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Abstract— Leader-Follower is a hierarchical form of multi-
robot formation control, where each robot aims to maintain
specific predefined angle and distance from one or more robots
in the team (referred to as its local leaders), while a single
robot is selected to lead the entire formation to a desired
destination. When the robots are given a specific formation
to maintain, their goal is usually to minimize the deviation
from this desired formation (maximizing the accuracy) during
their journey. Previous work has considered optimality in an
uncertain environment only in centralized setting (or using
perfect, or almost perfect communication). In this paper we
examine the problem of optimal multi-robot formation control
in a distributed setting, while accounting for two challenges:
sensory uncertainty and absence of communication. Specifically,
we present an algorithm that allows each individual robot to
estimate the overall formation accuracy of the other robots
in their field of view via a tree reconstruction algorithm. The
algorithm is used to select the most accurate local leader, or to
generate virtual local leader via a weighted average of all visible
robots. We provide both theoretical analysis and an extensive
empirical evaluation (in ROS/Gazebo simulated environment)
showing the effectiveness of the two approaches.

I. INTRODUCTION

Moving in a multi-robot formation is a well known prob-
lem in robotics. It is typically defined by the need for a
team of robots to travel from start point to goal point, while
maintaining a specific predefined geometrical pattern. The
rational for the pattern is to maximize some team utility
function, e.g. increasing fuel economy by reducing the air
drag in aircraft formations, maximizing the range of the
sensing field for probes or sensor networks, increasing the
chances to react to a threat from an unexpected direction of
an infantry squad in a patrol or a convoy mission, and more.

A quite simplistic, yet very powerful approach that deals
with multi-robot formation task is called leader-follower. In
its essence, one robot (the global leader or GL) is taking
care of the navigation to goal and every other robot is
following some other team member, which may or may not
be the GL. When a robot follows a team member, said team
member is called the local leader and the following robot
a follower. This hierarchical approach reduces the formation
maintenance down to two tasks: optimal leader selection for
each robot (except for the GL), and following a single robot.
This paper is focusing on the former.

In most real life applications, fully reliable communication
cannot be assured and robots are required to make decisions
even in the event of absent communication, for example to
avoid putting lives at risk, which is relevant to a variety
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of applications, from construction to self-driving cars and
urban aerial delivery. Therefore, this paper focuses on the
distributed variant of leader-selection problem, with the as-
sumptions that (a) the robots use no explicit communication
(b) the sensing range of the robots is limited and members
of the formation cannot sense every other robot in the team
and (c) all sensors are noisy and the robots’ estimation of
their team-members positions are not necessarily accurate.
Thus, under the leader-follower approach, chains of followers
are created from each robot to the global leader and the
positional estimation errors are propagated throughout the
chain and might accumulate.

Similarly to the centralized approach in [10] and [11], we
present the Uncertain Leader Selection (ULS) algorithm for
distributed leader selection that aims to reduce the accumu-
lative error of robots’ sensors and increase the formation
stability without relying on a non-stable, or even absent
communication. This is done using a tree-reconstruction
algorithm, where each robot derives the most probable tree
representing the hierarchy of local leaders from the observed
subset of robots from the formation.

Additionally, considering extremely noisy, or even hostile
environments, we present the Uncertain Virtual Leader Se-
lection (UVLS) algorithm, where instead of following one
of the other members of the team, robots follow a virtual
point in the formation that they derive from every robot
they sense at a given moment. This improves the previous
algorithm with regards to robot fault tolerance as well as
sensing faults tolerance and uses the redundancy to further
reduce individual sensing error. Another difference between
the two algorithms is that the ULS can be used to select a
specific local leader and occasionally reevaluate to confirm
this robot is still the best one to follow, while UVLS requires
continuous execution to assure continuous movement.

In addition to a theoretical analysis that proves the cor-
rectness of the methods, we have implemented our algo-
rithms and performed an extensive empirical evaluation in
the Gazebo realistic simulation (using ROS). Our empirical
results demonstrate the effectiveness of the two methods
compared one to another, and compared to a centralized,
ground-truth approach, that has full information about the
noise levels of each robot’s sensors, and use that information
to optimally assign leaders for each robot in the formation.

II. RELATED WORK

The problem of formation control is fundamental in the
field of multi-robot systems, and as such has received con-
siderable attention in the literature along the years. In this
problem, a team of robots should travel in a given shape



throughout an environment while minimizing the difference
between the desired shape and the actual one. The methods
used for formation control include, among others, behavior-
based approaches [2], potential fields [16] and reinforcement
learning [20], [5]. The leader-follower approach where each
robot maintains a constant separation and/or bearing from
other robots, is widely used in the literature especially in
distributed systems [2], [7], [11], [9], [10], [3], [18], [8].
The approach is used as a means to reduce the rate of in-
formation sharing and communication, reduce computational
complexity and support robustness to failures.

One of the main questions in leader-follower formation
control is the choice of the local leader. A common repre-
sentation of the local leader selection is by using a control
graph, that is, a directed graph representing the assignment of
a local leader for each robot in the formation, except for the
global leader which leads the entire formation [6], [11], [13],
[4]. Given the possible sensing capabilities of each robot,
and possible cost (and/or uncertainty) of the sensing, one
can find a control graph that optimizes a given criterion, for
example minimizing the accumulated error, or minimizing
local sensing cost of each individual robot [13], [10], [11].
Most leader-follower control algorithms aiming at optimizing
stability criteria, to our knowledge, require either reliable
communication or centralized processing.

Xu et al. [19] and Peng et al. [14] examined the leader-
follower approach assuming imperfect communication. They
assume that there is direct communication between a local
leader and its follower, though the communication may
be delayed, causing potential divergence of the formation
and increasing the deviation from the desired form (error).
Therefore, they offer a method for using predictability of the
close-horizon to estimate the leader’s next steps, allowing it
to overcome the communication delays.

Other methods for distributed formation control include
the recent work by Alonso-Mora et al. [1], that suggest a
distributed geometric-based approach for formation control.
In their work, they reconfigure the formation in order to
optimally avoid collisions with obstacles, by computing
the convex hull of the formation. The formation control
is distributed, though require communication between team
members. In our work the formation is fixed, and no explicit
communication is used, and the goal is to keep the formation
as close to a given shape (not to reshape it).

Another approach for formation control, which is related
to the UVLS algorithm presented in this paper, is the virtual
structure approach [12]. In this approach, the entire forma-
tion is referred to as one virtual structure, and each robot
derives its own trajectory from the knowledge of its relative
position in the virtual structure. However, as opposed to the
virtual structure approach in which the robots are centrally
controlled, or have reliable communication, in our case (the
UVLS algorithm) the robots are decentralized, rely only
on their local sensing, and do not communicate explicitly
with their teammates. Note that the classic virtual-structure
approach is a special case of the UVLS where there is perfect
full knowledge of all teammates locations at all times.

III. PROBLEM DEFINITION

In this section we will provide some basic graph-
theoretical definitions and use them to formally define the
formation control problem in our suggested perspective.

All below structures are changing over time. For conve-
nience, we will omit the time component and will address the
structures as ”visibility graph of ri”, rather than ”visibility
graph of ri at time t”, when it is clear what the value of t
is, or when the reference is relevant for all values of t.

Definition 3.1: The visibility graph V G is a digraph whose
vertices are the formation robots {r1, . . . ,rn} and for every
1≤ i, j ≤ n there is an edge from ri to r j iff ri can sense r j.

Definition 3.2: The control graph CG is a tree (the term
control graph comes from a more general problem, where
cycles are allowed and is used here for consistency), whose
vertices are the formation robots {r1, . . . ,rn} and for every
1 ≤ i, j ≤ n there is an edge from ri to r j iff r j is the
local leader of ri. Motivated by computer vision, this paper’s
assumes directed sensing, i.e. if ri and r j are similarly
oriented and ri can sense r j, then r j cannot sense ri.

Definition 3.3: Two vertices v,u in a tree T are said to be
neighbors in T if the path between them contains one or no
vertices of degree larger than 2. A vertex w with deg(w)> 2
that belongs to the path between two neighbors v and u, will
be called the least common ancestor, or the lca of v and u.

Definition 3.4: The visible set of a formation by robot ri
is a set Vi := {r j | (ri,r j) ∈ E(V G)}, i.e. it is a set of all
robots that are within the sensing range of ri. Alternatively,
it is the set of the robots whose poses are non-infinite in the
relevant observation.

Definition 3.5: Given a team of n robots R = {r1, . . . ,rn},
their desired formation is specified by a matrix Forig = ( fi, j),
where for every 1 ≤ i, j ≤ n, fi, j is the pose of r j in the
frame of reference of ri. For example, consider the diamond
formation as in Figure 1:

Fig. 1. An example of four robots in a diamond formation
with the global leader r1. An edge between two robots ri and r j
represents r j’s ability to sense ri. The dashed edge between r4 and
r1 represents that r1 is out of r4’s sensing range.

Assume that the distance between r4 and r1 is 4, the
distance between r2 and r3 is 2, and all robots are facing
the same direction. Then the desired formation matrix will
be as follows:

Forig =


(0,0) (−1,−2) (1,−2) (0,−4)
(1,2) (0,0) (2,0) (1,−2)
(−1,2) (−2,0) (0,0) (−1,−2)
(0,4) (−1,2) (1,2) (0,0)


Definition 3.6: For t ∈ {1,2, . . .}, and for every 1≤ i≤ n,

an observation of robot ri at time t is Ôt
i =< pt

i,1, . . . , pt
i,n >



where pt
i, j is the estimated pose of r j by ri. The poses are

relative to ri (so pt
i,i = 0 ∀t) and contain errors, i.e. pt

i, j =
pt

i, j +Errt
i, j, where pt

i, j is the true pose of r j relative to ri at
time t, and Errt

i. j is a random variable in t, representing the
measurement error of ri w.r.t. r j.

Definition 3.7: In order to measure the overall formation
accuracy, we define the formation deviation vector ∆t =
(δ1, . . . ,δn) such that for every 1≤ i≤ n, δ i is the difference
between the true location of ri and its expected location
originated from Forig in the frame of reference of the GL
at time t. This value will be measured externally during
experiments and will not be accessible to the robots.

We use the norm of ∆ to compare between the accuracy
of the formation at times t1 and t2, i.e. we compare || ∆t1 ||
with || ∆t2 ||. The rational behind this, is the hierarchical
nature of leader-follower formation control, where each robot
is trying to maintain a pose relative to their local-leaders,
which in turn are trying to maintain a pose relative to their
local-leaders and so on. Implicitly, all followers are trying to
maintain a pose relative to the global-leader, and their overall
success as a team is captured in the norm of ∆.

The uncertain leader selection problem can now be de-
fined as follows: Given a desired formation matrix Forig each
robot must choose a local-leader from the set of its visible
robots at times t ∈ {1,2, . . .}, that would minimize || ∆t ||.

The uncertain virtual leader selection problem is defined
in similar terms, however this time the goal for each robot
in the formation is to choose a desired location to advance
to, such that reaching this location would minimize || ∆t ||.

Our proposed solutions are called ULS and UVLS respec-
tively and rely on the TreeReconstruction algorithm
to aid each robot to deduce a subtree of the control graph at
time t, from the deviation of the visible robots locations as
observed at time t and their expected locations as captured
in Forig . This algorithm is presented in the next section.
ULS can be used to update the local leader selection in

real time, as well as infrequently, when the robot follows the
selected local leader and updates its selection once in a while,
or on demand (as a reaction to changes in the environment).
UVLS on the other hand, is highly coupled with the

formation control decision mechanism: the robot must move
towards the desired location, while constantly updating that
point in space, otherwise it will stop. However, the fact that
it considers the positions of every visible robot, allows it
to be more tolerant to regular, and even byzantine faults of
some team members. Additionally, as mentioned previously,
it outperforms ULS when the estimation errors are not
correlated and partially cancel each other out.

IV. TREE RECONSTRUCTION ALGORITHM

In this section we present the TreeReconstruction
algorithm, which is used as the building blocks for the
ULS and UVLS algorithms. The connection between the tree
reconstruction problem and the uncertain leader or virtual
leader selection problems is shown in Subsection IV-C.

The TreeReconstruction algorithm, presented in
this paper, is originated in the NeighborJoining al-

gorithm by Saitou and Nei [15], which was later re-
vised by Studier et al. [17]. Given a set of leaf ver-
tices in a tree, TreeReconstruction recovers that tree.
TreeReconstruction is, therefore, a generalization of
the NeighborJoining algorithm, and guarantees recon-
struction of general n-ary trees (not only binary trees),
without adding more time or space complexity to the com-
putation. More formally: Let T be a tree, and denote by
L(T ) the set of its leaves, then given a subset of vertices
U ⊂V (T ), such that L(T )⊂U , and a distance matrix M of
vertices from U (here, distance between two vertices is the
length of their path), TreeReconstruction recovers T .

The resulted tree uses edge weights to mask trivial vertices
(i.e. vertices with degree 2), so when an edge between some
vertices v,u ∈V (T ) has weight a, this means there are a−1
vertices in the path between v and u, denoted by Pvu, such
that ∀w∈ Pvu \{v,u},deg(w) = 2. All paths that contain only
trivial vertices are condensed to be a single edge, which
reduces the space complexity of this tree’s representation,
while maintaining all features of the tree and allowing simple
conversion from the dense representation to the full one.
Without using such representation, all space and runtime
complexity would depend on the values of the distance
matrix, e.g. a tree with n leafs with max distance j, would
have O(n j) number of vertices, meaning it will require O(n j)
space to represent the tree and any graph algorithm applied
to this tree will depend on j in the runtime complexity. With
dense representation, the number of vertices is O(n) (See
IV-B for full complexity analysis).

Fig. 2. To demonstrate the execution of TreeReconstruction
consider the following tree. Here, c,e, f ,g and i are the leaves,
and a,b are non-trivial vertices which are going to be recovered.
The neighbors in this tree are f ,g and any pair from {i,c,e}. The
algorithm (given the leaves and their tree distance matrix as the
inputs) will first use f and g to recover their lca b. Second, it will
remove f and h, so b will become the new leaf. Then, c and e will
be used to recover a and removed. Next, a and c will ”recover”
a, which will result in recovering the edge between them. The
same will repeat with a and e, and as the final step, with a and
i (recovering edge with weight 3).

The helper routines that are used in the algorithm are:
• find neighbors finds the indices of two vertices to be

joined, using the distance matrix to derive the matrix of

Q-values; Qi, j =(n−2)∗d(i, j)−
n
∑

k=1
d(i,k)−

n
∑

k=1
d(k, j).

The pair i, j with the minimal value guarantees i and j
are neighbors, as detailed in [17].

• update tree identifies the lca of the given vertices.
This method is explained in depth below (see alg 2).

• update distance matrix deletes the rows/columns
of the two given vertices from the distance matrix, and



adds the row and column of the found lca.
• update list removes vertex 1 from the list and re-

places the one at index 2 with the new vertex.
• find root uses heuristic to identify the root vertex

(representing GL) from the reconstructed unrooted tree.

Algorithm 1 TreeReconstruction (accepts U and M)
1: T ← INIT DISCONNECTED TREE(U)
2: while U.size()> 2 do
3: x,y← FIND NEIGHBORS(M)
4: a← FIND WITNESS(M,x,y)
5: d←M[x][y]
6: if (M[x][a]< M[y][a]) then
7: x,y← y,x
8: end if
9: δ ←M[x][a]−M[y][a]

10: v← UPDATE TREE(T,U [x],U [y],d,δ )
11: UPDATE DISTANCE MATRIX(M,x,y,d,δ )
12: UPDATE LIST(U,U [x],U [y],v)
13: end while
14: UPDATE TREE(T,U [0],U [1],M[0][1],M[1][0])
15: root← FIND ROOT()
16: return T,root

Similar to the original NeighborJoining algorithm,
TreeReconstruction finds a pair u,v ∈U , such that u
and v are neighbors in T , recovers their lca , and connects the
neighbor vertices to that lca . The main differences between
the two algorithms are:
• No requirement from the tree to be binary. If two

neighbors are identified and it turns out one of them
is an ancestor of the other, they will be connected with
an edge, rather than via an intermediate vertex.

• Agglomerative vs divisive approach: Rather than be-
gin with all vertices connected to some central ver-
tex and split/merge existing edges, as more vertices
are discovered, TreeReconstruction begins fully
disconnected and adds edges while discovering new
vertices. This aids with dealing with non-binary trees,
as the divisive approach requires handling disconnected
components or cycles that may arise when two existing
vertices are connected without a proxy in a star tree.

The aforementioned differences between the two algo-
rithms are demonstrated in the update tree function, used
in algorithm 1:

Algorithm 2 update tree(accepts T, x,y,d, and δ )
1: if δ == d then
2: T.ADD EDGE(y,x,d) . x is the ancestor of y.
3: return y
4: end if
5: v← T.ADD NEW VERTEX()
6: T.ADD EDGE(x,v, d+δ

2 )

7: T.ADD EDGE(y,v, d−δ

2 )
8: return v

Given two vertices x and y, their distance in the tree d =
dist(x,y), and the difference of distances from them to any

other vertex δ (i.e. ∀c∈V (T ),δ = dist(x,c)−dist(y,c)), this
routine will add the lca of these vertices and edges between
them, with edge weight derived from d and δ . The condition
above (that dist(x,c)− dist(y,c) is a constant value for all
vertices c /∈ {x,y}) is actually both necessary and sufficient
for x and y to be neighbors, since it essentially means that
there is a single vertex that is part of the paths Pxy, Pxc and
Pyc for all vertices c. This fact is used to find the ”witness”
vertex, i.e. some c to calculate distances from. In case of
TreeReconstruction , c was chosen as the first vertex
(by index) such that it is not x nor y.

In case d equals δ , it is easy to see that one of them is
the ancestor of the other and this routine (as opposed to its
original analogue) adds an edge connecting the two vertices
to each other, rather than creating a new vertex.

A. Correctness of TreeReconstruction
Theorem 4.1: Given a tree T and a subset of its vertices

U , such that U ⊂ L(T ), the algorithm reconstructs T .
The proof of this theorem is omitted, due to lack of space

and can be found in the full version1. In short, we prove that
given two neighbor vertices (that are discovered identically to
the NeighborJoining algorithm), the algorithm correctly
identifies their lca, and use induction over the number of
leaves to prove the algorithm’s correctness for any tree.

B. Complexity Analysis
The detailed complexity analysis is also demonstrated in

the full version of the paper1. For the scope of this paper,
we will note that the space complexity is O(n2), due to
the distance matrices and the fact that the number of the
discovered vertices cannot exceed the number of leaves. The
time complexity is O(n3), similarly to the original algorithm,
since the algorithm constructs a helper n× n matrix in the
find neighbors routine, which is executed at each of the
O(n) iterations.

C. From observations to distances
As discussed above, in order to successfully identify the

subtree of the control graph, we must find the distances
of control graph’s paths between each pair of the visible
robots. Recall that each robot ri in the formation receives an
observation at time t, Ôt

i =< pt
i,1, . . . , pt

i,n >.
From Ôt

i , each robot will derive the visible matrix of ri
at time t: V t

i = (vt
q,r), where for every 1 ≤ q,r ≤ k, and for

every t ∈ {1,2, . . .}, vt
q,r is the position of rq relative to rp,

from the point of view of ri at time t.
From the visibility matrix, the robots will derive the

deviation matrix of ri at time t, i.e. ∆t
i = (δ )t

r,q to be the
matrix of differences between the observed relative pose of
vr,q and the expected relative pose fr,q, i.e. δ t

r,q = ||vt
r,q− fr,q||.

Finally, each robot will aggregate the moving average
deviation matrix AD , where each element δi, j is a moving
average of δ t

i, j for all values of t, such that δ t
i, j 6= ∞. The

reason to average the data is to smooth the effects of single
noised readings and for the readings to become closer to

1Full paper is available at: http://goo.gl/MynvjM



the mean of the current error. At the same time, the use of
moving average vs aggregated average is to avoid historically
distant observations to affect the estimations of the current
noise levels, which are expected to differ in their mean. The
choice of the window size is discussed in the experiments
section (section VI). For the theoretical analysis, we will
assume the moving average window size was calibrated per
camera and is just enough for a confident estimation.

In the example presented in the definitions section (Fig.
1), assume r4 observed r2 at (−0.9,2.25) and r3 at (1,1.5)
(at t = 1). Then (note that both visible and deviation matrices
were reduced to submatrices of the visible robots r2, and r3):

Ô1
4 =< (∞,∞),(−.9,2.25),(1,1.5),(0,0)>,

V 1
4 =

[
(0,0) (1.9,−.75)

(−1.9, .75) (0,0)

]
and

∆
1
4 =

[
0

√
.12 + .752

√
.12 + .752 0

]
≈
[

0 .757
.757 0

]
To summarize, each robot ri estimates the positions of the

robots that are within its sensing range and derives a moving
average relative error matrix AD , while ∆t captures the
true relative positional errors of all robots in the formation
at times t ∈ {1,2, . . .} and is used as the distance matrix
argument to the TreeReconstruction algorithm.

V. ULS AND UVLS ALGORITHMS

In this section we present the ULS and UVLS algo-
rithms, that utilize the TreeReconstruction algorithm
described in section IV. Both ULS and UVLS algorithms
are very similar in their preprocessing of data: They begin
by using the AD matrix as the input distance matrix to
the TreeReconstruction algorithm. Then they use the
reconstructed tree to infer about the accumulated error of
each vertex to the assumed global leader (GL) by calculating
their path lengths from it. The following CoreLS function is
capturing the above, returning a mapping from visible robots
ids to path lengths:

Algorithm 3 CoreLS(accepts U , assumes access to AD )
1: tree,root← RECONSTRUCTTREE(U,AD)
2: M← TREE.GET DISTANCE MATRIX()
3: W ← /0
4: for i from 1 to U.size() do
5: W [U [i]]←M[root.id][i]
6: end for
7: return W

Note that although TreeReconstruction reconstructs
an undirected tree, the conversion to a directed one is natural,
from GL (root) to the visible robots (leaves).

A. ULS Algortihm

The ULS algorithm is executing CoreLS, and selects the
visible robot with minimal vertex weight, expecting it to be
the one with minimal accumulated error:

Algorithm 4 ULS(assumes access to the visible set U)
1: W ← CORELS(U)
2: robot←U [0]
3: for i from 1 to U.size() do
4: if W [U [i]]<W [robot] then
5: robot←U [i]
6: end if
7: end for
8: return robot.id

B. UVLS Algorithm
The UVLS algorithm calculates the expected pose of the

robot from each visible robot (using Forig ) and performs a
weighted average of the resulted positions, using the inverses
of the weights obtained from the execution of CoreLS (so
the shorter the path from a visible robot to the GL, the
smaller its error and the higher its impact on the average):

Algorithm 5 UVLS(assumes access to U and to Forig as F)
1: W ← CORELS(U)
2: pose←~0
3: sum← 0
4: for i from 0 to U.size() do
5: w← (W [U [i]])−1

6: pose← w∗ (pose+F [i][ID]) . ID of the executor.
7: sum← sum+w
8: end for
9: return pose/sum

C. Correctness and accuracy analysis
Lemma 5.1: The positional error of any robot ri from the

global leader is the sum of the positional errors of all robots
in the control path of ri.

Proof: Proof by induction over l - the length of a path
between ri and the GL in the control graph: For l = 1, ri’s
local leader is the global leader rg and its pose estimation
is pg + Erri,g by definition (actual position of rg and the
estimation error of that position made by ri). We assume
for l ∈ N that the control path of ri is {ri = r j0 , . . . ,r jl =
rg} and that pi = pg +∑

l
t=1 Err jt−1, jt and prove for l + 1:

Let rk be the local leader of ri, then the control path of
rk is coincides with the control path of ri (but starts from
the second element) and is of length l and so pk = pg +

∑
l+1
t=1 Err jt−1, jt by the induction assumption. By definition,

pi = pk +Erri,k and from the above formula for pk we get
that pi = pg +∑

l+1
t=0 Err jt−1, jt as required.

Lemma 5.2: The average δi, j over time is proportional to
l - the length of the path between ri and r j in the control
graph, i.e. it approaches E[SErr]∗ l, where SErr is the minimal
noise mean possible for the robot.

Proof: by induction on l: For l = 1, either ri is the local
leader of r j or vice versa. Assume w.l.o.g. that r j is the local
leader of ri, then δi, j = SErr. The average SErr approaches the
expected value as time increases, i.e. 1

t ∑SErr −−→
t→∞

E[SErr] =

E[SErr]∗1 = E[SErr]∗ l and so the claim is true.
Assume the statement is correct for any ri and r j with path

length of size l > 0 and proof for l+1: Since l > 0, l+1 > 1



which means that w.l.o.g. ri has a local leader ra and a 6= j.
By the induction assumption, lim

t→∞

1
t ∑δa, j = E[SErr] ∗ l and

since ra is the local leader of ri, δi,a → E[SErr], it follows
that 1

t ∑δi, j =
1
t [∑δi,a +∑δa, j]→ E[SErr]∗ (l +1).

Theorem 5.3: CoreLS correctly identifies a subtree of the
control graph whose leaves are contained in the visible set.

Proof: By lemma 5.2, given enough observations for
the moving average to become close enough to the expected
value, it is possible to obtain the distance matrix of the visible
robots in the control graph. From section IV-A follows that
TreeReconstruction will correctly reconstruct T - the
subtree of the control graph, such that L(T )⊂U .
The following Corollary summarizes the theoretically proven
deviation convergence of ULS and UVLS :

Corollary 3.1: Assuming the root was correctly identified,
we can conclude from lemma 5.1 that both algorithms
obtain the correct estimation regarding the magnitude of the
accumulative error of each visible robot from 3, and hence
ULS selects the visible robot with smallest error and UVLS
provides a pose derived from the visible set, such that for
every visible robot, its weight is in inverse ratio to its error.
D. Complexity analysis

Given k to be the size of the visible set, CoreLS algorithm
executes TreeReconstruction in O(k3) (as explained in
IV-B) and traverses over each of the vertices exactly once,
adding O(k) (since the number of vertices in the tree returned
by TreeReconstruction is at most 2k). Both ULS and
UVLS execute CoreLS and traverse over each visible robot
once, adding another O(k). Therefore that the runtime of
both ULS and UVLS is bounded by the runtime complexity
of TreeReconstruction i.e. by O(k3).

The complexity of the space used by
TreeReconstruction is O(k2). The rest of the
data structures used are the weight list in CoreLS, that
requires O(k) space, while ULS and UVLS are adding O(1)
space on top of that. We conclude that the space complexity
of both ULS and UVLS is O(k2).

VI. EMPIRICAL EVALUATION

The experiments to support the theoretical findings in this
paper were performed using the ROS/Gazebo simulator23,
simulating the behavior of Hamster robots4.

The sensing error of each robot was modeled by a random
variable with normal distribution, with mean dependent on
the distance and angle to the observed robots. Additionally,
the mean of the noise changed over time to simulate dynam-
ics of changes in the sensing conditions, which affect the
estimation errors of the robots.

Our experiments compared moving average window size
to derive AD with values of 10, 50 and 100, which provided
standard error of the true mean estimations of s

3 , s
7 , and s

10
respectively, where s is the sample deviation.

We used two types of navigation patterns: In the first case,
the GL was driving forward, and in the second it would

2http://ros.wiki.com
3http://gazebosim.org
4http://www.cogniteam.com/hamster4.html

turn every 10 seconds to interchanging directions, simulating
navigation in a world with obstacles.

The experiments were conducted with team sizes of 6 and
7 that were given a formation to maintain that assured GL
is a non-trivial vertex in the control graphs.

All experiments were using the same PD controller to
advance to a desired location, which was either obtained
directly (from UVLS ), or derived from the local leader.

The experiments compared ULS and UVLS to a centralized
approach, where there is perfect communication between the
GL and the other robots. GL checked the noise level (mean)
between every pair of robots (as was reported by the noise
simulation unit) and assigned the local leaders to all robots in
the team. It is important to note that the centralized approach
provided an optimal local leader assignment, which does not
guarantee the most accurate formation in noisy environments.

One of the formations can be seen in Figure3. Each
method (Centralized, ULS , and UVLS ) was executed 100
times for each combination of the parameters. In all experi-
ments, robot #5 did not have an over time increasing noise
model and the noise of its sensor readings was dependent on
distance and angle to the observed robot only. The centralized
approach selected it as the best local leader for robot #6 (and
for robot #7 in the 7-robots experiment), and the expectation
was for ULS to select the same robot.

(a) 6 robots formation (b) 7 robots formation

Fig. 3. An example of the formation patterns and the visibility
graphs used in the experiments. In this case, robot 1 is the GL and
the local leader of robots 2−5. Robot 6 in 3(a) (and 7 in 3(b)) can
choose any of robots 2−5 to follow (or derive a virtual leader).

The true distances between each robot and the global
leader were recorded at 5Hz rate during the execution and
the overall formation error was calculated as the norm of the
vector of deviations of each robot from its expected distance
to the GL. Similar experiments results were averaged over
the time axis to compare between the performance of every
method that was put into test.

In all scenarios with linear forward movement, ULS
performed similarly to the centralized algorithm (indistin-
guishable by ANOVA test), while UVLS was statistically
significantly better (ANOVA test, p-value < 0.001). In the
obstacle-avoiding navigation scenario, all three (ULS , UVLS
and centralized) were indistinguishable in their average per-
formance (p-value > 0.5) in the 7-robot formation case, and
in the 6-robot formation the centralized method performed
significantly better than the UVLS , that itself performed
statistically significantly better than the ULS algorithm (both
with p-value < 0.001).

Below are the results for 6 and 7 robots formations.All
of them used moving average window size of 10. The other
window sizes that were tested, provided similar results, with



higher variance for each method.
During the first 5 seconds of execution of every experiment,
the robots were staying still. This was done to overcome is-
sues with late loading of some of the simulated modules, due
to the large number of components, simulated by the Gazebo
simulator. Typically, after 3-4 seconds the experiment was up
and running, however the movement was not smooth, until
another 10-15 seconds.

Fig. 4. Average formation deviations over time (lower values cor-
relate to more accurate formation control, i.e., better performance)

Another problem experienced during the runs was oc-
casional disconnections of the last robot from the rest of
the formation during the first turn. There is an ongoing
work to optimize the implementation of the leader-following
mechanism to overcome rough movements. We report herein
the results of all successful experiments (that did not result
in such disconnected formations).

To conclude, ULS provided excellent results while the
formation moved forward only, but had multiple problems
during turns and might not be as suitable for high-rate
dynamically changing environments. There is currently an
ongoing work that aims to improve ULS to make it more
prone to disconnections during turns. UVLS provided even
better results, and in fact outperformed the centralized al-
gorithm, due to the fact that the errors of the robots are
not correlated. During turns it was inferior to the centralized
approach, but provides a better alternative to the ULS when
communication is absent.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented two approaches for solving
the formation control problem distributively, using no explicit
communication between the team members: uncertain leader
selection (using the ULS algorithm), and uncertain virtual
leader selection (using the UVLS algorithm). Both solutions
are based on a tree-reconstruction algorithm, that recovers
the tree representing the hierarchy of local leaders in the
formation. We have shown that the algorithms converge to a
minimal deviation from the desired formation.

For future work, we plan to extend this work by providing
empirical results performed on real robots, while modeling
non-holonomic estimation errors (i.e. Si

Err for every robot
ri). Additionally, since the main contributor to the runtime
complexity of both algorithms is TreeReconstruction

there is an ongoing work to replace it with a more efficient al-
gorithm, that would not not based on NeighborJoining
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