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Abstract— This paper introduces the competitive
coverage problem, a new variant of the robotic cov-
erage problem in which a robot R competes with
another robot O in order to be the first to cover
an area. In the variant discussed in this paper, the
asymmetric competitive coverage, O is unaware of
the existence of R, which attempts to take that fact
into consideration in order to succeed in being the
first to cover as many parts of the environment as
possible. We consider different information models of
R that define how much it knows about the location
of O and its planned coverage path. We present an
optimal algorithm for R in the full-information case,
and show that unless R has information about O’s
initial location, it is as if it has no information at all.
Lastly, we describe a correlation between the time it
takes R to reach O’s initial location and the coverage
paths quality, and present a heuristic algorithm for
the case in which R has information only about
O’s initial location, showing its superiority compared
to other coverage algorithms in rigorous simulation
experiments.

I. INTRODUCTION

The robotic coverage problem is one of the
fundamental problems in robotic research, and as
such has received considerable attention in the
past two decades [10], [6]. The problem has its
theoretical merits, but is of special interest due to
its immediate applicability in real world settings,
such as cleaning, coating, demining and search and
rescue.

In the original problem of robotic coverage, a
robot’s goal is to determine a path that will visit
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each point in a given area at least once, usually
while minimizing the time for completion. In the
multi-robot coverage problem, the coverage is a
collaborative effort: each point in the area should be
visited at least once by some robot from the team,
and the common goal is to minimize the maximal
working time of some robot from the team.

In this work we formally define a new variant
of the coverage problem, competitive coverage,
in which robots do not work collaboratively, but
competitively. More formally, two robots, R and
O, are to cover a given area represented as a grid,
and our goal is to maximize the number of cells R
covers first, before they are covered by O.

We examine in depth the asymmetric variant of
the competitive coverage problem, in which O op-
erates without the knowledge of R’s existence, and
R knows it should compete with O. The problem
is modeled by the level of information R has on
O (beside its existence): (i) R knows the initial
location of O and its planned coverage path ; (ii) R
knows only the path, but does not know O’s initial
location ; (iii) R knows O’s initial location, but not
its coverage path ; (iv) R does not know either O’s
path or its location.

We present an optimal algorithm for R in the full-
information case. We also show that, surprisingly,
having information only about the coverage path is
equivalent to having no information at all about the
opponent. Lastly, we present a heuristic algorithm
for the case in which R has information only about
the initial location of O, and prove its superiority
over other coverage algorithms based on rigorous
empirical analysis using both a self-developed sim-
ulation, and the realistic ROS/Gazebo simulator.
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II. BACKGROUND AND RELATED WORK

The problem of single-robot coverage has been
extensively discussed in the literature. Refer to
[10] for a recent survey of coverage path planning
methods.

The coverage problem can be classified as either
offline or online [6]. Online algorithms assume
zero or partial knowledge regarding the world to
be covered, and the coverage-path is generated
while advancing in that world. Conversely, Offline
algorithms rely on stationary, known beforehand
map of the world, and thus create the full coverage-
path before even starting to move through it. In this
work, we focus on offline coverage.

The coverage problem has been reduced to the
traveling salesman problem [4], and thus known
to be NP-complete even on simple graphs such
as grid graphs [14]. However, there are known
solutions to the coverage problem that work even
in linear time (e.g. Spanning tree coverage, STC,
as presented in [9]). In our work, we consider an
approximate cellular decomposition (as explained
in [10]) into finite grid, and thus we know there
exists an optimal coverage path that can be found
in linear time.

Considerable attention has been given also to the
multi-robot variant of the coverage problem, where
multiple robots work in coordination in order to
jointly cover an area. The robots can be with or
without leader(s), relying on full or limited commu-
nication (e.g., [1]), in online or offline manner [1],
[7]. In this work, we do consider multiple (exactly
2) robots, but working noncooperately, one on each
side.

Yehoshua et al. [20] recently introduced a new
variant of the coverage problem, in which the cov-
ering robots operate in an adversarial environment,
where threats exist and might stop the robot. Online
algorithms for adversarial coverage were discussed
in [18], and multi-robot algorithms for adversarial
coverage were discussed in [19]. In this work, other
robots considered as competitors, and are not being
a threat to our robot.

Another worth-mentioning problem related to
coverage is the patrolling task, in which the robot(s)
are to repeatedly visit the area in order to monitor

change in state. Examples to either partition-based
or cyclic-based can be found in [11], [12], [13],
[5]. Another one is adversarial patrolling ([2], [15],
[3], where there is an adversary trying to penetrate
through the patrol path, undetected. In this work,
we consider competitors, where both are already in
the area, and are trying to visit it as fast as possible.

Finally, the competitive problem is related to
the foraging problem, which is searching and then
transporting objects to one or more collection
points. In [17] we find a fairly extensive survey of
the subject. In our work, the robot does not need
to find anything, therefore there is no notion of
’capacity’ (that exists in foraging), and the choice
to go back to certain points depends on the covering
strategy assumptions (which, in our case, says that
only position visited more than once is the initial
position).

III. COMPETITIVE COVERAGE: DEFINITION

Let R and O be two robots operating in an
obstacle-free grid W of size N = m × n. Both
robots move in the four basic directions (North,
South, East, West). Consider robot R to be our
robot-of-interest, and robot O to be the opponent.
The goal of each robot is to cover the area, that
is, find a path (denoted as the coverage path) that
visits each point in the area at least once. We define
a coverage strategy of a robot as the coverage path,
including the order of cells visited (specifically in a
cyclic coverage path, the strategy indicates both the
cells’ ordering, and the direction of movement—
clockwise or counterclockwise). We denote R’s and
O’s strategies by SR, SO ∈ S, respectively, where
S stands for the possible strategies space. In this
paper we focus our attention to the offline version
of the competitive coverage problem, in which SR

and SO are deterministic, and computed in advance
(before the execution), and thus consist of W’s cells
permutation. For an online version, the strategy
are random or deterministic, and may be adjusted
during the execution based on the environment, the
opponent’s behavior, random factors, and more. We
leave the online version of the competitive coverage
problem to future work.

Robot O is covering W using an optimal coverage
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strategy, that is, it follows a path guaranteeing
coverage in minimal time. Since solving the cov-
erage problem is generally computationally hard
[4], then for the sake of the analysis we focus
on environments in which an optimal coverage
path can be computed in polynomial time using
the Spanning-Tree Coverage Algorithm [9] which
generates cyclic coverage paths under some as-
sumptions on the environment.

Robot R’s goal is to cover as many cells as possi-
ble before they are visited by R. Denote the number
of cells in W first covered by robot x, x ∈ {R,O}
by FCCx. Therefore our goal is to find a coverage
path for R that maximizes FCCR. When deciding
between options with the same FCC value, R will
choose the one that yields the fastest coverage time.

Denote the initial location of R (O) by iR (iO).
Robot R can be given iO, SO, both or neither. These
types of information are called Information Models,
and are defined as follows:

Definition III.1 (Information Model). Informa-
tion Model IM ∈ {∅, {S, I}}, represents the
knowledge a robot has on its opponent. S ∈ S ∪
{S∅}, where S∅ stands for an unknown strategy,
and I ∈ W ∪ {W∅}, where W∅ refers to an unknown
initial point. If IM = ∅ then the player of interest
does not know its opponent exists. Let IMR be the
information model R is given about O, and let IMO

be the information model O is given about R.

We assume that IMR 6= ∅, that is, R knows O
exists. However, IMO = ∅, that is, O does not
know R exists. This is referred to as asymmetric
competitive coverage (we leave the symmetric ver-
sion, in which O is aware of the existence of R, to
future work). Therefore, considering all said above,
the (asymmetric) Competitive Coverage Problem is
formally defined as follows.

Competitive Coverage Problem
Let W be a finite, obstacles-free grid of size N .
Given IMO = {SO, iO} find S?

R ∈ S s.t.

S?
R = argmax

SR∈S
{FCCR(IMR, IMO)}

We examine the competitive coverage problem
with the following information models:

1) Full Information - IMR = {SO, iO}
2) Partial Information - IMR = {S∅, iO}
3) Partial Information - IMR = {SO,W∅}
4) Zero Information - IMR = {S∅,W∅}

IV. MOTIVATION

Consider the following real-world scenario: Two
robots that are looking for oil over international
waters, where the first one to discover it gets the
rights of mining it. In this case, even though each
side wants to cover the whole area as fast as
possible, it is way more important to discover first
as much of the area as possible.

In general, any case where there are scattered
goods over an area in unknown locations, where the
objective is to discover first as many of the goods
as possible, is relevant to our case. Theorem 1
connects the FCC measure to the expected number
of collected goods in this scenario.

Theorem 1. In a world W with unknown number
of scattered items in unknown locations, and the
probability for an item to exist in a cell is uniform
throughout W. Given two robots R and O that are
trying to collect the same items, then R maximizing
its FCC is equivalent to maximizing the expected
number of collected items.

Proof of Theorem 1. Let g be and number of scat-
tered items in W, where gi is item number i, and let
c(gi) ∈ W be the cell containing gi. The expected
number of items collected by R (over the locations
of the items), denoted by SGR, is defined as:

E [SGR] = E

[
g∑

i=1

1 [R visits c (gi) before O]

]

=

g∑
i=1

E [1 [R visits c (gi) before O]]

=

g∑
i=1

P (R visits c (gi) before O)

where 1 is the boolean version heaviside function
[16]. Since the probability for an item to exist in a
cell is uniform throughout W, that is,

E [c (gi)] = E [c (gj)] ∀i, j ∈ [1, g]
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we get that:

max {E [SGR]}

= max

{
g∑

i=1

P (R visits c (gi) before O)

}

= max

 1

|W|

|W|∑
j=1

1 [R visits cj before O]


= max


|W|∑
j=1

1 [R visits cj before O]


= max {FCCR}

Which concludes our proof.

V. FULL INFORMATION

In this case robot R has full information about
robot O’s plans, that is, IMR = {SO, iO}. We show
that if R simply travels as quickly as possible to
the first location in O’s path and precede it, R
maximizes its FCC. This behavior is depicted in
Algorithm ITP (Algorithm 2).

Definition V.1 (Interception-Point). The
Interception-Point between SO and iR is the
first cell cj ∈ SO that the time it takes R to reach
cj is lower than the time it takes O to reach it. The
method for finding Interception-Point is shown in
Algorithm 1. Notice we used Dijkstra(iR,cj)[8] to
compute the distance between cells in the graph,
which means ITP should work with obstacles too.

Algorithm 1 Finding Interception-Point
Require: iR
Require: SO =

{
cO1 , c

O
2 , ..., c

O
N

}
for j ∈ [1, N ] do

if Dijkstra (iR, cj) < j then
return j

end if
end for

In Theorem 3 we prove the optimality of ITP in
the full information model, and show its expected
FCC. In order to prove the expected FCC, we first
prove the following supporting lemma.

Algorithm 2 Intercept Then Precede (ITP)
Require: iR
Require: SO =

{
cO1 , c

O
2 , ..., c

O
N

}
k ← Algorithm 1(iR)
GoTo cOk
for j ∈ [k + 1, N ] do

GoTo cOj
end for

Lemma 2. The expected distance between two cells
selected uniformly at random on a rectangular grid
of size m× n is

m2 − 1

3m
+

n2 − 1

3n

Proof of Lemma 2. Let X1, Y1, X2, Y2 be random
variables, indicating the coordinates for cell C1 =
{X1, Y1} and cell C2 = {X2, Y2}. X1, X2 can fall
anywhere in the range [1 . . .m], where Y1, Y2 can
fall anywhere in the range [1 . . . n]. The expected
distance between two cell is:

E [|C2 − C1|] = E [|X2 −X1|] + E [|Y2 − Y1|]

The expression E [|X1 −X2|] is computed in
Equation (1). The expression E [|Y1 − Y2|] is com-
puted similarly in the range [1, n], thus adding the
two expressions concludes the proof.

E [|X1 −X2|] =
m∑

x1=1

m∑
x2=1

|x1 − x2|
m2

=

m∑
x1=1

x1∑
x2=1

x1 − x2

m2
+

m∑
x1=1

m∑
x2=x1+1

x2 − x1

m2
=

∑m
x1=1

(
x2
1 −

x1(x1+1)
2

)
m2

+∑m
x1=1

1
2 (m− x1) (m+ x1 + 1)− (m− x1) · x1)

m2
=∑m

x1=1

(
x2
1 − (1 +m)x1 +

1
2m

2 + 1
2m
)

m2
=

m
(
1
2m

2 + 1
2m
)
+
∑m

x1=1

(
x2
1 − (1 +m)x1

)
m2

=

m2 − 1

3m
(1)

6636



Theorem 3. In the full knowledge asymmetric
competitive coverage problem on an obstacle-free
grid, Algorithm ITP optimizes E [FCCR], and in a
grid of size m× n yields

E[FCC] = m · n− m2 − 1

3m
− n2 − 1

3n

Proof of Theorem 3. The FCC equals the number
of cells robot R visits before robot O. In a world of
size m×n this equals the size of the world (m ·n)
minus the time it takes R to reach the interception
point of O’s coverage path. Therefore the expected
FCC is mn− E [|C2 − C1|]. Following Lemma 2,
this equals

E [FCC] = n ·m− m2 − 1

3m
− n2 − 1

3n

We are now left to prove ITP’s optimality.
Remember that O is said to be optimal, which

means it does as less steps as it can, and in our
case, it does exactly |w| steps. In each step, O is
visiting a new cell. If it is the first to be there, it
’gains’ the cell. Therefore, each step that R is doing
something else other than cover a new cell, O is
gaining a new cell. But, after interception, since R
is covering from that point using SO, every step R
is taking is a guaranteed gain for R.

So, to minimize the amount of cells that O is
visiting before R we intercept it (gaining steps
along the way). From that point, by covering W
using SO, R maximizes its FCC. We just described
ITP.

VI. ZERO INFORMATION

In the zero-information case, R knows neither iO
nor SO. In fact, in this information model, R knows
about O only that it exists.

Let us introduce the Choose-Random-Strategy
procedure (CRS), that chooses an optimal coverage
path SR ∈ S at random. In Theorem 4 we prove
the optimality of CRS, and its resulting E[FCC].
It follows that, in fact, the knowledge that an
opponents exists in the world does not grant R any
advantage.

Theorem 4. In the zero-knowledge asymmetric
competitive coverage problem on an obstacle-free

grid, Algorithm CRS maximizes E [FCC], and on a
grid of size m× n, CRS yields

E[FCCR | SR = CRS] =
m× n+ 1

2

Proof of Theorem 4. Let us first introduce the no-
tion of covering-time:

Definition VI.1 (Covering-Time CTR(ci)). The
covering time of the cell ci by R is the time it
takes R to reach cell ci for the first time. More
formally, given SR =

{
cR1 , c

R
2 , . . . , c

R
N

}
, CTR(ci) is

the first index j s.t. cRj = ci.

Notice the following: a cell ci is ’gained by R’ if
and only if CTR(ci) < CTO(ci), which means that
R visits ci before O. Let 1[x] be the unity function,
where 1[x] = 1 if and only if x is true, 1[x] = 0
otherwise. One can re-write the expression for R’s
gain using the CT property:

(2)
E[FCC] = E

[
m×n∑
i=1

1 [CTO (ci) ≥ CTR(ci)]

]

=

m×n∑
i=1

E [1 [CTO(ci) ≥ CTR(ci)]]

To show that Equation (2) = m×n+1
2 , we prove

that E [1 [CTO(ci) ≥ CTR(ci)]] =
1
2 . Indeed:

(3)
E [1 [CTO(ci) ≥ CTR(ci)]]

= P (CTO(ci) ≥ CTR(ci)) =
1

2

where the first equality can be easily proved, and
the second is because when averaging over iO
and SO, P (CTO(ci)) = P (CTR(ci)) = 1

m×n ,
and since they are independent of each other, both
can be considered as i.i.d variables, uniformly dis-
tributed over [1,m × n], and the probability that
one is greater than the other (or, Equation (3)) is
exactly 1

2 . Using Equation (2) and Equation (3) we
get:

E[FCC] =
m×n∑
i=1

E [1 [CTR (ci) ≥ i]]︸ ︷︷ ︸
0.5

=
m× n+ 1

2
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VII. ONLY STRATEGY KNOWN

In this case, where R knows SO, but not iO,
we examine whether R can achieve anything better
than playing CRS, given that is is given more
information: Unfortunately, as stated in Theorem 5,
it cannot, and the best E [FCC] R can achieve is
random-like. This result is surprising: the knowl-
edge about SO is irrelevant to R, and it does
not help achieving anything better than random-
like results. That is, even though R has more
information than in the zero-knowledge case, still
no better results are achievable.

Theorem 5. When IMR = {SO, i∅}, then

max
SR

{EiO [FCCR]} = EiO,SR
[FCCR] =

N + 1

2

Proof of Theorem 5. Since SR and SO are optimal-
cyclic-coverage strategies, and since we assumed W
is an obstacles-free rectangular grid, both SR and
SO are actually Hamiltonian cycles, consisted of
all the cells in W : c0, ..., cN−1; The relative place
a cell ci is actually CTR(ci).

Note that each starting position ir determines the
covering time of all the cells c0, ..., cN−1; Since we
assume the strategy is known beforehand, then, for
O, the covering time is set after iO is known, and
changing it changes for all the cells their respective
covering time. That is, CT (ci) directly depends on
iO for all ci ∈ W, and CTO(ci) ∈ [0, N − 1].

Similar to Equation (2), one can write the FCC
of a fixed problem (with all its variables known)
FCC(W, SR, SO, ir, iO) as #{CTR(ci) ≤ CTO(ci)}.
Let Ex(FCC) be the expected FCC where the ran-
domness is taken over the variable x. We therefore
understand the following equation:

EiO [FCC] =
1

N

∑
iO∈W

∑
ci∈W

1 [CTR(ci) ≤ CTO(ci)]

If we change the order of summation, we can
use what we know about ranging over the initial
position and get:

EiO [FCC] =
1

N

∑
iO∈W
ci∈W

1 [CTR(ci) ≤ CTO(ci)]

=
1

N

∑
ci∈W

#{CTR(ci) ≤ CTO(ci)}

=
(?)

1

N

∑
ci∈W

N − CTR(ci) =
N + 1

2

where (?) is because CTR(ci) is not dependent on
iO (consider as constant), and the value of CTO(ci)
ranges from 1 to N . Combining the two, we get that
there are exactly N−CTR(ci) different cases where
CTR(ci) ≤ CTO(ci).

VIII. ONLY INITIAL POSITION KNOWN

In this information model, where iO is known but
SO is not, we present a heuristic algorithm for cov-
erage, LTR (Longest To Reach), and demonstrate
empirically its superiority over other algorithms in
terms of maximizing FCC for R. The optimality
proof of LTR is left to future work.

A. The LTR Algorithm

The idea behind the LTR algorithm (Algorithm 3)
is that for R to maximizes its expected FCC (over
different O’s algorithms) it should cover areas with
lower probability that O already visited, instead
of areas with high such probability. Such covering
algorithm S? is the result of Equation (4).

To reach all the cells, we run BFS from iO, giving
each cell a LEVEL value of how much recursive
calls were created to reach that cell. After all the
cells are set with LEVEL value, R tries to cover
groups of cells, from high to low.

S? = argmin
S={c1,c2,...,ck}

k∑
i=1

P [CTO (ci) < CTR (ci)]

(4)

B. Simulations and Results

We have tested LTR in different settings. First,
we ran simplified simulations of LTR and other
strategies using python code. The world is a grid of
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Algorithm 3 Longest To Reach (LTR)
Require: iO

set STATUS=READY for each cell in W
set iO.STATUS = WAITING
set iO.LEVEL = 1
Enqueue iO
while Queue not empty do

c← Dequeue cell
set c.STATUS = PROCESSED
let maxLevel := 1
for all c′ ∈ c.NEIGHBORS do

if c′.STATUS = READY then
set c′.STATUS = WAITING
set c′.LEVEL = c.LEVEL + 1
maxLevel := c′.LEVEL
Enqueue c′

end if
end for

end while
v = maxLevel
while ∃c ∈ W s.t. c.LEVEL = v do

cover all cells with LEVEL = v
v = v − 1

end while

size 32×32, and it takes 1 step to travel between ad-
jacent cells (north/south/east/west). They are called
’simplified’ because no physical constraints were
taken into consideration (turning time, collisions).
Each algorithm was averaged over 100 different SO

random MST (Minimum Spanning Tree), and we
checked four different cases for iO (iR is always
as (0, 0)). We compared our algorithm with five
different coverage algorithms, all of them are opti-
mal (take exactly |W| steps to cover the world), as
follows.LCP algorithm is the opposite of LTR: it
covers the world starting from iO and advance on
increasing LEVEL values. MST is a simple random
MST coverage path, averaged over 30 randomly
chosen MST paths. CircVert is circular covering
path that prefers vertical movements. CircHorz is
defined similarly for horizontal movements. Non-
CircVert is as CircVert but without the circularity
constraint (that is, the path is not circular). The
results are shown in Figure 2. As one can see,
in three out of four times, LTR yields the best
results compared to the other algorithms (statisti-
cally significant, using Student t-test with p-value
< 0.0005). Even in the one case where LTR is only

0 10 20 30
0

10

20

30

LTR Demonstration

Fig. 1: iR is the green circle, iO is the blue one. The
red line indicates the path from iR to the farthest
cell from iO, and blue indicates the covering of the
rest of W with decreasing LEVEL values

(0:0)-(0:31)
(0:0)-(31:31)

(0:0)-(15:15)
(0:0)-(0:1)

300

400

500

600

MST LCP LTR
CircVert NonCircVert CircHorz

Fig. 2: Strategies Averages

second to optimal, one should look at the huge error
margin for the winning algorithm and the much
lower error margin for LTR (error bars are standard
deviation over the samples).

We have also examined LTR in a realistic sim-
ulations using ROS-GAZEBO. We used standard
turtlebots with radius of 0.35 meters, and the world
is of size 11.2×11.2 meters, and can be thought of
as 32× 32 grid with cells the size of one turtlebot.
The results are shown in Figure 3. The results
clearly support the ones we got from the simplified
simulations.
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(0:0)-(0:31)
(0:0)-(31:31)

(0:0)-(0:1)
300

400

500

600

MST LCP LTR

Fig. 3: ROS based simulations - Strategies Averages

IX. CONCLUSIONS AND FUTURE WORK

In this paper we presented the competitive cov-
erage problem, in which two robots exist in an
environment and compete to be the first to cover
cells. We have examined in depth the asymmetric
case, in which only one robot is aware it is in a
competition with the other, and suggested solutions
based on different information models the robot
holds on its opponent. We have shown that only
having full knowledge on the opponent’s strategy
has a significant impact on the possibility of win-
ning. There are still many directions to pursue in
the future, among those examining the symmetric
case, proving optimality of the LTR algorithm, and
examining an online version of the problem.
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