework in which, at each time step, the robots either continue straight with a probability of p or turn around with a
probability of 1 − p. Based on this framework, it is possible to find, in polynomial time, the optimal patrol strategy for k
robots (characterized by the value p). Therefore, we choose to adapt a scheme where we distinguish between the behavior
of the robots in three different phases and optimize each phase:

1. Phase I: the steady-state prior to the extraction of the robot handling the first penetration attempt, i.e., patrolling by k
robots;

2. Phase II: the reorganization phase, where the team’s composition changes from k patrolling robots to k − 1 patrolling
robots;

3. Phase III: the steady-state of patrolling by k − 1 robots.

Since the optimality of the patrol strategy was established in [1] for phases I and III, in this research we focus on the
reorganization phase. Thus, we are concerned with the following problem:

Given k robots patrolling around the perimeter, where one robot is extracted from the team in order to handle a penetration at
location si , determine the optimal behavior for the robots that will maximize the minimal probability of penetration detection
along the perimeter during the reorganization phase.

4. The reorganization phase

The reorganization phase starts when a penetration is detected by one robot (that is assigned with handling the pene-
tration), and its teammates reorganize into their new positions. We denote the first penetration detection time by t0 , and
consider all times with respect to it (i.e. set t0 = 0). When a robot is extracted from the team to handle the first penetration,
the remaining k − 1 robots need to be organized such that they will again be spread uniformly around the perimeter, to
achieve optimal behavior [1]. The extracted robot remains close to the location of the initial penetration to handle the pen-
etration, and monitor the close environment for the detection of additional penetrations (refer to Section 4.1 for the exact
size of the monitored area). This robot’s involvement in the general patrolling task diminishes, and by the end of phase II its
sole responsibility is handling the penetration it detected. In order for the robots to start reorganizing they are required to
communicate reliably, either directly with each other, or through a central command. The set of final positions of the robots
is the set of positions in which all robots are placed uniformly along the perimeter.

First, we are interested in determining the set of final positions, and then we will determine the amount of time to
allocate for the reorganization phase, i.e., the time it will take the robots to reach their final positions. The duration of the
reorganization phase is denoted by ρ . Note that the length of the shortest path between a robot’s current position and its
final position varies from one robot to the other, and depends on its location relative to the penetration point. We use l j
to denote this path length for robot j, 1 ≤ j ≤ k − 1. The sign of l j indicates the direction of the path: + for clockwise
movement and – for counterclockwise movement. See illustration in Fig. 1.

Determining final positions It is apparent that as ρ grows, each robot has a greater range of segments it can visit during
the reorganization phase, thus ppd(s, ta) potentially increases. Hence, theoretically, it is preferable that ρ will have large
values. However, this contradicts the fact that the reorganization phase length should be minimized, since an optimal patrol
is achieved when all robots are organized uniformly. In order to find the ρ value that will balance this trade-off, we start
by finding the final positions for all the robots such that the reorganization time is minimized, i.e., minimize the maximal
distance that needs to be traveled by some robot from the team.

We assume, without loss of generality, that r0 is the extracted robot. We begin by proving the following supporting
lemma in order to find the final positions (by calculating the values of l j ’s). Let lmax := max1≤ j≤k−1|l j |.

1 We refer to the probability of penetration detection ∀ta along the perimeter as ppd.

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 7
Fig. 1. An illustration of the deterministic reorganization phase. The current positions of the robots are represented by large points. Each robot goes straight
to its final position. The robots to the right of r0 travel in counterclockwise direction (thus their path length is negative), and the robots to the left of r0

travel in clockwise direction (thus their path length is positive). dk denotes the distance between two consecutive robots along the perimeter in phase I,
and dk−1 denotes this distance in phase III (by k − 1 robots). The unvisited segments are vulnerable to attacks.

Lemma 1. For k robots that are spread uniformly around the perimeter with a distance of dk segments between every two consecutive
robots, once robot r0 is extracted from the system, l j = l1 + j−1

k−1 dk for 2 ≤ j ≤ k − 1, and lmax = |l1| = |lk−1| = 1
2

k−2
k−1 dk.

Proof. After reorganizing, the distance between robots r j and r j−1, j = 2 . . .k −1, is dk + l j − l j−1. The robots are distributed
uniformly along their final positions, hence they are within a distance of k

k−1 dk from each other, therefore dk + l j − l j−1 =
k

k−1 dk , and we find that l j = l j−1 + 1
k−1 dk . In addition, it is easy to verify that l j = l1 + j−1

k−1 dk .
In order to show the maximal value of l j (lmax), notice that there are two robots r1 and rk−1, within a distance of 2dk

from each other after the extraction of r0, and the rest of the robots remain within a distance of dk from each other. Since
2dk ≥ k

k−1 dk for all k ≥ 2, the minimal duration of reorganizing is achieved when these two robots head towards each other
in order to reduce the distance between them.

Thus lk−1 − l1 = 2dk − k
k−1 dk = k−2

k−1 dk holds. The minimum path length is achieved when lk−1 = −l1 = 1
2

k−2
k−1 dk . Hence the

minimum of the longest path length for all robots, denoted by lminmax , satisfies that lminmax ≥ 1
2

k−2
k−1 dk . The maximum of |l j |

is achieved at boundary points j = 1, k − 1 and |l1| = |lk−1| holds, therefore lmax = max|l j| = |l1| = lk−1 = 1
2

k−2
k−1 dk . Since lmax

is the longest path length, lminmax ≤ lmax holds, thus lminmax = lmax . �
Following Lemma 1, we can calculate the value of l j as follows:

l j = l1 + j − 1

k − 1
dk = −1

2

k − 2

k − 1
dk + j − 1

k − 1
dk = j − 1

2 k

k − 1
dk (1)

The initial position of r j , j = 1 . . .k − 1, is denoted by v0(r) and equals ep j·dk , thus we can calculate the final position of
r j (which is at a distance of l j from its current position) as follows:

vend(r j) = ep j·dk+l j = ep
j·dk+ j− 1

2 k

k−1 dk

= ep kdk ·(j− 1
2)

k−1

(2)

Similarly, we can compute the final position of each robot given any initial position and penetration segment.
After establishing the final positions by means of Equation (2), we will determine the reorganization time. A naive

approach would be for each robot to go straight to its final position and wait until the reorganization phase ends, thus
minimizing the time needed for reorganization. However, such an approach would create vulnerability points as there are
segments that will not be visited during t time units. This is defined more formally by the following definition.

Definition 4.1. Segment s ∈ S is said to be vulnerable if there exists ta such that ppd(s, ta) = 0.

Consequently, a knowledgeable adversary would manage to penetrate successfully through these vulnerable points. In
the example in Fig. 1, none of the points between the final positions of the robots and the current positions of the adjacent
robots will be visited during the reorganization phase using this naive algorithm. Thus, these vulnerable points can be
chosen for penetration by the adversary. We are therefore interested in a non-deterministic algorithm that will guarantee
that for each segment s around the perimeter, ppd(s, ta) > 0 during the reorganization phase.

Note that since each segment corresponds to one time unit of travel time, we refer to time and distance interchangeably.
The minimal ρ is equivalent to the maximal distance a robot will travel (straight) to its final position, after turning to its
direction (if needed). Therefore the following Corollary is derived directly from Lemma 1.

8 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
Corollary 1. The minimal ρ for reorganizing equals 1
2

k−2
k−1 dk + τ

4.1. Monitoring requirement from the extracted robot

The transition from k robots to k − 1 cannot be instantaneous, as the extraction of a robot leaves segments that cannot
be covered by the remaining robots during t time units. Thus, extraction creates segments that a knowledgeable adversary
will penetrate successfully through them. This means that the extracted robot needs to monitor several segments before its
extraction is completed. We are interested in guaranteeing that ppd(s, ta) ≥ 0 for every s ∈ S and ta ≥ t0. For that, every
segment must be covered between ta to ta + t for every ta ≥ t0. Therefore, it is necessary and reasonable to require that a
range of the segments close to the penetration location, that cannot be visited during that time by some robot ri �= r0, will
be observed by the extracted robot r0. We turn to determine the number of segments that r0 needs to monitor for every
t′ time units after t0. The number of segments that cannot be visited during a period of t time units after t′ time units
equals 2(dk − (t′ + t)). This is due to the fact that the number of segments between r1 and rk−1 is 2dk . During t time units,
r1 can visit at most t of the segments between r1 and rk−1. The same holds for rk−1. Therefore, the number of remaining
unvisited segments is 2(dk − (t′ + t)). These are the segments that must be monitored by the extracted robot r0. Note that as
t′ increases (more time has passed since the initial penetration occurred), this value decreases, i.e., r0 needs to monitor less
segments (and is not required to monitor any segment at all after dk − t time units). Now, that we have finished defining
the requirements of the reorganization phase, we turn to model the problem.

5. Problem modeling

Even though the final positions are determined in advance, there are still many strategies that can lead each robot from
its current position to its final position during ρ time units. As stated before, because a deterministic approach does not
perform well against a full-knowledge adversary, we need a randomized strategy. Unlike the steady state where the world
is symmetric, thus enabling each robot to execute the same patrol strategy, in our problem there is no symmetry, making it
necessary to calculate a different strategy for each robot. Randomizing at each endpoint does not guarantee that the robot
will arrive at its final position at the end of the reorganization phase. Therefore we randomize over the possible paths that
start at the current locations of the robots and end at their final positions after ρ time units.

In this section we describe the graphical modeling of the problem, and lay the foundations and algorithms for finding
paths for reorganization, and calculating the resulting ppd values determined by the possible paths, along with some given
probability distribution over the possible paths. This will be used for determining the optimal strategy for the patrolling
robots, based on the adversarial model.

5.1. Modeling the problem as a graph

Similar to [1], we model the problem as a directed graph in order to capture the directionality of the robots’ movements
(facing forward is different than facing backward, considering the time τ it takes the robots to turn around). The graph
G = (V , E) is constructed as follows (see the illustration in Fig. 2):

For each pair of an endpoint and a direction in the original problem we construct a vertex v = (epi, C W), and v ′ =
(epi, CC W), where CW stands for clockwise, and CCW for counter-clockwise. Edges are directed according to the direction
of the vertices, with a uniform weight of 1. If τ equals 1 (turning cost, equivalent to the time it takes to turn), then we
connect (v, v ′) to (v ′, v). If τ > 1, we add τ − 1 vertices between v and v ′ , such that the cost of arriving at v ′ from v and
vice versa is τ .

Note that G is actually a Markov chain representing the possible states of the system, which corresponds to the location
and direction of the robot.

5.2. Finding all possible paths

The behavior of the robots during the reorganization phase has to be random in order to handle a knowledgeable adver-
sary. In this case, we randomize over the possible choices of paths leading the robots from their current position to their
final position during ρ time units. First, we need to find the possible paths for each robot before further evaluation. This
number is calculated by the function NumberOfPaths(u, v, ρ), which, given the endpoints of segments in a given direction,
uses the entry (u, v) of the adjacency matrix M of the graph G (the Markov chain, as constructed above), in the power of
ρ (denoted by Mρ(u, v)):

NumberOfPaths(u, v,ρ) = Mρ(u, v)

The time complexity of calculating NumberOfPaths is defined by the time complexity of computing Mρ , which is O (nc ·
log(ρ)) for some fixed c, 2 < c < 3 [23] (Chapter 11.2.5).

Algorithm FindPaths(G, v0(r), vend(r), ρ) finds all paths of length ρ . The algorithm considers the modeled graph G , the
initial position and direction, encompassed by v0(r), and the final position and direction encompassed by vend(r). We denote
by W (u, v) the time it takes to arrive from u to v , for example, for some u′ , W (u, u′) = τ .

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 9
Fig. 2. Example of a weighted graph that takes into account the cost of turning around, τ .

This algorithm uses a Depth-First-Search (DFS) traversal on the graph G , which recursively generates the paths, and each
step continues only to branches that can yield a valid path of length up to ρ (until terminating in depth ρ). The algorithm
uses the function NumberOfPaths defined above to verify that the current examined set of paths in nonempty. Clearly, as it
uses a rigorous traversal of paths, it returns a complete set of paths between u and goal of length ρ . The time complexity
of FindPaths is O (#� · nc log(ρ)) and at most O (nρ+c log(ρ)) for some fixed c, 2 < c < 3.

5.3. ppd computation

The values of the ppd throughout the perimeter depend on the probability of each path being chosen. Suppose that for
each robot r we are given a set of paths, denoted by �r . We can compute in advance the contribution of each path to
every segment at every time of penetration initiation, denoted by ta . Let πr be some path of robot r, πr ∈ �r , and define
πr[ta : ta + t] to be a sub-path of πr between times ta, ta + t . The contribution of this path to the probability of detection,
denoted by I(s, πr)[ta], indicates whether or not a robot following πr visits segment s during t time units, starting at ta .

More formally, I(s, πr)[ta] ←
{

1 πr[ta : ta + t] contains s

0 otherwise
For every distribution of probabilities of selecting a path over �r , denoted by Pr , we can calculate the probability for

each robot to visit a segment s, denoted by ppdr(s, ta), ∀s, using the following Equation (3).

ppdr(s, ta) =
∑
πr

Pr(πr) · I(s,πr)[ta] (3)

Finally, ppd values are calculated by the complement of the probability that none of the robots will visit segment s.

ppd(s, ta) = 1 −
k−1∏
l=1

(1 − ppdrl
(s, ta)) (4)

This equation is non-linear, and it is computationally harder to solve non-linear constraints than linear or quadratic con-
straints. However, Equation (4) is equivalent to a set of quadratic equations. In order to show this, we define ppdr1...r j

(s, ta)

as the probability of robots r1 . . . r j to detect a penetration attempt to segment s initiated at time ta . By definition:

ppd(s, ta) = ppdr1...rk−1
(s, ta) (5)

Similarly, ppdr1...r j
(s, ta) is computed by the following Equation (6).

ppdr1...r j
(s, ta) = 1 −

j∏
l=1

(1 − ppdrl
(s, ta)) (6)

It is easy to see that the following holds for j > 1:

ppdr1...r j
(s, ta) = 1 − (1 − ppdr1...r j−1

(s, ta))(1 − ppdr j
(s, ta)) (7)

After simplification we get the following recursive calculation:

ppdr1...r j
(s, ta) = ppdr1...r j−1

(s, ta)(1 − ppdr j
(s, ta)) + ppdr j

(s, ta) (8)

The above equations assist us in iteratively calculating the ppd for each segment, by integrating the contribution of each
robot (by its paths).

10 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
Table 2
Optimal values of ppd with respect to the second penetration time range, [t1, t2].

Case Range maxminppd Section

A t1 = t2
1
2 6.1

B t1 ≥ dk − t
2 or t2 ≤ 1

2 (t1 + t − tk
min),t1 ≤ t − tk

min
1
2 6.2

C otherwise if t1 ≥ dk − t or t2 ≤ t + t1 − tk
min

1
3 6.2

D otherwise t(k−1)
2kdk

6.2

6. Bounded penetration period

In some cases, once a penetration attempt is detected, we can assume that a sequential attack will occur within a given
time frame, for example, between now and sunrise, or knowing that the adversary must spend some time to regroup, but
will still initiate an additional attack before the moon rises. In all those cases, the time frame for the next attack is known
to us (specifically, it is bounded). Therefore, in this section we consider the case where the time of the second penetration,
denoted by ta , is bounded and known to the defender. Formally, t1 ≤ ta ≤ t2 for some known t1, t2.

In this case it is sufficient to find an algorithm that maximizes the ppd between [t1, t2] regardless of the ppd values
in the times outside that range. Therefore we can choose the reorganization time ρ such that ρ > t2, and only need to
consider the sub-paths between [t1, t2 + t] for every robot. Moreover, between [t2, ρ] a deterministic path towards the final
position of each robot can be used. The number of possible sub-paths between [t1, t2 + t] is affected by the reorganization
time, ρ . This is because the final positions after ρ time units might be reachable from every position at time t2. The greater
ρ is, the more possible sub-paths exist between [t1, t2 + t] and thus the greater ppd values. In order to achieve the optimal
results we consider the state space of sub-paths to be all possible sub-paths, and compute ρ accordingly.

We denote by π [t1 : t2] the sub-path of π from time t1 to time t2, and let |π | denote the length of a path π . If π [t1 : t2]
is a sub-path of π of length ρ , then clearly for every ρ ′ > ρ there exists π ′ of length ρ ′ , such that pi′[t1 : t2] = pi[t1 : t2].
This means that for π [t1 : t2] there exists a minimal ρ such that π [t1 : t2] is contained in the set of sub-paths for paths of
length ρ ′ , ρ ′ > ρ . We wish to extend this so that we are interested in finding such a ρ that its set of sub-paths between
[t1, t2] contains all possible sub-paths between [t1, t2]. We denote this bound by ρub[t1, t2]. That is, using ρ = ρub[t1, t2]
yields the maxmins,ta ppd(s, ta) during [t1, t2], and any greater ρ yields the same value.

Lemma 2. ρub[t1, t2] := 2t2 + 2t + lmax + τ is an upper bound for the minimal ρ such that maxmins,ta ppd(s, ta) remains the same
for every ρ̃ > ρ during [t1, t2].

Proof. In order to prove that ρub[t1, t2] is an upper bound, it is sufficient to prove that:
{π [t1 : t2] such that |π | = ρ} = {π [t1 : t2] such that |π | = ρub[t1, t2]} for ρ ≥ ρub[t1, t2], which means that sub-paths of

length t2 − t1 + 1 from all paths of length ρ are the same as sub-paths of paths of length ρub[t1, t2], hence they have the
same ppd. A path of length t2 + t can be at most t2 + t + lmax from its final position. In order for a path of length ρ to be
of that distance, ρ needs to be greater than 2t2 + 2t + lmax + τ . �

We turn to present the main theorem of this section regarding the computational complexity of the algorithm when the
time frame of the second penetration is known.

Theorem 1. If the time range of the second penetration is known, then a polynomial time algorithm exists that guarantees optimal ppd
values.

In order to prove this theorem, we consider several cases in the following Lemmas, 3–7. We distinguish between the case
where the penetration time is known exactly (t1 = t2), and the more general case of a range of values for the penetration
time. We partition the problem into four different cases of ranges of [t1, t2]. For each case we find optimal patrolling
algorithm and the optimal resulting maxminppd. A summary of the cases and our results is presented in Table 2.

6.1. Known exact penetration time

We examine the first case, in which the exact time that the adversary is going to initiate a second penetration is known
(Case A of Table 2). This assumption is not necessarily realistic, but its results provide an upper bound to the guaranteed
probability of detection of all other cases, thus important to analyze. Since the penetration time is known, only the period
of [ta, ta + t] is of interest to us. During a single period of t time units, it is sufficient for the robots to use only two paths
that together visit all points in the area, as t >

dk
2 . This yields ppd values of 1

2 . We prove this in the following lemma.

Lemma 3. In the case where ta is known a-priori, an optimal patrol algorithm with polynomial time complexity exists which guarantees
that maxminsppd(s, ta) = 1 .
2

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 11
Proof. When the distance between each pair of consecutive robots is at most 2t during the reorganization phase, then all
segments can be visited by one of two paths for each robot: one forward and one backward, yielding ppd value of at least
1
2 . Therefore, in order to prove the lemma, it is sufficient to show that at each time step between [ta, ta + t], the distance
between every two consecutive robots (except for r0) is less than 2t .

In order for k − 1 robots to be able to handle a second penetration in the steady state, t must be greater than dk−1+τ
2 ,

therefore 2t ≥ dk−1. In the steady state the distance between each pair of consecutive robots is less than 2t , which means
that also during the reorganization the distance between them is less than 2t . The greatest distance between two consecu-
tive robots is between r1 and rk−1 and equals 2dk . Reducing this distance to 2t requires dk − t time steps. Since the initial
distance between the rest of the pairs of robots equals dk , which is already less than 2t , the remaining robots are required
to move less than dk − t segments to ensure a distance of at most 2t between them. Thus, for ta ≥ dk − t , the robots can
assure that they are distant at most 2t at time ta . Then, if each robot moves forward or backward with a probability of 1

2 ,
all segments will be covered for t time units with ppd(s, ta) = 1

2 . Hence the lemma holds for ta ≥ dk − t as maxminsppd = 1
2 .

If ta < dk − t , then the segments that are required to be visited between [ta, ta + t] are segments sdk−(t+ta) . . . sn−(dk−(t+ta))

(all segments besides 2(dk −(t +ta)) segments around ep0). Let r1, rk−1 head towards ep0 for ta time units. They are within a
distance of t from the segments that need to be visited. The distance between every remaining robot and their consecutive
one can be less than 2t in less than ta time units, because robots r1, rk−1 move only ta segments away. The number of
segments where the middle robots move in opposite directions is less than the number required for full reorganization.
Therefore, ∀s ∈ S {sn−(dk−(t+ta)) . . . , s0, . . . , sdk−(t+ta)}, the probability of a robot visiting it is at least 1

2 , completing the
proof. �

This result is the best that can be achieved, because the assumption for the second penetration time is the strongest.
Thus we achieve an immediate Corollary for an upper bound of maxmins,ta ppd(s, ta) for all settings.

Corollary 2. maxmins,ta ppd(s, ta) ≤ 1
2 for any setting.

6.2. Known penetration time range

We now assume that the exact timing of the second attack is unknown, however it is bounded between a given range.
That is, ta is a-priori known to be within [t1, t2] for some known t1, t2. In the following lemmas we analyze the effect of
the different values of t1, t2 on the maxmins,ta ppd(s, ta) that can be achieved for ta ∈ [t1, t2].

In the following lemma we consider Case B (Table 2), where t2 ≤ 1
2 (t1 + t − tk

min) and t1 ≤ t − tk
min , or t1 ≥ dk − t

2 .

Lemma 4. A patrol algorithm exists such that mins,tppd = 1
2 for t ∈ [t1, t2] if and only if t2 ≤ 1

2 (t1 + t − tk
min) when t1 ≤ t − tk

min, or
t1 ≥ dk − t

2 .

Proof. For each robot we determine two paths, as illustrated in Fig. 3 (a). For r1, rk−1, the first path is towards ep0, and on
the second path the robot proceeds x segments towards ep0 and then turns around. The remaining robots have two paths
in opposite directions, where they proceed x segments in each direction and then turn around. The segments between r1
and r2 must be visited during t1 + t time units. Due to the fact that rk−1 heads in the opposite direction, the paths for
r2 . . . rk−2 must be symmetric, hence they will visit at most dk

2 segments, therefore x − t1 + x + τ + dk
2 ≤ t (to guarantee a

nonzero probability of reaching each segment) which yields x ≤ 1
2 (t1 + t − dk

2 − τ) = 1
2 (t1 + t − tk

min). The segments with
a distance of x + 1 from r1 and rk−1’s initial positions will not be visited after the first visit, which means that the patrol
algorithm is appropriate for values of ta such that ta ≤ x, resulting in t2 ≤ 1

2 (t1 + t − tk
min). If t1 > t − tk

min then there cannot
be a path that visits both the segment within the distance of 1

2 (t1 + t − tk
min) and the segment within the distance of dk

2 in
the opposite direction.

If t1 ≥ dk , then during dk − t time units paths exist such that the robots can be within a distance of at most 2t from
each other. From that state we determine for each robot both a path going forward and a path that turns around for t

2 − τ
time units and then turns around again and continues forward, as illustrated in Fig. 3 (b). All segments will be visited after
dk − t + 3t

2 , which means that from ta = dk − t + t
2 all segments will be visited during the following period of t time units.

Hence if t1 ≥ dk − t
2 then mins,t ppd = 1

2 for t ∈ [t1, t2]. The amount of time between a visit in a segment to the next visit
will not be greater than t time units. An overlap by r j, r j+1 for some 1 ≤ j ≤ k − 2 in the segments not between their
location can occur after dk time steps. Thus the second visit is carried out by the same robot. This results in paths of either
the first or second case. They are sufficient to visit the segments if t1, t2 satisfies the inequalities. By Corollary 2 we find
that 1

2 is the greatest result possible, hence the result is optimal for this case. �
In the following lemma we consider Case C (Table 2), where 1

2 (t1 +t −tk
min) < t2 ≤ t1 +t −tk

min when t −tk
min < t1 < dk − t

2 ,
or t1 ≥ dk − t .

12 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
Fig. 3. The paths for the robots to achieve ppd = 1
2 (a) when t2 < 1

2 (t1 + t − tk
min). (b) when t ≥ dk − t

2 . The y-axis represents the robots’ location, while
the x-axis shows the progress along time. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. The paths for the robots to achieve ppd = 1
3 (a) when t2 < t + t1 − tk

min; (b) when t1 ≥ dk − t . The y-axis represents the robots’ location, while the
x-axis shows the progress along time.

Lemma 5. A patrol algorithm exists such that maxmins,ta ppd(s, ta) = 1
3 for ta ∈ [t1, t2] if and only if 1

2 (t1 + t − tk
min) < t2 ≤ t1 + t −

tk
min when t − tk

min < t1 < dk − t
2 , or t1 ≥ dk − t.

Proof. We first examine the case where t1 < dk −t . For each robot we determine three possible paths, as illustrated in Fig. 4.
For r1, rk−1 the paths are: (1) A path heading toward ep0; (2) A path waiting t time units and then heading toward ep0; (3)
A path waiting x time units and then turning away from ep0. The first two paths visit the segments toward ep0 for 2t time
units. The third path must visit dk

2 segments within t time units starting at t1. Hence x = t1 + t − dk
2 , and the greatest value

t2 can have is x, since s1 would not be visited during t time units after x + 1. Therefore t2 ≤ x = t1 + t − dk
2 . If ta ≤ dk then

there are no overlaps between the segments outside r j, r j+1. This means that the lowest ppd(s, ta) for ta ∈ [t1, t2] equals the
lowest probability given to one of these paths.

Let us observe three segments with different possible penetration times: segment s(1) = sdk−(t+t1) when t(1)
a = t1, seg-

ment s(2) = s 1 k when t(2)
a = 1 (t1 + t − tk) + 1, and segment s(3) = s d when t(3)

a = t1.
d−(2 (t1+t−tmin)+τ) 2 min d+ 2

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 13
Fig. 5. Distinct cyclic paths that visit their segments (y-axis) for any range of t time units (x-axis).

Only a direct path for robot r1 toward ep0 can visit segment sdk−(t+t1) during the first t time units after t1. This path
cannot visit segment s(2) or segment s(3) , for t(2)

a , t(3)
a , respectively.

The distance between s(2) and s(3) equals 1
2 (t1 + t − tk

min) +τ + dk
2 = 1

2 (t1 + t + tk
min). When t1 > t − tk

min then this distance
is greater than t . Therefore, no single path exists that visits both s(1) and s(2) during the same t time units. If r2 does not
visit s(3) when t(3)

a = t1, then it must be visited by r1 and we hence no path of r1 can visit more than one of these segments
in the examined penetration time. If r2 does have a path that can visit s(3) , then it does not visit the segment sd+ t

2
when

ta = t1. The distance between this segment and s2dk is dk − t
2 , which is greater than t . In other words, if r3 does not visit

the latter segment then r2 must visit it, and hence r2 has no path that can visit more than one of these three segments.
Similarly, it is proven that no robot exists with a path that allows it to visit more than one of the three segments it must
visit. Therefore, any additional path would influence the ppd of only one of the segments, and the optimal solution is to
have a uniform distribution over three paths.

If t1 ≥ dk − t , then at t1 the robots can be within a distance of at most 2t from each other. We determine a path forward
for each robot, a path that turns around for t

2 − τ time units and then turns around again and continues forward, as well as
a path backward. After t

2 all segments are visited by all pairs of the first two paths of each robot. The third path is required
to be visited between dk − t to t . No additional path can visit all of the segments that the two paths have already visited.
Hence, ppd(s, ta) = 1

3 is optimal for ta ∈ [t1, t2]. �
We now prove the last case, Case D (Table 2). In order to prove the guaranteed probability of detection in this case, we

must first prove a supporting lemma regarding the partitioning of the segments into distinct cyclic paths. Afterwards we
will allocate each robot such paths, which will yield the desired lower bound. The paths are illustrated in Fig. 5.

Lemma 6. Let π be a cyclic path that consists only of segments within a distance of at most x from the starting position. Then π visits
each of its segments during any range of t time units if x ≤ t−τ+1

2 .

Proof. The time to return to the segment of the starting position is x − 1 + x + τ = 2x + τ − 1. In order to visit every
segment within any range of t it is then required that 2x + τ − 1 ≤ t . Thus the distance is t−τ+1

2 . �
The final case, Case D, applies when the conditions required for cases A, B, C do not hold. In the following lemma we

provide a lower bound for the optimal ppd values for all of the possible settings in this case. The paths that we use are of
the form presented in the previous lemma with a uniform probability distribution.

Lemma 7. A polynomial patrol algorithm exists that guarantees that in the worst case maxmins,ta ppd(s, ta) ≥ t(k−1)
2kdk

, which is at least
1
4 .

Proof. The number of paths with a distance of t−τ+1
2 that visit n segments is 2n

t−τ+1 . We allocate the paths uniformly
between the robots, and for each robot define a uniform distribution over its paths. Then for each path of k − 1 robots
the probability is (t−τ+1)(k−1)

2n = (t−τ+1)(k−1)
2kdk

. Since t ≥ 1
2

k
k−1 dk + τ , it holds that the probability is greater than or equal to

1 . �
4

14 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
Thus, by Lemmas 3–7 we have proven Theorem 1, which states that there exists a polynomial time algorithm yielding
the optimal ppd values. Moreover, we have shown that when the penetration period is known to us the optimal maxminppds
are 1

2 at best, and 1
4 at worst.

7. Unbounded penetration period

In the most general (and probable) case, when handling one penetration attempt, it is unclear when the second pene-
tration will occur. That is, the time of the second penetration attempt is unbounded. We formulate a general optimization
problem and consider three specific models for computing the ppd. But first we discuss the differences between this case
and the bounded case, which will lead us to conclude that the reorganization time must be randomized.

In the previous case we maximized the minimal ppd during a bounded period, which enabled the selection of a ρ
(reorganization time) that may result in a ppd value that could even be higher than the steady state. This is due to the fact
that we were able to neglect the time after the second penetration occurred (unlike the steady state, that must guarantee a
uniform behavior over time, since a penetration may occur at any given time).

As an example, consider the case in which n = 84, k = 7, t = 8, ta = 0. Let us choose ρ = 15, which means that although
the first t = 8 time units are handled, the remaining ρ − t = 7 time units are ignored during the optimization. This allows
the robots to be very well prepared against a sequential attack during that time, but not against general attacks that may
occur at any time. Following this example, the minimal ppd in the steady state for k = 7 robots is 0.15, for k − 1 = 6 robots
it is 0.05, and during the reorganization phase (the first t time units) it is 0.5. However, if a penetration is initiated after
12 time units (and not at time 0) while the original patrol scheme in use, then the minimal ppd drops to 0. The reason
is that the probabilities were chosen to handle a penetration attempt only at time 0. Segments with ppd = 0 are points of
vulnerability for a definite successful attack by the adversary. This means that a patrol scheme designed against a bounded
penetration period cannot be used in the unbounded case.

We start by proving that there are points of inevitable vulnerability during the reorganization phase, in every possible
choice of a single ρ for reorganization. In the bounded case we could increase ρ in order to avoid them, because the
penetration time is bounded. The problem arises when the penetration can occur at any time during the reorganization
phase, even during the vulnerability points. Therefore, increasing ρ in this case would not solve the problem, thus we must
randomize the ρ value, to avoid vulnerability.

Lemma 8. For ρ − 1
2 dk−1 ≤ ta ≤ ρ − t + 1

2 dk−1 , a segment s exists such that ppd(s, ta) = 0.

Proof. After ρ time units all robots are located at their final positions of the reorganization phase (established by Equation
(2)). For ρ − t ≤ ta ≤ ρ , at time ta each r j is at a distance of at most ρ − ta from its final position. During the remaining
t −(ρ−ta) time units, the robots are in the steady phase, and each r j can be at a distance of at most t −(ρ−ta) from its final
position of the reorganization phase. Thus, during t time units each robot is at a distance of at most max(ρ − ta, t − (ρ − ta))

from its final position. This is illustrated in Fig. 6. If none of the segments is overlooked then each pair of robots visit all of
the segments between their final positions, at a distance of dk−1. Thus, it is necessary that 2 max(ρ −ta), t − (ρ −ta)) ≥ dk−1,
which implies either ta ≤ ρ − 1

2 dk−1 or ta ≥ ρ − t + 1
2 dk−1, meaning that when ρ − 1

2 dk−1 ≤ ta ≤ ρ − t + 1
2 dk−1 segments

with ppd(s, ta) = 0 exist. �
The above lemma implies that if the opponent has full knowledge of the patrol scheme, namely, algorithm and robots

positions, and in particular, ρ and the final positions of the robots after reorganizing, it can choose to penetrate during that
time and it will be guaranteed to succeed.

Corollary 3. maxmins,ta ppd(P , s, ta) = 0 for a single reorganization time

As a corollary, ρ must be randomized in order to ensure ppd(s, ta) �= 0 for all ta . This is only true in the unbounded pen-
etration period case, as the adversary’s initiation time is not limited. In the bounded penetration period case, it is sufficient
to choose a greater enough ρ . In that case, the robots’ arrival to their final positions does not need to be optimized and the
robots only need to maximize the number of segments visited during the period and choose their paths accordingly. Opti-
mizing the entire reorganization phase requires considering the reorganization constraints and possible vulnerability points
when choosing the ρ values. If we were to guarantee only that min ppd > 0, then using two different values of ρ would
be sufficient, with some probability greater than zero for each one of them. Since all robots must end the reorganization
phase at the same time, all robots must draw paths for the same ρ . Consequently each robot can draw a path only after
a ρ is drawn. Hence, in order to optimize the coverage of the vulnerability points, there is a need to consider the different
reorganization times along with the different paths for each case. We discuss the robots’ behavioral model in Section 7.1,
the solution for the optimization problem in Section 7.2, an approximation to the optimal solution in Section 7.3, and report
experimental evaluation of the approximation vs. optimal solution in Section 7.4.

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 15
Fig. 6. The limitations on the distance of the robots from the final positions. (a) represents the most distant positions of the robots after ta ≤ ρ time units
(during reorganization). (b) represents the most distant positions of the robots during the remaining period of t (after the reorganization phase).

7.1. Robots’ strategy model

In most of the previous work, the patrol strategy of the robot was considered to be a first order Markovian, where
the next position is only affected by the current position. We consider the robots’ strategy model to be Markovian, with
a history length |h|, of 1 ≤ |h| ≤ ρ . The parameter |h| affects the state space of strategies which the patrol algorithm
considers. Obviously, optimal results are guaranteed only within each state space of strategies with the defined Markovian
order. It is clear that larger history lengths can only improve results, because they contain all of the strategies with shorter
history lengths. This introduces a trade-off between optimality and the size of the state space. The size of the state space
is exponential in |h|: at each time step, a robot may decide to perform one of three actions: {CONT,TURN,STAY}. Thus for
a given initial position, there are 3|h| different possible histories with length |h| starting at that position. Since there are n
possible initial positions, there are n · 3|h| different histories. A patrol strategy consists of ρ decision points, therefore the
size of the state space is O (ρ · n · 3|h|)

7.2. Optimization problem

In order to solve the problem when the penetration period is unbounded, we formulate it as an optimization problem
that finds probabilities for robots’ actions that will maximize the minimal ppd. In this subsection we discuss the different
parts of the general reorganization algorithm for the robots in three steps:

I Given a set of possible ρ values, formulate the general optimization problem (Section 7.2.1)
II Compute the ppd constraints, given a certain reorganization time ρ (Section 7.2.2)

III Combining I+II into a general optimal algorithm, maximizing the minimal ppd value during the reorganization phase
(Section 7.2.3)

7.2.1. General formulation
The patrol scheme first randomizes its reorganization phase length and then randomizes over the paths of each robot.

The set of multiple ρs is denoted by �, and the probability for each ρ by qρ . Nevertheless, when considering various values
of ρ , all ppds of different ρs must be computed at the same time using the same optimization problem.

Separating the solving process into two phases, where the first finds the optimal ppds for each ρ separately and
the second finds the optimal probability distribution over ρ , is useless. This is a result of Corollary 3 which states that
maxmins,ta ppd(Pρ, s, ta)) = 0, thus maxmin

qρ

∑
ρ (qρ · maxmins,ta

Pρ

ppd(Pρ, s, ta)) is 0 for every settings. This motivates the use

of a combined solution, that randomizes over the combination of both, together.
Therefore, all paths of different ρs must be considered together. This leads to the general formulation of the optimization

problem, where each specific model defines the constraints of the computation of ppdρ(s, ta). optimiaztionProblem(R, S,�,

T , �):

max m (9)

ppdρ(s, ta) constraints s ∈ S, ta ≤ ρ (10)

ppdρ(s, ta) = steady(s, ta) s ∈ S, ta > ρ (11)∑
π∈�r,ρ

Pr,ρ(π) = 1 r ∈ R,ρ ∈ � (12)

Pr,ρ(π) ≥ 0 r ∈ R,ρ ∈ �,π ∈ �r,ρ (13)

16 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
∑
ρ∈�

qρ = 1 (14)

qρ ≥ 0 ρ ∈ � (15)

ppd(s, ta) =
∑
ρ

qρ · ppdρ(s, ta) s ∈ S, ta ∈ T (16)

ppd(s, ta) ≥ m s ∈ S, ta ∈ T (17)

Constraint (10) calculates the ppds contributed by each ρ with respect to the distribution {Pr,ρ}. In the following sub-
section we will present different models for representing the ppd constraints. Constraint (11) considers the values of the
ppds after the reorganization phase, where the ppd values are calculated using the patrol scheme introduced by Agmon et
al. [1]. Constraints (12)–(15) are probability properties for Pr,ρ and qρ . The combined ppd equals the expected value of the
ppdρs, as shown by constraint (16). Finally, constraint (17) guarantees that m is a minimum of the ppd values. Combining
this while maximizing m by the objective function in (9) results in m equaling the maxmins,ta ppd(s, ta).

7.2.2. ppd constraints
First we begin by determining the constraints for the ppd calculation based on a single reorganization duration ρ . We

will later use this to randomize over possible ρ values.
We examine three different models of formulations to calculate the ppd based on the policy of the robots. All three

models optimize the ppd for its policy, that is, the models of formulations are used to solve the same optimization problem:
maximizing the minimal probability of detection (given a ρ value), and provide the calculation of ppd values for this
purpose. The difference between these models is the amount of pre-process required for the formulation.

The first model—BGA extension—considers any Markovian order |h| and adds helper variables to compute the ppd. This
is an extension of previous work (e.g., [6]). This model does not require any pre-processing for computing the ppd.

The second model—HISTORY-T—enables any |h|, but with an exponential of t instead of |h| to be considered. The model
requires pre-processing of computing the contribution of paths of length t . This model is a novel formulation.

The third model—FULL model—considers histories of ρ length and thus includes all of the solutions of histories of
different lengths. The model requires pre-process of computing contribution of paths of length ρ .

Surprisingly, the first two models failed to produce results in experiments, while the third model, which considers all of
the histories, succeeded. This is further discussed in Section 8.3.

We define the history as a sub-path of length |h| segments in a specific time. This definition is affected by the reorganiz-
ing requirement, which requires the robots’ actions be taken into account with respect to the robots’ locations, rather than
only the actions. This is due to the fact that the positions of the robots with respect to their final positions should affect the
probabilities of the next action. In addition, the history model contains time specification, as the current time of the patrol
with respect to the time of reorganization should also affect the probabilities. The history, H , is modeled by a sequence
of vertices, {vi}|h|

i=1. The decision variables are of the form Pr,h,a where r ∈ R , a ∈ A (the actions) and h ∈ H , meaning the
probability that robot r will perform an action a given the last |h| vertices that occurred are encompassed by h.

The first model, the BGA extension, is an extension of similar formulations from previous work [2,3,6]. The original
formulation considered a set C of n cells represented by a graph G , to be patrolled by a single patroller, with Markovian
strategy of order 1. The intruder has penetration cost of di (t in our notations). To compute the probability of capturing the
intruder they used helper variables γ h,w

i, j to denote the probability that the patroller reaches cell j from cell i in h steps
without passing through cell w . Capturing an intruder at cell q given that the patroller is in cell i is with probability of
1 − ∑

i∈C\q γ
d,q
s,i .

The new formulation (BGA extension) extend this model to support reorganization constraints, greater history length and
multiple robots.2 This model requires an exponential number of paths in |h|, but for small values of |h|, it is considerably
small. The main issue is the helper variables γ which consider the probability of visits between any pair of vertices at any
time. Most of these cases are impossible, and therefore it is unnecessary to include them in the optimization problem. In
the original formulation of the BGA model the size of the problem was O (n3 · t). Previous work discusses ways to reduce
this problem size. In the original BGA model they improved the problem size by assuming that the number of targets that
the adversary wishes to penetrate through is much smaller than the number of nodes. This assumption does not hold in
our formulation. Moreover, in our problem we also consider multiple robots, multiple possible penetration times, different
re-organization times and re-organization constraints which results in O (ρ · n3T 2k) size of the helper variables γ , which
is significantly greater than the original formulation’s size. Though the size of the helper variables is polynomial in the
parameters of the problem, they can still be very large.3 Therefore, from our broad experience and experiments, solvers fail
to solve this problem due to the high number of variables.

2 We omit the mathematical formulation in this paper.
3 For example, even in a small setting with only five robots, thirty segments and a maximal reorganization time of 10, we obtain more than fifty million

variables, without even considering different history lengths.

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 17
These variables are required for computing the contribution of each robot to each segment. To simplify this, in our
next model, HISTORY-T, we extract this computation to a preprocessing stage, and thus avoid the need to evaluate the
contribution when solving the optimization problem. In order to compute the contribution to a specific segment at a certain
point in time, we need to consider only sub-paths of length t . By computing all of these sub-paths in advance, we can
calculate their absolute contributions (visits/not visits), and use it along all ρ points in time. The size of this model is
exponential with an exponent that is at least t , regardless of the history length, as all histories of length t are computed.
But, compared to the previous model, even though it was polynomial, the size of this model is considerably small, and the
formulation is simpler. Also, it enables considering greater history values without the need to compute the actual histories
of that length. However, because it still contains many non-linear constraints, when combined with the reorganization
requirements, the solvers (MINOS,4 filter,5 SNOPT,6 Ipopt7) fail to solve instances of the problem. It is possible that this
model will perform well on settings of other patrolling problems, without reorganizing constraints. If so, it will enable the
consideration of large history lengths in problems in which only small lengths of history have been addressed to date.

In order to simplify the optimization problem even further, in the third model: the FULL model we extract both the
contribution computation and the reorganization constraints to a preprocessing stage. This is done by focusing on h = ρ
and only consider paths, πr that are valid for reorganizing, that is start with v0(r) and end with vend(r). This means that

we pre-compute all possible πr and their contribution I(s, πr)[ta] ←
{

1 πr[ta : ta + t] contains s

0 otherwise
.

It is worth noting that this is the optimal Markovian patrolling policy, for each ρ . This is because every model of history
length h′ can be described by any higher h ≥ h′ . The paths are of size ρ , hence there is no benefit from any policy with
h > ρ . Considering h = ρ simplifies the model, as our decision variables are of the form Pr,ρ (π), where π is of length ρ ,
instead of a conditional probability.

The FULL model constraints for the ppd values are derived from Equations (5)–(8):

ppdr(s, ta) =
∑
πr

Pr(πr) · I(s,πr)[ta] (18)

r ∈ R, s ∈ S, ta ∈ T

ppdr1...r j
(s, ta) = ppdr1...r j−1

(s, ta)(1 − ppdr j
(s, ta)) + ppdr j

(s, ta) (19)

j > 1, r j ∈ R, s ∈ S, ta ∈ T

ppd(s, ta) = ppdr1...rk−1
(s, ta) (20)

s ∈ S, ta ∈ T

Constraint (20) is quadratic and results from multiple robots that visit the same segment during t time units. That is
possible because the robots are not binded to move in the same direction. Without this constraint the optimization problem
would be a simple linear programming problem, solved in polynomial time.

Hereinafter we will consider the formulation of the FULL model.

7.2.3. The patrol algorithm
The final algorithm for determining the paths for the robots is presented in Algorithm 1, PatrolRearrange which computes

the optimal distribution and randomizes the path for each robot.
First, we calculate the final position for each robot and then find all paths from its initial position to its final position by

means of algorithm FindPaths. We construct the optimization problem as described in Section 7.2.1 with FULL model ppd
constraints and by calling solve we use a solver to solve the non-linear optimization problem, which takes into consideration
the paths of all robots, the number of robots, the number of segments, and the inspected area. After solving the optimization
problem, first a ρ is drawn with a probability of qρ , and then a path with a length of ρ is drawn for each robot.

7.3. Bounding the reorganization time

In the previous section we proved a bound for the value of ρ that yields the maximum minimal ppd. In this section
we prove that for any ε > 0 there exists an upper bound for ρ that yields a solution within a distance of ε from the
optimal solution. We define the sequence {maxminppdρ} such that each element is the maxminppd achieved by solving the
optimization problem when the length of the reorganization phase varies between 1 . . . ρ .

Lemma 9. When max� → ∞, {maxminppdρ} converges to the maxminppd of the reorganization phase.

4 http://www.sbsi -sol -optimize .com /asp /sol _product _minos .htm.
5 http://www-unix .mcs .anl .gov /~leyffer /papers /SQP _manual .pdf.
6 http://www.sbsi -sol -optimize .com /asp /sol _product _snopt .htm.
7 https://projects .coin -or.org /Ipopt.

http://www.sbsi-sol-optimize.com/asp/sol_product_minos.htm
http://www-unix.mcs.anl.gov/~leyffer/papers/SQP_manual.pdf
http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
https://projects.coin-or.org/Ipopt

18 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
Algorithm 1 PatrolRearrange(R, S, {v0(r)}, t, τ , T , �).
Input:
R: the group of robots
S: the set of segments
{v0(r)}: the set of initial positions of the robots
t: the time it takes the adversary to penetrate
τ : the time it takes a robot to turn around
T : the range of considered penetration times
�: set of ρs

Output: the patrol algorithm

1: construct G
2: for each r in R do
3: vend(r) ← CalcF inalPosition(v0(r))
4: for each ρ in � do
5: �r,ρ ← FindPaths(G, v0(r), vend(r), ρ)

6: problem ← optimizationProblem(R, S, �, T , �)

7: P , Q ← solve(problem)

8: randomize ρ from � with distribution Q
9: return randomize π from �r,ρ with distribution Pr,ρ

Proof. The solution is monotonic with respect to ρ , because if a greater ρ does not improve the results it will have a
probability of 0. In addition the solution is bounded (it represents a probability). Therefore, the process of adding more ρs
converges. Due to the fact that every possible path is contained in {�}ρ→∞ , the optimal paths for reorganization are also
contained in this set. Consequently a solution to an optimization problem containing these paths will yield the maxminppd
of the reorganization phase. �

The following corollary states the existence of a bound for adding greater ρs.

Corollary 4. For every ε > 0 a ρ0 exists such that adding any ρ > ρ0 would not change more than ε of maxminppdρ0
.

Proof. Cauchy’s criterion [24] states that for a sequence ai to converge it is sufficient and necessary that for every ε > 0 a
fixed number n0 exists such that |ai −a j | < ε for all i, j > n0. By Lemma 9 we find that {maxminppdρ} converges. By applying
Cauchy’s criterion to this sequence we find that for every ε there exists n0 such that |maxminppdi − maxminppd j| < ε for all
i, j > n0. We set ρ0 = n0 + 1 and obtain ρ ≥ ρ0 > n0 |maxminppdρ − maxminppdρ0

| < ε . �
7.4. Experimental results

Since the solution to the optimization problem is an approximation of the optimal solution, we were interested in
examining the results in practice.

We conducted experiments based on 10 different setting combinations where the number of robots varied between 3
and 8, and the distance between them varied between 5 and 12 (resulting in graphs with up to 84 segments and 168
vertices). These parameters correspond to similar problem sizes in related work. We used the MINOS solver8 to solve the
optimization problem. The results are presented in Fig. 7 and Fig. 8.

Fig. 7 demonstrates the convergence of the ppd. The theoretical analysis shows that maxminppd converges to the optimal
solution. Since the true optimal solution is unknown, we compared the ppd results in the experiments to the results of the
steady state. This is sufficient as the optimization problem consists of the steady state phases as well and thus the optimal
ppd values are at most the values of the steady state. Fig. 7 also demonstrates Lemma 8, which states the vulnerability times
for each ρ , and therefore ρs that cover each other’s vulnerabilities must be used in order to achieve ppd > 0. Respectively,
in the graph the ppd values start from 0 and increase only when a ρ large enough to eliminate the vulnerabilities is used.
When vulnerabilities remain, adding the constraint that maxminppd > ε for some small ε enables solvers to pre-solve the
constraints and determine that there are vulnerabilities that are not covered. In these cases the results are conclusive, in
contrast to general solutions of the solver, which are approximations of the optimal solution and better results are possible.
After reaching a ρ such that all vulnerabilities are covered, the ppd values increase to more than 70% of the ppd of the
steady state. When considering greater ρ ’s, the values of the ppd attained reached 88 − 98% of the maxminppd of the steady
state. As it is a non-linear optimization problem, the solutions are approximations and it is possible that higher values can
be achieved.

The graph in Fig. 8 shows the probability assigned to each value of ρ in each of the approximated solutions, along with
the ppd achieved. It is interesting to see that even though higher ρs are required, the minimal ρ (the deterministic case)

8 http://sbsi -sol -optimize .com /asp /sol _product _minos .htm.

http://sbsi-sol-optimize.com/asp/sol_product_minos.htm

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 19
Fig. 7. The ratio between the maxminppd to the steady state, with respect to the maximal ρ used, when all of the ρs in the range [ρmin,ρmax] are used.

Fig. 8. Probability distribution over ρs for each case, with the percentage of the ppd achieved with respect to the ppd of the steady state. The values of ρs
are scaled with respect to the minimal ρ of each case.

is assigned the highest probability. This is due to the fact that the ppd of the steady state is optimal, and the minimal ρ
minimizes the time in which it is achieved. Even though the results of the probability distributions might only yield an
approximated solution, we know the value that is guaranteed by following these distributions and its comparison to the
steady state.

8. Reducing the problem size

As the problem size is exponential in |h|, there is a need to reduce its size. Hitherto, our suggested algorithm
(PatrolRearrange) considers every possible history path for the optimization problem. Not only does this entails consid-
eration of a very large input, but it is also unnecessary, as some of the history paths clearly make less contributions than
others, and there is no need to consider them in the optimization problem. To this end, we define and examine the domi-
nance of paths (rather than sub-paths).

Definition 8.1. A path π1 dominates π2 if I(s, π1)[ta] ≥ I(s, π2)[ta], for every s ∈ S , 0 ≤ ta ≤ ρ .

Let Pr be a distribution function over the paths for robot r. We would like to examine the effect of transferring the
probability from π2 to π1, which dominates it. We use Pr

′ to denote the resulting distribution function, and ppdr(Pr, s, ta)

to denote the value of ppd by robot r according to Pr .

Lemma 10. If π1 dominates π2 then ppdr(Pr
′, s, ta) ≥ ppdr(Pr, s, ta), for every s ∈ S, 0 ≤ ta ≤ ρ .

Proof. First we calculate the difference between the probabilities ppdr(Pr
′, s, ta) and ppdr(Pr, s, ta) and then we prove that

it is greater than 0. By using Equation (3) we find that the difference ppdr(Pr
′, s, ta) − ppdr(Pr, s, ta) equals

20 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
∑
π Pr

′(π) · I(s,π)[ta]−∑
π Pr(π) ·I(s, π)[ta]. Since Pr

′ differs from Pr only by the probability for π1, π2, then the only
remaining terms from the subtraction of ppdr(Pr

′, s, ta) − ppdr(Pr, s, ta) are those regarding π1 and π2. The probability for
π1 by P ′

r is (Pr(π1) + Pr(π2)), and 0 for π2. The probability for π1 by Pr is Pr(π1), and Pr(π2) for π2. Thus, the difference
equals (Pr(π1) + Pr(π2)) · I(s, π1)[ta] − Pr(π1) · I(s, π1)[ta] − Pr(π2) · I(s, π2)[ta]. This results in (I(s, π1)[ta] − I(s, π2)[ta]) ·
Pr(π2). Thus, since π1 dominates π2, the above expression is greater than 0. �

We have proven that the probability for a robot to visit any segment is greater when using a path that dominates another
path, than when using the dominated path. As a corollary we found that this also holds for ppd values.

Corollary 5. If π1 of robot r dominates π2 of robot r, then ppd(P ′, s, ta)≥ ppd(P , s, ta) for every s ∈ S, 0 ≤ ta ≤ ρ .

Proof. By Equation (4) ppd(s, ta) = 1 − ∏k−1
l=1 (1 − ppdrl

(s, ta)). The subtraction between the ppds equals (1 − ∏
l(1 −

ppdrl
(Prl

′, s, ta))) −(1 −∏
l(1 −ppdrl

(Prl , s, ta))). The simplified expression is
∏

l(1 −ppdrl
(Prl , s, ta)) −∏

l(1 −ppdrl
(Prl

′, s, ta)).
As ppdrl

(Prl , s, ta) = ppdrl
(Prl

′, s, ta) for all rl �= r, the product
∏

rl �=r(1 −ppdl(Pr, s, ta)) is mutual for both terms and thus the
subtraction equals

∏
rl �=r(1 − ppdl(Prl , s, ta))(1 − ppdr(Pr, s, ta) − (1 − ppdr(Pr

′, s, ta))). After simplifying the expression the
result is

∏
rl �=r(1 − ppdrl

(Pr, s, ta)) · (ppdr(Pr
′, s, ta) − ppdr(Pr, s, ta)). By Lemma 10 ppdr(Pr

′, s, ta) − ppdr(Pr, s, ta) > 0 and
thus the above expression is greater than 0. �

By Corollary 5 we conclude that the optimal patrol algorithm does not use dominated paths, since other paths that
would yield better results exist. Thus we should examine only paths that are not dominated by any other path.

Definition 8.2. A path π1 is said to be a Pareto path if there is no π2 ∈ � such that ppd1(s, ta) < ppd2(s, ta) for all s ∈ S, 0 ≤
ta ≤ ρ .

Pareto paths can be computed by a brute-force method. First, paths with equal contribution to a previous path are elim-
inated. Then, the remaining paths are compared with each other to eliminate dominated paths. In the following subsections
we perform a theoretical analysis of the number of Pareto-paths and present experimental results showing that although
their number is theoretically exponential, in practice this number is significantly and sufficiently lower than the total number
of paths.

8.1. Size of Pareto-paths space

The purpose of using Pareto-paths is to reduce the exponential number of paths. In this section we discuss the complex-
ity of the space of all Pareto-paths. As the following lemma states, evidently the number of Pareto-paths is still exponential
with respect to their length, ρ (the same holds for h). To prove that we provide a very loose lower bound that is exponential
in ρ .

Lemma 11. The number of Pareto-paths is 	(2ρ/4t).

Proof. We prove this lemma by constructing an example, such that for every ρ, t has at least 2(ρ/4t) paths. Let us consider
two sub-paths with a length of 4t .

1. TURN, CONT t − 1 steps, TURN, CONT 2(t − 1) steps, TURN, CONT t − 1, TURN
2. CONT t − 1 steps, TURN, CONT t − 1 steps, TURN, TURN, CONT t − 1 steps, TURN, CONT t − 1 steps

The sub-paths and their contributions are illustrated in Fig. 9. These paths are not dominated by each other. Moreover,
there cannot be two valid paths that have the same contribution. This is because a contributing to t − 1 segments requires
continuing in the same direction (either forwards or backwards). The initial position and direction determines the direction
of the traversal over the segments.

These two sub-paths start and end in the same position and in the same direction. Therefore we can construct paths by
concatenating these sub-paths. No combination of these sub-paths can dominate another combination since their sub-paths
are non-dominating. Thus, we receive a sub-set of the Pareto-paths. The number of such combinations for paths of length
ρ is 2(ρ/4t) . �
8.2. Experimental results

As we showed in Section 5.2, the number of total paths is exponential in the input size. In sub-section 8.1 we have
proven theoretically that the number of Pareto-paths is also exponential. However, in this section we show that in practice,
in most cases the number of Pareto-paths is significantly lower than the exponential number of paths. We analyzed the

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 21
Fig. 9. Two non-dominated sub-paths and their contributions at ta: 0, t,2t,3t .

Fig. 10. Exponential drop in the number of Pareto-paths with respect to t .

results of the experiments we conducted with more than 11,000 settings for the problem of reducing the input size. This
result is significant as it entails that we can apply this method successfully in order to reduce the number of paths for
unbounded penetration time problems. We examined the following settings, and also examined the parameters that affect
the number of paths and Pareto-paths. The number of paths depends on ρ , the length of the path over time, dist , the actual
distance between a robot’s current and final position (l j for some robot j), and n since the fence is cyclic and paths from u
to v can originate from different directions. The number of Pareto-paths depends on these parameters, but it also depends
on t , as it affects the contribution of each path. Consequently, we examined k, dk (n = kdk), t , ρ and dist . We generated
settings with these parameters varying between different ranges that correspond to similar problem sizes in related work:
k = 2 . . . 10, dk = 3 . . . 6, t = 1 . . .d − 1, ρ = 2 . . . 12, dist = 0 . . . ρ . We examined the influence of each parameter. Parameter n
has a very minor influence on the number of paths, as almost no paths visit all n segments. The most influential parameters
were t and ρ . As t grows, the contribution of each path is greater, and thus there are fewer Pareto-paths. Fig. 10 shows that
not only does the number of Pareto-paths decreases as t grows, but it drops exponentially.

The ρ parameter has a reverse affect. As ρ grows, i.e. greater reorganization time, both the number of paths and Pareto-
paths increases exponentially. Fig. 11 shows that even when the number of Pareto-paths grows exponentially as ρ grows,
the number of Pareto-paths is much smaller than the number of paths. For example, when ρ equals 12 the number of paths
is 21745, as opposed to only 3355 Pareto-paths.

The actual ratio between the number of Pareto-paths and the number of paths is shown in Fig. 12. As ρ grows the ratio
decreases, even though there are more Pareto-paths in general. This supports the hypothesis that the number of Pareto-paths
grows much slower than the growth of the number of paths, and demonstrates the effectiveness of this method in practice.

In Fig. 12 we can also see that as ρ grows dist has no effect over the ratio between the number of Pareto-paths and
the number of paths. The main influence of the parameter dist is realized in the possible sizes of ρ . Since the minimal ρ
is at least the size of dist , choosing a greater size of dist requires that a greater size of ρ be considered and thus a greater
number of paths. For computational reasons this justifies choosing the final positions for the reorganization that minimize
the distance the robots need to travel.

All of the above results suggest that using the Pareto-optimization is efficient in decreasing the input size in practice. As
for the practicability of the method by means of time complexity, we present results regarding the computation time. Fig. 13
presents the measured time of computing the Pareto-paths in compared to the time to compute the total paths, and the
influence of ρ on the computation time. Fig. 14 presents the influence of n, k on the computation time of the Pareto-paths,
in additional settings: fixed ρ , t: ρ = 11, t = 3 dk−1 and variable values for n, k: n = 20 . . . 60, k = 3 . . . n . We used 1.9 Ghz
4 2

22 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
Fig. 11. Number of paths and Pareto-paths as a function of ρ .

Fig. 12. Exponential drop in the ratio between the number of Pareto-paths and all paths, with respect to ρ . A smaller dist yields a higher ratio. Only
k = 3, dk = 3, t = 2 is shown in the figure as different cases cannot be distinguished in this type of graph.

Intel i7 CPU with 4GB memory for the experiments. The graph in Fig. 13 shows that the time grows exponentially as ρ
grows. This is due to the fact that the number of paths and Pareto-paths grows exponentially. The graph in Fig. 14 shows
that as k increases the computation time increases linearly. As n increases for a fixed k the computation time decreases.
This is due to the fact that dk increases and thus dist increases. The greater dist is, for a fixed ρ , the fewer the number
of possible paths, and thus less computation time. The method used to compute the Pareto-paths was brute-force, with an
improvement of initially eliminating paths that duplicate another path’s contribution. Clearly, there can be ways to improve
this computation, but even with a slightly improved brute-force, the time measured is still small in practice. It is important
to note that the time invested in generating the Pareto-paths is negligible compared to value of removing enough paths to
allow the solvers to generate a solution. In other words: if one does not reduce the number of paths by using Pareto-paths
(i.e., significantly improve the space complexity), the solvers are unable to solve the problem. Hence we pay in time to
reduce the space, and enable the problem solving.

8.3. Discussion

In this work we focused on a Markovian patrolling policy with a history length of ρ , which is an optimal Markovian
policy. The challenge is that the input size is exponential in ρ , which is the largest input size of all policies. In addition we
examined policies with smaller values of the history length, denoted by |h|, and presented two models that address this
problem.

It is surprising that both models are unsuccessful, because we had expected that if we could apply a policy with |h| = ρ ,
then we could apply all policies with |h| < ρ . However, in all previous work with similar formulations, only very small
values of history lengths were able to run in practicality, and in some problems only |h| = 1 was possible. Higher values
could not be tested due to either space or time issues. This makes it interesting to understand the distinction between the
case where |h| = ρ and cases with smaller values of |h|.

First, we analyze the size of the problem. In order to confront the input size of paths of length ρ we applied a
Pareto-optimization to the paths. This method can also be applied to sub-paths of lengths smaller than ρ , but with less
effectiveness. To show this we define dominance over sub-paths, which adds an additional constraint to the paths domi-
nance criterion, and in order to compute Pareto sub-paths of length h we need to consider buffered sub-paths of length
2t + h − 1. In order to determine dominance between two sub-paths μ1, μ2, requiring I(s, μ1)[ta] ≥ I(s, μ2)[ta] for every

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 23
Fig. 13. Demonstrating the time to extract the Pareto paths from the total number of paths. The time it takes to compute the Pareto paths grows exponen-
tially with ρ .

Fig. 14. Demonstrating the time to extract the Pareto paths from the total number of paths. The time it takes to compute the Pareto paths grows exponen-
tially with ρ .

s, ta is not sufficient. Assume that sub-paths μ0, μ3 exist such that when concatenating the sub-paths to create μ0 μ1 μ3,
μ0 μ2 μ3 then I(s, μ0 μ1 μ3)[ta] ≤ I(s, μ0 μ2 μ3)[ta] for some s, ta . Hence, for the path μ0 μ2 μ3 it is not profitable to
consider μ0 μ1 μ3 instead. Consequently we cannot replace every occurrence of μ2 with μ1.

Definition 8.3. A sub-path μ1 dominates μ2 if I(s, μ0 μ1 μ3)[ta]
≥ I(s, μ0 μ2 μ3)[ta], for every s ∈ S , 0 ≤ ta ≤ h + t − 1 and every μ0, μ3, where μ0, μ3 are sub-paths of length t − 1.

According to this definition, for any path that contains a dominated sub-path we can replace it with its dominant
sub-path, and receive a dominant path.

Namely, when Pareto-optimizing history paths (i.e., sub-paths), more paths remain (created by concatenating sub-paths)
than if the Pareto-optimization would be applied to all paths, rather than the sub-paths. This causes the method to be
less effective. Even though the number of sub-paths is smaller than the number of paths, in the optimization problem we
consider the sub-paths over time, and with different starting points. Accordingly their quantity is multiplied by V · T .

The second issue is the complexity of the optimization problem. When |h| = ρ , non-linear constraints result from over-
laps between the robots’ coverage and using multiple ρs. When |h| < ρ substantially more non-linear constraints are added,
which influence the ability of a solver to produce results.

9. Conclusions

We examined the problem of defending against a sequential attack in a knowledgeable adversarial environment. In this
case the robots are required to respond to a penetration attempt, and therefore a knowledgeable adversary can exploit the
influence of an attack in order to coordinate a second attack. We focused on optimizing the reorganization phase after
the first penetration attempt is detected and one robot is extracted to handle it. In this phase the robots reorganize in

24 E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25
order to achieve optimal behavior for k − 1 robots as established by Agmon et al. [1]. Moreover, this method is applicative
in scenarios of robot faults which require the remaining robots to reorganize, for this case the faulty robot still needs
to maintain some of its sensing ability or additional sensing elements need to be present. We set the foundations for
the models and distinguished between the cases where the second penetration is bounded in time, and when it is not.
Considering a bounded period of penetration attempts enable the allocation of a single reorganization time, as large as
needed. We presented a polynomial time algorithm for optimal coverage, divided into cases, which guarantees maxminppd
of at least 1

4 during the reorganization phase.
When the second penetration attempt time is unknown, we formulated a non-linear optimization problem. We con-

sidered policy with history and presented a novel approach that uses a full history policy, the FULL model, even when
formulations with smaller history policies fail to yield results. We proved that a single reorganization time is not sufficient,
and that the reorganization time must be randomized in order to avoid vulnerability points. In order to determine the range
of ρs to consider, we showed that from some value considering greater ρs has no significant impact on the ppd. We vali-
dated this by conducting experiments which also show that using the minimal length of range of ρs required to cover all
vulnerabilities yields a ppd that is greater than 70% of the steady state. Achieving a ppd that is greater than the steady state
has no effect, as the adversary would then choose to penetrate at the steady state. Another interesting result is that when
randomizing over multiple ρs, using the deterministic approach with a high probability yields higher ppd values. This is due
to the fact that the ppds of the steady state are proven to be optimal, and the deterministic approach minimizes the reor-
ganization time. When using multiple ρs we are able to avoid the vulnerability points that are created by the deterministic
approach.

Finally, we introduced a method of reducing the number of paths, by using Pareto-paths. The number of these paths is
exponential in the worst case, but we showed through extensive simulations that it is considerably smaller in practice.

In addition, we discussed two other models of the optimization problem to address varied history lengths (and not only
the full history). In these problem settings the models failed to yield results using four different solvers. The first model,
the BGA-extension, even though polynomial in theory (and exponential only in the history size), is too large in practice.
The second model, HISTORY-T, allows consideration of the history of every size, with a space complexity of the number
of histories only of a length of t . However, solvers failed to solve instances with this model (MINOS, filter, SNOPT, Ipopt).
It would be interesting to apply this model to different problems without as many constraints (such as reorganization
constraints). Though we concentrated on two adversaries, the extension to multiple adversaries is straightforward.

We limited this work to randomization of the paths towards the steady state, which minimizes the distance traveled by
the robots in the reorganization phase. Future work warrants examination of randomization over the possible final positions.
Another interesting venue would be to examine randomization during the reorganization phase (without having the robots
commit to a path once the first attack is detected, as assumed in this work). We would also like to examine the effect
of the robot’s inspection time, as we believe it might lead to a more robust patrol against multiple attacks. An additional
direction for future work would be to handle other sequential attack adversarial models, for example having more than two
penetration attempts, other timing constraints on the penetration time, and more.

Acknowledgements

This research has been supported in part by the Ministry of Science and Technology, Israel and the Japan Science and
Technology Agency (JST), Japan, and by ISF grant 1337/15.

References

[1] N. Agmon, G. Kaminka, S. Kraus, Multi-robot adversarial patrolling: facing a full-knowledge opponent, J. Artif. Intell. Res. 42 (2011) 887–916.
[2] N. Basilico, N. Gatti, F. Amigoni, Patrolling security games: definition and algorithms for solving large instances with single patroller and single intruder,

Artif. Intell. 184 (2012) 78–123.
[3] B. Bošanskỳ, V. Lisỳ, M. Jakob, M. Pěchouček, Computing time-dependent policies for patrolling games with mobile targets, in: The Tenth International

Conference on Autonomous Agents and Multiagent Systems, AAMAS, 2011, pp. 989–996.
[4] P. Fazli, A. Mackworth, Multi-robot repeated boundary coverage under uncertainty, in: IEEE International Conference on Robotics and Biometrics, ROBIO,

2012, pp. 2167–2174.
[5] P. Villacorta, D. Pelta, Exploiting adversarial uncertainty in robotic patrolling: a simulation-based analysis, Adv. Comput. Intell. (2012) 529–538.
[6] N. Basilico, N. Gatti, F. Amigoni, Leader-follower strategies for robotic patrolling in environments with arbitrary topologies, in: Proceeding of the Eighth

International Conference on Autonomous Agents and Multiagent Systems, AAMAS, 2009, pp. 57–64.
[7] Y. Vorobeychik, B. An, M. Tambe, Adversarial patrolling games, in: Proceeding of the Eleventh International Conference on Autonomous Agents and

Multiagent Systems, AAMAS, 2012, pp. 1307–1308.
[8] Y. Chevaleyre, Theoretical analysis of the multi-agent patrolling problem, in: IEEE/WIC/ACM International Conference on Intelligent Agent Technology,

IAT, 2004, pp. 302–308.
[9] Y. Elmaliach, N. Agmon, G. Kaminka, Multi-robot area patrol under frequency constraints, Ann. Math. Artif. Intell. 57 (2009) 293–320.

[10] N. Agmon, G. Kaminka, S. Kraus, Multi-robot fence patrol in adversarial domains, in: Proceedings of the Tenth Conference on Intelligent Autonomous
Systems, IAS, 2008, pp. 193–201.

[11] N. Basilico, N. Gatti, F. Villa, Asynchronous multi-robot patrolling against intrusions in arbitrary topologies, in: Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI, 2010, pp. 1224–1229.

[12] Y. Vorobeychik, B. An, M. Tambe, S. Singh, Computing solutions in infinite-horizon discounted adversarial patrolling games, in: Proc. 24th International
Conference on Automated Planning and Scheduling, ICAPS 2014, 2014.

http://refhub.elsevier.com/S0004-3702(19)30047-5/bib61676D6F6E323031316D756C7469s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib626173696C69636F32303132706174726F6C6C696E67s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib626173696C69636F32303132706174726F6C6C696E67s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib626F7673616E736B7932303131636F6D707574696E67s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib626F7673616E736B7932303131636F6D707574696E67s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib66617A6C696D756C7469s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib66617A6C696D756C7469s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib76696C6C61636F727461323031326578706C6F6974696E67s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib626173696C69636F323030396C6561646572s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib626173696C69636F323030396C6561646572s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib766F726F6265796368696B32303132616476657273617269616Cs1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib766F726F6265796368696B32303132616476657273617269616Cs1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib43686576616C3034s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib43686576616C3034s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib656C6D616C69616368323030396D756C7469s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib61676D6F6E323030386D756C7469s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib61676D6F6E323030386D756C7469s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib626173696C69636F323031306173796E6368726F6E6F7573s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib626173696C69636F323031306173796E6368726F6E6F7573s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib766F726F6265796368696B32303134636F6D707574696E67s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib766F726F6265796368696B32303134636F6D707574696E67s1

E. Sless Lin et al. / Artificial Intelligence 274 (2019) 1–25 25
[13] Y. Elmaliach, A. Shiloni, G. Kaminka, A realistic model of frequency-based multi-robot polyline patrolling, in: Proceeding of the Seventh International
Conference on Autonomous Agents and Multiagent Systems, AAMAS, 2008, pp. 63–70.

[14] A. Machado, G. Ramalho, J. Zucker, A. Drogoul, Multi-agent patrolling: an empirical analysis of alternative architectures, in: Multi-agent Based Simula-
tions, MABS, 2003, pp. 155–170.

[15] J. Marier, C. Besse, B. Chaib-draa, Solving the continuous time multiagent patrol problem, in: IEEE International Conference on Robotics and Automation,
ICRA, 2010, pp. 941–946.

[16] N. Agmon, V. Sadov, G.A. Kaminka, S. Kraus, The impact of adversarial knowledge on adversarial planning in perimeter patrol, in: Proceeding of the
Seventh International Conference on Autonomous Agents and Multiagent Systems, AAMAS, 2008, pp. 55–62.

[17] Z. Yin, A.X. Jiang, M.P. Johnson, C. Kiekintveld, K. Leyton-Brown, T. Sandholm, M. Tambe, J.P. Sullivan TRUSTS, Scheduling randomized patrols for fare
inspection in transit systems, AI Mag. 33 (2012) 59–72.

[18] F.M.D. Fave, E.A. Shieh, M. Jain, A.X. Jiang, H. Rosoff, M. Tambe, J.P. Sullivan, Efficient solutions for joint activity based security games: fast algorithms,
results and a field experiment on a transit system, Auton. Agents Multi-Agent Syst. 29 (2015) 787–820.

[19] A. Kučera, T. Lamser, Regular strategies and strategy improvement: efficient tools for solving large patrolling problems, in: Proceedings of the 2016
International Conference on Autonomous Agents and Multiagent Systems, 2016, pp. 1171–1179.

[20] E. Sless, N. Agmon, S. Kraus, Multi-robot adversarial patrolling: facing coordinated attacks, in: Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-Agent Systems, International Foundation for Autonomous Agents and Multiagent Systems, 2014, pp. 1093–1100.

[21] E. Jensen, M. Franklin, S. Lahr, M. Gini, Sustainable multi-robot patrol of an open polyline, in: IEEE International Conference on Robotics and Automa-
tion, ICRA, 2011, pp. 4792–4797.

[22] N. Basilico, G. De Nittis, N. Gatti, Adversarial patrolling with spatially uncertain alarm signals, Artif. Intell. 246 (2017) 220–257.
[23] G.H. Golub, C.F. Van Loan, Matrix Computations, vol. 3, 3rd Edition, JHU Press, 1996.
[24] H.N. Jahnke, Cauchy’s cours d’analyse, in: An Annotated Translation by Robert E. Bradley and C. Edward Sandifer, in: Sources and Studies in the History

of Mathematics and Physical Sciences, Springer, Dordrecht, 2009.

http://refhub.elsevier.com/S0004-3702(19)30047-5/bib656C6D616C69616368323030387265616C6973746963s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib656C6D616C69616368323030387265616C6973746963s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib6D65636861646F3033s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib6D65636861646F3033s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib4D6172696572494352413130s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib4D6172696572494352413130s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib61616D617330386E6F61s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib61616D617330386E6F61s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib79696E32303132747275737473s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib79696E32303132747275737473s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib46617665534A4A5254533135s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib46617665534A4A5254533135s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib6B75766365726132303136726567756C6172s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib6B75766365726132303136726567756C6172s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib736C657373323031346D756C7469s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib736C657373323031346D756C7469s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib6A656E73656E323031317375737461696E61626C65s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib6A656E73656E323031317375737461696E61626C65s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib626173696C69636F32303137616476657273617269616Cs1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib676F6C7562313939366D6174726978s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib6A61686E6B6532303132636175636879s1
http://refhub.elsevier.com/S0004-3702(19)30047-5/bib6A61686E6B6532303132636175636879s1

	Multi-robot adversarial patrolling: Handling sequential attacks
	1 Introduction
	2 Related work
	3 Problem settings
	3.1 Patrol settings
	3.2 Adversarial model
	3.3 Patrol task

	4 The reorganization phase
	4.1 Monitoring requirement from the extracted robot

	5 Problem modeling
	5.1 Modeling the problem as a graph
	5.2 Finding all possible paths
	5.3 ppd computation

	6 Bounded penetration period
	6.1 Known exact penetration time
	6.2 Known penetration time range

	7 Unbounded penetration period
	7.1 Robots' strategy model
	7.2 Optimization problem
	7.2.1 General formulation
	7.2.2 ppd constraints
	7.2.3 The patrol algorithm

	7.3 Bounding the reorganization time
	7.4 Experimental results

	8 Reducing the problem size
	8.1 Size of Pareto-paths space
	8.2 Experimental results
	8.3 Discussion

	9 Conclusions
	Acknowledgements
	References

