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Abstract— This paper studies the problem of Competitive
Ant Coverage, in which two ant-like robots with very limited
capabilities in terms of sensing range, computational power,
and knowledge of the world compete in an area coverage task.
We examine two variants of the problem that differ in the
robot’s objective: either being the First to Cover a Cell (FCC),
or being the Last to Cover a Cell (LCC). Each robot’s goal is to
acquire (by visiting first or last, respectively) more cells than
the opposing robot, and by that win the game. We examine
the problem both theoretically and empirically, and show that
the main strategy for dominance revolves around the ability
to pursue: in LCC, we wish to pursue the opposing robot,
whereas in FCC, we wish to create a scenario wherein the
opposing robot pursues us. We find that this ability relies more
heavily on knowledge of the opponent’s strategy than on the
robot’s sensing capabilities. Moreover, given the robot’s limited
capabilities, we find that this knowledge-gap cannot be easily
mitigated by learning.

I. INTRODUCTION

The problem of robotic coverage is long-examined in the
robotics literature, due to its vast applicability in real-world
domains such as agriculture (e.g., harvesting, pest detection),
domestic appliances (e.g., floor sweeping, lawn mowing),
search and rescue, and security. In this problem, one or more
robots are to visit each point in an area at least once to
perform some task or detect a change in state. The goal is,
therefore, to plan a path for the covering robot(s), referred
to as the coverage path, while optimizing some criteria,
usually minimizing the time to complete the coverage (the
coverage time). There are numerous variants of this problem,
which vary in the knowledge and capabilities of the covering
robot(s). We refer to [1] for an excellent survey.

In this work we focus on a recently-introduced form of
the coverage problem, competitive coverage [2], in which
two covering robots operate in an area, but rather than
collaborating to cover the area more efficiently, the robots
compete with one another. In [2] it was assumed that the
robots have full knowledge of the environment, thus plan
the coverage path in advance. In this work we examine the
problem from a new perspective, by assuming that the robots
are ant-like robots that have no global information about
the environment, and have extremely limited computational,
sensing and communication capabilities.

The ant robots, having such limited capabilities and knowl-
edge, cannot plan their coverage path in advance, and must
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decide on their next move based on what they currently sense
in the world, and using a very simple reactive algorithm.
We assume the robots can leave pheromone traces in the
environment they operate in, and can sense such pheromones
in their close surroundings. As in [2], our study focuses
on the asymmetric version of the competitive ant coverage
problem, in which only one “competitive” robot (which
we control) is aware of the competition and can see the
pheromones of the other ant-like robot, whereas the other
robot sees only its own pheromones and executes a single-
robot optimal coverage algorithm. Asymmetric settings en-
able us to directly compare strategies which take into account
competition and awareness of other robots to strategies that
do not, illuminating key differences between competitive and
non-competitive settings.

We study two variants of competitive coverage and their
relation: First Covered Cell (introduced in [2]) and Last
Covered Cell (newly introduced in this work), where the goal
of each robot is to be the first or last, respectively, to cover
as many cells as possible. This difference in objectives has
a significant impact on our analysis.

We first analyze the competitive ant coverage problem
theoretically, examining when (and if) a robot can force
a win in different environments, robot sensing capabilities
and knowledge models. We show that dominating the game
revolves around the ability to pursue: in LCC, we wish to
pursue the opposing robot, whereas in FCC, we wish to
create a scenario wherein the opposing robot pursues us. In
both FCC and LCC, we identify and prove the correctness of
dominating strategies under various starting conditions and
in various classes of environments. We further prove that in
some settings it is possible to force a win in LCC, whereas
the best possible guarantee for FCC is a tie. Following this,
we infer that FCC is the more difficult problem for ant-like
robots: “pursuing” is easier than “staying ahead”.

To complement our theoretical analysis and identify more
potential strategies, we model the competitive ant coverage
problem as a reinforcement learning (RL) problem attempt
to optimize the competitive robot’s policy using Q-Learning
and Deep Q-Learning. We show that incorporating the op-
ponent’s reward into our reward function during training
results in an advantage for developing a winning strategy. We
also consider several heuristic algorithms, based on knowing
the opponent’s strategy (but not their current or starting
location), and compare them to each other and to the RL-
based strategies. Heuristic strategies prove more consistent,
showing that the possession of knowledge of the opponent’s
strategy cannot be easily mitigated by learning. Finally, both
RL-based and heuristic strategies attain significantly higher



win rates in LCC compared to FCC, further corroborating our
theoretical claim that pursuing is easier than staying ahead.

II. RELATED WORK
The problem of Competitive Ant Coverage is drawn from

the robotic coverage problem, which has gained considerable
attention in the literature [1]. Robotic coverage can be per-
formed in two settings: online and offline. Offline coverage
assumes a map of the environment is given, thus the task
is mainly to draw an optimal path for the robot such that it
passes through the entire area (or multiple paths that jointly
visit all points in the case of multi-robot coverage). This
approach is meant for robots that are capable of planning
and localizing themselves in the area. On the other hand,
online coverage does not assume a map exists, but discovers
the environment on-the-fly. This approach is more suitable
for robots of limited capabilities, and specifically, robots that
do not have the ability to keep a map, compute a path, and/or
localize themselves in the area. As our focus is on ant-like
robots, we work in the online coverage setting.

The problem of cooperative coverage by a group of ant
robots was introduced by Wagner et al. [3], offering a
graph-based technique for robust coverage. Other graph-
based ant coverage algorithms offer better guarantees on
maximal coverage time [4], [5], [6], [7]. The works [8],
[9], [10] attempt to equalize the size of the area covered
by each robot. While all the above works assume the robots
have extremely weak capabilities and base their decisions
on local sensing (including pheromones), they assume the
robots operate in cooperative settings, unlike this work.

Samson and Agmon [2] were the first to introduce com-
petitive coverage in an offline setting for two competing
robots. In their case, each robot has a map and plans its
coverage path in advance, aiming to maximize the number
of first covered cells. Assuming (similar to our model)
an asymmetric knowledge setting, they show that only if
both the opponent’s path and initial location are known in
advance, the competing robot has a competitive advantage
in terms of expected number of First Covered Cells. In this
work, we build on these prior results in three ways: (i) by
extending competitive coverage to an online setting with ant-
like robots, (ii) by investigating environments with obstacles
([2] considers only empty grids), and (iii) by introducing the
Last Covered Cell model and contrasting it with FCC.

Many works have been written about the use of RL in
cooperative coverage, both in offline [11], [12] and online
[13], [14] settings. To our knowledge, all existing RL-based
multi-robot coverage algorithms, and other learning-based
algorithms for ant-like robots, have been designed strictly
for cooperative settings, and have not been optimized for
competition. In this work we experiment with RL for multi-
robot coverage in a competitive setting.

Robotic coverage has been examined in non-cooperative
settings in the problem of adversarial coverage [15], [16],
[17], in which a robot (or a team of robots) should cover an
area that contains threats that may stop a robot with some
probability. The goal is to compute a path maximizing both
the survivability of the robot(s), and the expected covered

area. In the adversarial coverage problem the robots have full
information of the environment, and strong computational
and sensing capabilities. Moreover, the nature of the oppo-
nent is inherently different: while in our case both robots are
active throughout the game and overtaking the opponent is
by covering more cells than it has covered, in the adversarial
coverage problem the goal is to cover as many cells as
possible before exiting the game.

Gabriely and Rimon [18] describe the online Spanning
Tree Coverage (STC) algorithm for a single ant-like robot,
resulting in optimal coverage path in grid environments. The
mathematics of pursuit between ant-like robots, relevant to
our study of LCC, has been investigated in [19].

III. COMPETITIVE ANT COVERAGE: FOUNDATIONS

In this work we explore the topic of competitive coverage
under asymmetric information. In our setting, two ant-like
robots, rA and rB, compete to cover as much territory as
possible, but whereas rA possesses information about rB, rB
is completely unaware of the existence of rA and the fact
that it is competing with another robot.

Formally, we assume two robots, rA (a competitive robot)
and rB (a non-competitive robot), are located at arbitrary
entry points pA and pB, inside a region R consisting of n
discrete locations. R is assumed to be a connected grid, i.e.,
a connected subset of size n of the integer grid Z2 = Z×
Z, whose vertices are points (x,y) where x and y are both
integers, and (x1,y1) is connected to (x2,y2) if and only if
the Manhattan distance |x1 − x2|+ |y1 − y2| is exactly 1.

Time is synchronous and discretized to steps of t = 1,2, . . ..
At every time step, all robots simultaneously perform a Look-
Compute-Move operation sequence, in which they sense their
local environment and move to a new location based on a
computation they perform.

We follow the traditional ant robotic model for rA and rB,
meaning they have very limited sensing and computational
capabilities. In particular, we assume rA and rB are oblivious,
meaning they possess no persistent memory and move only
according to what they see in the current time step. The
sensing range is assumed to be V : a robot is aware of vertices
in R that are at a Manhattan distance of V or less from its
current position. All robots are assumed to be identically
oriented and share the same “north.” The robots have no prior
map of the environment, nor can they store information they
have viewed in the environment - each robot moves only
according to what it currently sees. rA and rB can choose to
leave pheromones at their current location - with rB always
doing so. Each location can independently contain one of
rA’s and one of rB’s pheromones. Both robots are capable
of sensing their own pheromones within their sensing range,
and we shall study asymmetric information models wherein
rA can also sense rB’s pheromones (described below).

We consider two competitive coverage games: First Cov-
ered Cell (FCC) and Last Covered Cell (LCC). In FCC, the
first robot to place a pheromone on a vertex (x,y)∈ R covers
that vertex and adds it to its territory. In LCC, the last robot
to place a pheromone on a vertex (x,y)∈R covers that vertex



and adds it to its territory. If rA and rB enter a vertex they
are both eligible to cover at the same time, the vertex is
considered to have been covered by both of them. Staying
put at a given time step counts as re-entering the same vertex.
Both LCC and FCC terminate after n time steps, at which
point the robot that covered the most cells wins (or both tie).

rA’s goal is to win over rB. To characterize the advantage
rA has over rB when using a given algorithm, we consider
two notions of dominance:

Definition 1: The starting conditions of the competitive
coverage game are said to be fair if pA = pB (that is, both
robots start the game at the same location).

Definition 2: We say that rA’s algorithm is dominant in
a region R if rA’s territory is guaranteed to be larger than
rB’s at termination time. We say that rA’s algorithm is fair-
dominant in R if rA’s territory is guaranteed to be larger
than rB’s at termination time assuming pA = pB.

Whereas rB is a non-competitive robot and cannot sense
the presence of rA nor rA’s pheromones, rA is a competitive
robot with an asymmetric information advantage over rB.
The core type of information advantage we investigate in this
work is related to the ability to pursue. We shall investigate
two pheromone-based models of information:

(i) The basic model, denoted Ibasic, assumes that in addi-
tion to its own pheromones, rA can sense rB’s pheromones
whenever they are within its sensing range, and can tell
which robot has covered a vertex it sees.

(ii) The pheromone model, denoted Ipheromone, assumes
everything Ibasic does, and in addition assumes that rA knows
how old the pheromones inside its sensing range are. For-
mally, such that for any pair of locations vi,v j in rA’s sensing
range which contain pheromones, rA knows if vi was created
before v j or vice-versa. Intuitively, this assumption reflects
the idea that pheromones might decay over time, such that rA
can distinguish between older and more recent pheromones
based on their strength. Practically, this assumption enables
rA to pursue rB even when it does not see it, as long as
rA senses its pheromones, as it can always move to newer
pheromones left by rB.

Each asymmetric information model opens up different
competitive strategies that can be carried out by rA, hence our
results shall vary depending on the model. Some strategies,
such as “Lead the Way” (Algorithm 1), do not assume or
require any asymmetric information model.

Spanning Tree Coverage: Since rB is unaware of rA and/or
the fact that it is in competition with some other robot, we
assume rB’s main goal is to cover the region R as efficiently
as possible, i.e., in the least number of time steps. As rB
(like rA) is an ant-like robot, the optimal coverage strategies
available to it are relatively limited. In this work, following
the setting of [2], we assume rB accomplishes coverage
by using Spanning Tree Coverage (STC) [18]. STC is a
type of ant-like coverage algorithm that leaves pheromones
on vertices it has covered and requires the robot to move
based only on these pheromones (hence does not involve
memorizing). It is an optimal coverage algorithm: it can be
shown that the robot will move along a Hamiltonian cycle.

STC requires rB to have sensing range 3 (V = 3). Further-
more, and crucially (!), STC assumes R can be subdivided
into disjoint cells, which are square-shaped, 2×2 sub-regions
that consist of 4 vertices. It implicitly induces a spanning
tree on these cells and causes the robot to “surround” this
spanning tree (see Fig. 1). Consequently, throughout this
work, we restrict our analysis to regions which can be sub-
divided into such cells.

Fig. 1: A spanning tree induced by Spanning Tree Coverage, and
the Hamiltonian cycle that it causes the robot to traverse.

Definition 3: The cell containing the vertex v ∈ R is
denoted cell(v).

Definition 4: We shall call the graph whose nodes are
cells of R and where there is an edge between any two
adjacent cells the cell-level graph, denoted GR. We shall call
the spanning tree of cells induced by rB’s STC algorithm a
cell-level spanning tree.

We note that most of our analytical results about possible
strategies for rA do not require that rB use STC, but remain
true in general, assuming rB moves according to an arbitrary
Hamiltonian path of R. The exceptions are Propositions 3,
4, 5 and 7 whose proofs rely on properties of STC.

The relation between FCC and LCC: Suppose the path
rB takes from time t = 0 until the coverage game ends is
P1 = v1v2 . . .vn, and suppose rA’s path is P2 = u1u2 . . .un.
Then we have:

Proposition 1: If P1 and P2 are Hamiltonian paths of R,
then rB wins over rA in an FCC game if and only if rA wins
over rB in an LCC game.

Proof: Let q be some vertex in R. Since P1 and P2 are
both Hamiltonian walks, q = vi = u j for some i, j. If i > j
then q is covered by rA in FCC and by rB in LCC, and the
reverse is true if i < j. Thus the set of vertices covered by rA
in FCC is the set of vertices covered by rB in LCC, meaning
that rA wins in FCC if and only if rB wins in LCC.

Proposition 1 relates winning scenarios in one coverage
game to losing scenarios in the other. This “duality” between
LCC and FCC might lead one to think that both games are,
in some sense, equally difficult to win from rA’s perspective.
However, this is inaccurate for two reasons: first, whereas P1
is always a Hamiltonian path (due to rB executing STC or
other optimal algorithm), P2 may contain repeated vertices,
and Proposition 1 does not apply in such cases. Second,
Proposition 1 talks about predetermined paths–not about
algorithms. In fact, both our analytical and empirical results
suggest that rA has an easier time winning in LCC than in
FCC.



IV. FIRST COVERED CELL

In this section we derive some formal results about rA’s
ability to win the First Covered Cell coverage game. We
begin with the infinite sensing range setting (V = ∞), where
we assume rA can, at any point, see the entire environment
R. Here we have the following result:

Proposition 2: Suppose V = ∞ and the Ibasic information
model. If GR is not a path graph, rA has a dominant
algorithm.

Note that Proposition 2 being true in the Ibasic model of
course makes it also true in the stronger Ipheromone model.

Proof: Let v1v2 . . .vn be the path robot rB takes from
start to finish of the coverage game, where v1 = pB. Since
rA has complete visibility of the environment, when rB is
located at vi, rA can know its future path vi+1vi+2 . . .vn by
simulating STC. Since R contains n/4 cells, and GR is not a
path graph, GR’s diameter is at most n/4−2. It takes rA at
most 2 steps to get from one cell of GR to any of its adjacent
cells, and so rA needs at most n/2−4 steps to get to the cell
containing vn/2, and at most 2 steps once inside that cell to
move to vn/2, for a total of n/2−2 steps. Meanwhile rB gets
to vn/2 after n/2−1 steps. Thus rA can employ the following
strategy: get to vn/2 before rB, and subsequently move along
the path vn/2vn/2+1 . . .vn. This results in rA covering the last
n/2+1 of rB’s path before rB, thus winning FCC.

When GR is a path graph, then, for some initial positions,
rA is able to guarantee at most a tie. Fig. 2 illustrates one
such situation: in the first half of the game rB takes a straight
path which is impossible for rA to get ahead of, thus rB
is guaranteed to cover at least half the locations in R first
- implying rA can at most tie with rB regardless of its
algorithm.

Fig. 2: Following the illustrated path, rB is guaranteed to tie or win
First Covered Cell against rA.

Let us now consider the case where rA has only local
sensing. STC requires rB to have sensing range 3. Assuming
rA’s sensing range is at least that large (V ≥ 3), we shall
show rA has a straightforward fair-dominant First Covered
Cell algorithm that guarantees a win in any environment with
n ≥ 16 vertices (i.e., four cells).

Let P = v1v2 . . .vn be the STC path followed by rB given
starting point pB (so v1 = pB). Under fair starting conditions,
pA = pB, so rA can simulate rB’s STC algorithm and always
be located at the same location as rB. In other words, when
rA is located at vi, it can compute vi+1 and move there in
the next time step. rA’s fair-dominant strategy, which we call
“Lead the Way” (Algorithm 1), relies on the observation that
if rA could skip moving to vi+1 and instead move to vi+k,
thereon continuing to move according to P, rA will get a lead
on rB and become the sole captor of the vertices vi+k, . . .vn.

To apply this observation to our current setting, we must
ask whether there is ever a situation where rA is located at
vi and can both compute and move to vi+k for some k > 1,
in the next step. We do not a priori expect this to be the
case, as even computing vi+2 may require a larger sensing
range than our robots possess, or moving to vi+2 may be
impossible in a single time step. However, there is a situation
where rA can reliably do this. Suppose for some i > 0 that
cell(vi) is a leaf of the (STC-induced) cell-level spanning
tree and rB first enters cell(vi) by moving to vi. Upon
moving to vi, a robot executing STC must subsequently cover
the other three distinct vertices vi+1,vi+2,vi+3 comprising
cell(vi), and has all the sensing data necessary to compute
the exact movement sequence through which it will do
so. Furthermore, the robot must exit cell(vi) through vi+3,
necessitating that vi is adjacent to vi+3. This means that
instead of moving to vi+1 and vi+2, upon entering vi, rA can
immediately skip to vi+3, getting a lead on rB in exchange for
letting it cover vi+1 and vi+2. rA can then continue executing
STC as normal, covering vi+k, . . .vn. This strategy is formally
described in Algorithm 1, and we shall prove it guarantees
a win for rA assuming n ≥ 16.

Algorithm 1 “Lead the Way”

Require: pA = pB
1: let P = v1v2 . . .vn be the path generated by STC from

starting location pA
2: let vi be rA’s current location.
3: Place a pheromone at vi
4: if cell(vi) is a leaf of the cell-level spanning tree and

cell(vi) has no pheromones of rA then
5: Move to vi+3
6: else Move to vi+1
7: end if

One can straightforwardly verify that Algorithm 1 is an
ant-like algorithm requiring the same sensing range as STC
(V = 3) and that rA can always compute vi+1. We note
that Algorithm 1 does not require rA to sense rB nor its
pheromones (i.e., does not require either Ibasic or Ipheromone):
it merely requires fair starting conditions and the knowledge
that rB is executing STC.

Proposition 3: Assuming n ≥ 16, Algorithm 1 is fair-
dominant.

Proof: (Sketch.) Let P = v1v2 . . .vn be as in Algorithm
1. Since n ≥ 16, the cell-level spanning tree contains at least
four cells, hence at least one leaf which is not the root of
the tree, cell(v0). Let vk be the vertex through which rA first
enters such a leaf. After moving to vk, rA skips to vk+3 and
maintains a lead on rB, but this lets rB cover 1 more vertex
of cell(vk) than does rA (vk is covered by both, vk+1 and vk+2
by rB, and vk+3 by rA). Subsequently, rA will cover all the
vertices vk+2, . . .vn with the exception of vertices of vertices
that it skips because they are part of another leaf cell. When
rA enters a leaf cell, it covers two vertices and leaves two
vertices untouched which rB shall later cover, thus neither
gaining nor losing territory over rB. Hence, to show that rA
wins FCC, it suffices to show that there are at least 2 vertices



in vk+2, . . .vn which do not belong to leaf cells.
Since n ≥ 16, we know there are at least two cells other

than cell(v0) and cell(vk) in R. Let us denote these cells c1
and c2. We separate the proof into three cases.

If c1 and c2 are both leaves, then since cell(vk) is the
first leaf rA visits (except possibly cell(v0)), we know that
rA not yet entered c1 and c2 when it first enters cell(vk).
Furthermore, c1 and c2 must have a common ancestor in the
spanning tree, c′, which rA must enter at least twice after
entering vk to access c1 and c2. During each such visit of
c′, rA covers at least one vertex, thus rA covers at least 2
vertices more than rB after entering vk, and wins FCC.

The case where c1 is a leaf and c2 is not, and where c1
and c2 are both not leaves, are handled similarly. Please see
this work’s Appendix for the complete details: [20].

When rA and rB start in different initial positions, we have
the following result:

Proposition 4: Assuming Ibasic and V ≥ 3, if GR is a tree,
rA has a strategy that guarantees it either wins or ties in FCC.

Proof: Let P1 = v1v2 . . .vn be rB’s path. If GR is a
tree, then (trivially) R has a unique cell-level spanning tree.
Since rB is executing Spanning Tree Coverage, P1 is either a
clockwise or counterclockwise Hamiltonian path surrounding
the spanning tree (as illustrated in Figure 1). Let us assume
it is clockwise, and suppose pA = vk, for some k. rA’s
strategy is as follows: until it is within distance 2 or less
of rB, it executes STC in “reverse”, going counterclockwise
around the cell-level spanning tree - resulting in the path
P2 = vkvk−1 . . .v1vn . . .vk+1. Let us first assume k is even.
At time t = k/2, rB and rA will be at vk/2 and vk/2+1,
respectively. At this point rA can detect that it is one step
ahead of rB, on rB’s STC path. Thus rA can begin moving
clockwise, covering the vertices vk/2+1 . . .vn before rB. When
rA and rB meet, they have both covered k/2 vertices. rA is
guaranteed to cover all subsequent vertices upon starting to
move clockwise. This guarantees a win for rA if k < n, and
a tie when k = n. If k is odd, at time t = (k+1)/2, rA and rB
will both be at v(k+1)/2 - so rA can begin moving clockwise,
which causes it to always move to the same location as rB.
This guarantees a tie.

V. LAST COVERED CELL

Compared to First Covered Cell, it seems easier to find
effective strategies for rA in Last Covered Cell. This is
primarily due to the following difference: the dominant
strategies in First Covered Cell rely on covering vertices
before rB, which essentially requires rA to predict rB’s
movement path - a difficult task given rA’s limited sensing
range. Conversely, the dominant strategies in Last Covered
Cell rely on covering vertices after rB, which can be done
using pheromones or line of sight.

As in the previous section, we first study possible strate-
gies for rA assuming R is completely visible: V = ∞.

Proposition 5: Suppose V = ∞ and the Ibasic information
model. If n ≥ 8, then rA has a dominant algorithm.

Note that the analogous theorem for FCC, Proposition 2,
also required that GR not be a path graph (and Figure 2

demonstrates that this condition is necessary). Proposition
5 does not require this assumption, corroborating our claim
that LCC is generally easier than FCC.

Proof: Let v1v2 . . .vn be the path robot rB takes from
start to finish of the coverage game, where v1 = pB. If GR
is not a path graph, as shown in Proposition 2, we have that
dist(v1,vn/2)≤ n/2−2, hence rA can arrive there before rB
does. rA can then wait for rB to arrive at vn/2−1, and proceed
by executing a pursuit strategy, wherein at every time step t,
rA moves to rB’s current location. This results in rA covering
the vertices vn/2−1 . . .vn−1 last, for a total score of at least
n/2+1, thus winning the LCC coverage game.

If GR is a path graph, we extend the above idea and
note that if n ≥ 8, one of the vertices v1v2 . . .vn/2 must be
at distance less than n/2− 2 from pA. Suppose this vertex
is vi. Then rA can move to vi in at most n/2− 2 steps. If
i < n/2, it can then wait for rB to get to vi+1 if it hasn’t
already, and subsequently cover vivi+1 . . .vi+n/2 following
rB, winning LCC. If i = n/2, it can wait for rB to get to
vn/2−1 and subsequently remain one step behind rB, covering
vn/2−1 . . .vn−1. (The reason this strategy works in LCC but
not in FCC is that, if i < n/2, rB might get to vi before rA,
which, in FCC, would prevent us from covering vi+1vi+2 . . .).
The complete details can be found in this work’s Appendix:
[20].

We now study the case where rA has only local sensing.
First, let us note that rA has a simple fair-dominant strategy
available to it:

Proposition 6: In the Ibasic model, assuming V ≥ 1, rA has
a fair-dominant strategy.

Proof: rA waits for rB to leave the entry point and then
pursues it. This results in rA covering n−1 vertices.

Let us now consider the case where rA and rB have limited
sensing and have different initial locations. Our only result
for First Covered Cell under these conditions was Proposition
4. The situation appears more promising in LCC: not only
are we able to strengthen some results compared to those of
FCC, we are also able to find new dominant strategies. We
start with a stronger version of Proposition 4:

Proposition 7: Assuming the Ibasic model and V ≥ 3, if
GR is a tree, rA has a dominant LCC strategy.

Proof: (Sketch.) Similar to Proposition 4, we have rA
surround the spanning tree counterclockwise until it comes
within distance 2 of rB. Upon meeting, rA begins pursuing
rB, covering vertices after rB exits them. If pA ̸= vn,vn−1, this
guarantees a win for rA, by a similar argument as Proposition
4. If pA ∈ {vn,vn−1}, because dist(vn,v1),dist(vn−1,v1)≤ 2,
rA begins pursuing rB right away, covering all vertices but
at most 2, resulting in a win.

We now show that, assuming the Ipheromone model, rA
has a dominant strategy in environments that can be fully
explored/sensed in less than n/2−V time steps. We show
that this class of environments contains the empty grid and
“cycles” as special cases.

Definition 5: The ball of radius r about a vertex v ∈ R,
denoted B(v,r), is the set of all vertices at distance r or
less from v. The r-reach of a path P = v1 . . .vk+1, denoted



reach(P,r), is the set
⋃

v∈P B(v,r).
Definition 6: A path P = v1v2v3 . . .vk is said to r-saturate

the environment R if reach(P,r) = R.
Proposition 8: In the Ipheromone model: if, for some r ≤V ,

there exists an algorithm that enables rA to traverse an r-
saturating path of length n/2− r, then rA has a dominant
algorithm.

Proof: Let P= pAv2 . . .vn/2−r be an r-saturating path of
length n/2−r, for some r ≤V . Following P, rA can sense pB
at distance r in time step n/2− r, and enter pB in time step
n/2. Thereon, rA can begin following pB’s pheromone path
(using its information about pheromone recentness assumed
by the Ipheromone model). At time t = n, rA will have covered
n/2+ 1 vertices after pB following this strategy (the first
n/2+1 vertices of pB’s path), winning LCC.

Corollary 1: In the Ipheromone model, (i) Assuming V ≥ 3,
rA has a dominant strategy in all empty grids of size m×m,
for m ≥ 19 and (ii) Assuming V ≥ 2, rA has a dominant
strategy in environments whose cell-level graph is a cycle.

Proof: (i) Figure 3, (a) shows a 3-saturating path of an
m×m grid. The path can be executed by rA, by first following
the orange line to find the top-left corner (this can be done
simply by moving up-left, without placing pheromones), and
subsequently by zig-zagging down the grid, using pheromone
information to keep track of where it is along the path. The
orange part of the path is of length at most 2m, and the blue
part is of length m2/3+m, for a total length of m2/3+3m.
As long as m ≥ 19, we have that m2/3+3m < m2/2−3, and
Proposition 8 applies.

(ii) Figure 3, (b) shows a 2-saturating path of length n/2−
2 in a cycle environment, hence Proposition 8 applies.

(a) (b)

Fig. 3: (a) A 3-saturating path in an empty grid. (b) A 2-saturating
path in a cycle environment.

VI. HEURISTIC AND LEARNING-BASED ALGORITHMS

In cases where we could not find a guaranteed winning
strategy, we can consider various empirical or heuristic
strategies that win most of the time. In this chapter, we
examine three different types of algorithms for rA:1

1) Heuristic. Family of algorithms that are pre-determined
and do not require any prior learning.

2) Q-Learning. Algorithms obtained by training rA using
Q-Learning.

3) Deep Q-Learning (DQN). Similar to Q-learning, but
approximates the Q-value function using a deep neural
network rather than a table.

1Code for all our algorithms is available at https://github.com/s
hatsss/competitive-ants.

We evaluated the performance of these types of algorithms
on three different environments: an empty grid, and two envi-
ronments with obstacles (see Fig. 4). In each environment, rB
runs STC without being aware that it is competing against rA.
Each data point in this section represents the average win rate
of rA across 500 FCC or LCC games. We randomly generate
rA and rB’s initial locations in each game. All (heuristic and
learned) algorithms assume the Ibasic information model. The
sensing radius used for rA is 3 in all Heuristic algorithms,
and 1 or 3 in learning-based algorithms.

Fig. 4: Different environments: obstacles-free (10×10), obstacles1
(10×10) and obstacles2 (14×14).

A. Heuristic Algorithms

The aim of this section is to compare the effectiveness
of various heuristic strategies in FCC and LCC. These
algorithms are based on the STC algorithm, modified to
improve performance in a competitive setting.

1) FCC Algorithms: The first algorithm, FCC f ree, prior-
itizes the exploration of cells not yet covered by either rA
or rB, continuing to visit them until all neighbors have been
visited. The second algorithm, FCCR−ahead , is motivated by
Proposition 4. FCCR−ahead runs STC in reverse (with regards
to rB’s STC algorithm) until rA meets with rB, after which rA
aims to be one step ahead of rB or at least to be in the same
location as rB. The third algorithm, FCCahead , operates the
same way as FCCR−ahead , but executes STC normally rather
than in reverse.

As we can see in Table I, FCCR−ahead significantly out-
performs the other algorithms.

TABLE I: Percentage of wins in FCC (rows 1-3) and LCC (rows
4-6) using heuristic algorithms. Each data point is the average of
500 games

Environment
obstacles-free obstacles1 obstacles2

A
lg

or
ith

m

FCC f ree 0.823 0.455 0.598
FCCahead 0.587 0.52 0.556

FCCR−ahead 0.873 0.906 0.828

LCCopponent 0.994 0.7486 0.953

LCCbehind 0.972 0.806 0.883

LCCR−behind 0.989 0.986 0.891

2) LCC Algorithms: The first algorithm, LCCopponent ,
prioritizes visiting cells that were covered last by rB. In
situations where no neighboring cells have been covered
by rB, the standard STC algorithm is applied using rA’s
pheromones to resolve the issue.



The second and third algorithms, LCCbehind and
LCCR−behind , are analogous to FCCahead and FCCR−ahead ,
but instead of staying ahead of rB, they aim to stay one step
behind rB. LCCR−behind , in particular, is described in and
motivated by Proposition 7.

In contrast to the FCC setting, where the FCCR−ahead
algorithm dominated, the results in Table I show that none
of our Heuristic LCC algorithms consistently outperform.
LCCopponent outperformed the other algorithms in two out
of three environments, whereas LCCR−behind had the highest
average win-rate.

Our heuristic algorithms are relatively straightforward,
based primarily on pursuing rB or predicting its next move.
This knowledge enables them to attain an excellent win rate,
despite their simplicity, highlighting the value of knowing
your opponent’s strategy in the competitive coverage setting.

B. Reinforcement Learning

In this section, we attempt to learn competitive coverage
strategies by leveraging the interaction between rA and its
environment, giving rewards or penalties for certain actions.
We test both Q-Learning and Deep Q-Learning as methods
of optimizing a competitive coverage policy to be used by
rA. After the training process, rA follows the resulting policy.

We tested different reward functions during the training
process. The first reward function, denoted T (2)− T (1),
is based on the scores of both players, where T (2) is the
score difference of rA between the current time step and
the previous time step, and T (1) is the score difference
of rB between the current time step and the previous time
step. The second reward function, denoted T(2), rewards
rA based on its own scores only, as previously described.
The third reward function, denoted FCC-local, rewards 1 for
moving to unvisited locations, and rewards −0.25 for moving
to locations already covered by rA or rB. The last reward
function, denoted LCC-local, rewards 2 for moving to cells
already covered by rB, rewards 1 for moving to unvisited
cells, and rewards −0.25 on cells rA covered last. All reward
functions give a score of −100 for illegal moves, such as
being an obstacle or outside of the grid, and the game is
stopped when such moves occur.

Separate models were trained for each reward function
and environment, and the models’ respective win rates were
calculated and averaged. The initial locations of rA and rB
were randomized in each training iteration. We note that in
actual runs of FCC or LCC, rA cannot compute the functions
T (2) or T (1) (as it has no global knowledge of its territory) -
these reward functions are not inputted to the learned policy,
just used to optimize it. Table II summarizes the hyper-
parameters used for all (deep and normal) RL algorithms.

TABLE II: Hyper-parameters for both Q-Learning and DQN.

Learning rate 0.001
Network update frequency 25 steps
Minimum exploration rate 0.0

Initial exploration rate 1.0
Batch size 128

Experience replay buffer size 50000
Number of training iterations 10000

1) Q-Learning: The input to our Q-Learning model is a
single frame that consists of what rA sees within the sensing
range relative to its current location: obstacles, rB’s location
if it falls within the sensing range, as well as who visited
the cells first/last. We found that this model quickly runs
into the problem of combinatorial explosion: the number of
possible input states grows exponentially with the number of
features (determined by the sensing range in our case) used
to describe a state, making it difficult or impossible to learn
an optimal policy efficiently. For example, when the sensing
range is 3, there are 25 neighboring cells in rA’ sensing range,
and each cell can be one of the six options (obstacle, not
visited, covered by rA, covered by rB, covered by both - rA
and rB, or rB’s current location), for a total of 625 possible
states. Consequently, when setting the sensing range to 3,
the algorithms’ winning rate was close to zero. Therefore,
Table III presents the results for simulations conducted with
sensing range 1. Hyperparameters are outlined in Table II.

We can see from these results that the T (2)−T (1) reward
function outperforms the other reward functions in both
games. We find this interesting, because T (1) and T (2)
are global functions that cannot be computed by rA due
to its limited sensing range, and are not accessible to rA
when running the trained policy–thus T (2)−T (1) is a noisy
reward, sometimes awarding different scores to rA for doing
(as far as it can tell, based on its sensing range) identical
actions. Despite this noisiness, it appears beneficial.

TABLE III: Percentage of wins in FCC (rows 1-3) and LCC (rows
4-6) using Q-Learning. Each data point is the average of 500 games

Environment
obstacles-free obstacles1 obstacles2

R
ew

ar
d

T(2)-T(1), radius 1 0.736 0.47 0.54

T(2), radius 1 0.600 0.416 0.51

FCC-local, radius 1 0.662 0.43 0.48

T(2)-T(1), radius 1 0.996 0.754 0.962

T(2), radius 1 0.702 0.32 0.44

LCC-local, radius 1 0.888 0.41 0.75

2) Deep Q-Learning (DQN): When using Q-Learning,
we faced a combinatorial explosion problem. We therefore
attempt to address this problem with Deep Q-Learning
(DQN), showing herein its effectiveness in certain scenarios.
The input to the model is defined by four frames of the same
size that we used for Q-Learning. The first frame contains
rA’s location and contains rB’s location if it falls within the
sensing range. The second frame contains information about
obstacles that rA detects. The third and fourth frames record
the information regarding who covered the cells first and last
according to the FCC/LCC game respectively.

Our DQN model, summarized in Fig. 5, includes two
convolutional layers with 32 and 64 filters, respectively, each
with a stride of 1 and a filter size of 3×3. The first two layers
are followed by two fully connected layers, with 128 rectifier
units in the first hidden layer and 4 rectifier units in the
output layer. The output layer indicates the next move of rA,



either UP, DOWN, LEFT, or RIGHT. The model uses SELU
as the activation function in all layers. Hyperparameters are
outlined in Table II.

Fig. 5: Overview of the architecture of the DQN model.

An analysis of Table IV reveals that in most scenarios,
DQN performs better when we increase the sensing range.
“Global” reward functions (i.e., T (2)−T (1) and T (2)) are
again found to be the most effective for both games in most
environments, despite their aforementioned noisiness.

TABLE IV: Percentage of wins in FCC (rows 1-6) and LCC (rows
7-12) using DQN. Each data point is the average of 500 games.

Environment
obstacles-free obstacles1 obstacles2

R
ew

ar
d,

Se
ns

in
g

ra
ng

e

T(2)-T(1), radius 1 0.731 0.25 0.211

T(2), radius 1 0.726 0.33 0.321

FCC-local, radius 1 0.729 0.276 0.24

T(2)-T(1), radius 3 0.948 0.49 0.25

T(2), radius 3 0.93 0.29 0.22
FCC-local, radius 3 0.748 0.42 0.18

T(2)-T(1), radius 1 0.955 0.63 0.84

T(2), radius 1 0.646 0.24 0.15

LCC-local, radius 1 0.965 0.66 0.894

T(2)-T(1), radius 3 0.997 0.911 0.854

T(2), radius 3 0.615 0.3595 0.077

LCC-local, radius 3 0.995 0.876 0.91

The results from our experiments suggest that FCC is more
challenging than LCC, as evidenced by consistently lower
win rates across all algorithms tested. Finally, the results
show that no algorithmic approach consistently outperforms
the others, as indicated in Table V.

TABLE V: Best algorithm type per game and environment.

Environment
obstacles-free obstacles1 obstacles2

G
am

e FCC DQN Heuristic Heuristic

LCC DQN Heuristic Q-Learning

VII. CONCLUSIONS

We studied two types of competitive coverage games for
ant-like robots, First Covered Cell and Last Covered Cell, in
an asymmetric information setting where one robot has an
information advantage over the other. We found that in FCC,
we are incentivized to stay ahead of our opponent, getting
to their next target location before they do, and in LCC we
are incentivized to pursue our opponent. Whereas pursuing
a robot requires only a line of sight or knowledge of its
pheromone traces, staying ahead of a robot - and having it
pursue us - requires knowledge of its strategy. Our results
suggest pursuing is easier: theoretically, we were able to

identify dominant algorithms for LCC in a greater variety of
settings than FCC, including settings where we showed no
dominant algorithm exists for FCC (Figure 2); empirically,
both heuristic and RL-based algorithms had a higher win rate
in LCC than in FCC. We are very interested in future results
about competitive coverage with symmetric information.
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