
Online Robotic Adversarial Coverage

Roi Yehoshua and Noa Agmon
The SMART Group

Computer Science Department
Bar Ilan University, Israel

{yehoshr1,agmon}@cs.biu.ac.il

Abstract— In the robotic coverage problem, a robot is re-
quired to visit every point of a given area using the shortest
possible path. In a recently introduced version of the prob-
lem, adversarial coverage, the covering robot operates in an
environment that contains threats that might stop it. Previous
studies of this problem dealt with finding optimal strategies for
the coverage, that minimize both the coverage time and the
probability that the robot will be stopped before completing
the coverage. However, these studies assumed that a map of
the environment, which includes the specific locations of the
threats, is given to the robot in advance. In this paper, we
deal with the online version of the problem, in which the
covering robot has no a-priori knowledge of the environment,
and thus has to use real-time sensor measurements in order
to detect the threats. We employ a frontier-based coverage
strategy that determines the best frontier to be visited by taking
into account both the cost of moving to the frontier and the
safety of the region that is reachable from it. We also examine
the effect of the robot’s sensing capabilities on the expected
coverage percentage. Finally, we compare the performance of
the online algorithm to its offline counterparts under various
environmental conditions.

I. INTRODUCTION

In robotic coverage, a robot is required to visit every part
of a given area using the most efficient path possible ([2],
[3], [4], [6], [8], [16]). Coverage has many applications in a
multitude of domains, including search and rescue, mapping,
and surveillance.

In a recently introduced version of the problem, adversar-
ial coverage ([13], [14], [15], [11]), the target area contains
locations with potential threats that might harm the robot,
in addition to obstacles which the robot cannot go through.
The robot’s task is to cover the entire target area (including
the threat locations) as quickly as possible while minimizing
the probability that it will be stopped before completing the
coverage. This version of the problem has many real-world
applications in various domains, from performing coverage
missions in hazardous environments such as nuclear power
plants or the surface of Mars, to surveillance of enemy forces
in the battle field and field demining.

All previous works of the adversarial coverage problem
dealt with the offline version of the problem, in which a
map of the environment is given to the robot in advance,
therefore the coverage path of the robot can be determined
prior to its movement. In this paper we discuss the online
version of this problem, in which the robot has no map or
a-priori information about the environment. Rather, the robot

must collect information about obstacles and threat points in
the environment during the coverage process. We will refer
to this problem as the Online Adversarial Coverage Problem.

We describe an online sensor based algorithm for covering
a target area, using the safest possible coverage path. Our
approach is based on the detection of frontiers, regions on
the border between covered space and unexplored space.
By moving to new frontiers, a mobile robot can extend
its map into new territory until the entire environment has
been explored. We describe a method for choosing the next
frontier to navigate to, that takes into account the risk of
moving to that frontier, its distance from the robot’s current
location and the safety of the region that can be reached
from that frontier. We provide both theoretical and empirical
evaluation of the algorithm.

II. RELATED WORK

The problem of robot coverage has been extensively
discussed in the literature (see [4] for a recent exhaustive
survey). Grid-based coverage methods, similar to what is
utilized in this paper, use a representation of the environment
decomposed into a collection of uniform grid cells (e.g., [3],
[6]).

Online coverage algorithms known in the literature include
the Spiral-STC (Spiral Spanning Tree Coverage) [3], which
provides close-to-optimal coverage paths in a uniform grid
based terrain. Shivashankar et al. [8] describe four strategies
for generating cost-effective coverage plans in real time for
unknown environments. Their best strategy returned plans
with less than 6% redundant coverage in real environments,
however without any theoretical guarantees.

A related problem to online coverage is the problem of
exploring an unknown territory. In the exploration problem
an autonomous robot has to completely scan an unknown
environment with its sensors. In contrast, area coverage
requires physical sweep of a tool (or the robot itself) over
every point of a given work-area.

The most common approach to exploration is based on
frontiers (e.g., [10], [1], [5]), which are segments that sep-
arate known (explored) regions from unknown regions. The
frontier-based approach incrementally constructs a global
occupancy map of the environment. The map is analyzed to
locate the frontiers between the free and unknown space, and
exploration proceeds in the direction of the closest frontier.
Here, we also use frontiers but as segments that separate

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany

978-1-4799-9993-4/15/$31.00 ©2015 IEEE 3830

covered regions (i.e., regions that have been physically
visited by the robot and not only detected by its sensors)
from uncovered regions.

The offline adversarial coverage problem was formally
defined in our recent study [13], in which a simplistic
heuristic algorithm was proposed for generating a coverage
path aiming at minimizing a cost composed of both the
survivability of the robot and the coverage path length.
However, the heuristic algorithm worked only for obstacle-
free areas, and without any guarantees. In a follow-up paper
[14] we have addressed a more specific version of the adver-
sarial coverage problem, namely, finding the safest coverage
path. There we suggested two heuristic algorithms: STAC, a
spanning-tree based coverage algorithm, and GSAC, which
follows a greedy approach. We have shown that while STAC
tends to achieve higher expected coverage, GSAC produces
shorter coverage paths with lower accumulated risk. In [11]
we have built a more sophisticated model of the adversary, in
which it can choose the best locations of the threat points,
such that the probability of stopping the covering robot is
maximized. All these previous works dealt with the offline
version of the problem, in contrast to this paper.

Another related problem to online adversarial coverage is
the Canadian Traveler Problem (CTP) [7]. The goal of this
problem is to minimize the cost of reaching a target in a
weighted graph, where some of the edges are unreliable and
may have been removed from the graph. However, that an
edge has been removed is only revealed to the traveler when
she/he reaches one of the edge’s endpoints. In contrast, here
the robot (the traveler) must visit every node in the graph
(some of them may stop the robot).

III. PROBLEM FORMULATION

We provide here a summary of the adversarial coverage
problem formulation. Refer to [13] for a more detailed de-
scription of the problem. The target area T contains obstacles
and also threats, which may stop the robot. We assume that T
can be decomposed into a regular square grid with n cells,
whose size equals the size of the robot. Some cells in T
contain threat points (we refer to them as dangerous cells).
Each threat point i is associated with a threat probability pi,
which measures the likelihood that the threat will stop the
robot. The robot can move continuously, in the four basic
directions (up/down, left/right), and can locate itself within
the work-area to within a specific cell.

The robot’s task is to plan a path through T such that every
accessible free cell in T (including the dangerous cells) is
visited by the robot at least once. The objective of the robot
is to cover as many cells as possible before getting hit by
a threat, i.e., our goal is to find a coverage path of T with
maximum expected coverage. We will use the definition of
expected coverage from [13]. Given a coverage path A, we
denote the sequence of new cells discovered along A by
(b1, ..., bn), and the number of new cells visited by the robot
until it is stopped by CA. Furthermore, for each cell in the
sequence bi, we will denote the sub-path in A that leads
from the origin cell a1 to it by gi. Then, under the threat

probability function p, the expected number of new cells
that the robot visits can be expressed as:

E(CA) =
∑

i∈(b1,...,bn)

∏
j∈gi

(1− pj) (1)

In the online version of the problem, the robot has no
a-priori knowledge of the environment. We assume that the
robot is equipped with a sensor, such as a panoramic camera,
that provides a 360-degree view of its surroundings, and can
detect obstacles and threats that exist around the robot. If
the given sensor has less than a 360-degree field of view, we
assume that after reaching a new cell, the robot turns around
in order to take a 360-degree view of its surroundings.

Let us denote by r the maximum range of the robot’s
sensor. Thus, by our assumption, the robot can detect all the
threats and obstacles that lie inside a circle with a radius r
and a center in the current position of the robot. Note that
even if r > 1, the robot still needs to physically visit the
cells it observes. The sensor just provides more information
about the environment, and allows the robot to better plan
its coverage path.

Denote by Mr(c) the set of cells that belong to the
Moore neighborhood of cell c with range r. The Moore
neighborhood of cell c = (x0, y0) with range r is defined
as [9]:

Mr(x0, y0) = {(x, y) : |x− x0| ≤ r, |y − y0| ≤ r} (2)

Figure 1 shows the Moore neighborhood with range r = 2
of the cell located at the center of the map (cell (5, 5)). The
number of cells in a Moore neighborhood with range r is:
(2r + 1)2 − 1.

Fig. 1. An example for a Moore neighborhood with range r = 2.

Using this definition of Moore neighborhood, our assump-
tion is that if the robot is located at cell c, then it can
detect all the obstacles and threats that exist in the Moore
neighborhood of c with range r.

Additionally, we denote by V(c) the set of cells that
belong to the Von Neumann neighborhood of cell c. The
Von Neumann neighborhood of cell c comprises the four
cells orthogonally surrounding c, i.e., the four cells with
Manhattan distance 1 from c. If the robot is located at cell
c, then it can move to any free cell that belongs to the Von
Neumann Neighborhood of c.

3831

Now, we define a frontier as a segment that separates
covered regions from uncovered regions. Formally, a frontier
is a set of unvisited cells that each have at least one visited
neighbor (in the Von Neumann neighborhood of the cell).

IV. ONLINE ADVERSARIAL COVERAGE ALGORITHM

The Online Adversarial Coverage algorithm (OAC for
short) is shown in Algorithm 1. The algorithm maintains
a list of frontier cells, denoted by F . The list is initialized
with the free cells in the Von Neumann’s neighborhood of
the robot’s starting cell (lines 3–4). The main loop in ON-
LINECOVERAGE continues until the frontier list is empty. In
each iteration of the loop (lines 7–13), first the cost (risk and
distance) of moving to each frontier and the number of safe
cells that can be reached from each frontier are computed
(by calling COMPUTECOSTTOFRONTIERS and COMPUT-
EREACHABLESAFECELLS, respectively). Next, one of the
frontiers in the list is selected as the next destination for
the robot to visit (by calling CHOOSENEXTFRONTIER). The
robot moves to the selected frontier using the safest possible
path from its current location (line 10). Lastly, that frontier
is removed from F , and all the unvisited free cells in its
Von Neumann neighborhood are added to F (in the function
UPDATEFRONTIER). Eventually, every free cell accessible
from the robot’s starting cell will be added to the frontier
list and thus visited by the robot (as proven by lemma ??).

We now explain the operation of each of the helper
functions. The function COMPUTECOSTTOFRONTIERS finds
the safest paths from the robot’s current location to each of
the frontiers in F . It begins by creating the graph G = (V,E)
induced from the visited and the frontier cells (line 2). In this
graph, each visited or frontier cell is represented by a vertex
in V and vertices that represent adjacent cells in the grid
are connected by an edge in E. The idea is that the path to
any given frontier must go through cells that have already
been visited or other frontiers (since the frontiers lie on the
boundary between the visited and unvisited regions). Then
the algorithm runs Dijkstra’s shortest paths algorithm on the
graph G (line 3), using the following edge weights:

wij =

{
− log(1− pj) if cell j contains a threat
− log(1−pmin)

n otherwise
(3)

This weight function ensures that edges that target more
dangerous cells (i.e., cells with higher pj) are assigned a
higher weight (the reason for using the logarithmic func-
tion here will become clearer when we formally prove the
correctness of this function in theorem 3). However, since
we also want to take into account the path length, we set a
small constant cost to edges that target safe cells. The weight
assigned to an edge that targets a safe cell is equal to 1/n
of the weight of an edge that targets the least dangerous cell
on the map (n is the grid size). This way, the cost of visiting
any dangerous cell is greater than the cost of visiting all the
safe cells in the grid. Thus, only when there are two equally

Algorithm 1 Online Adversarial Coverage
Sensors: a position and orientation sensor, an obstacle and threat
detection sensor with range r

Input: a starting cell s
Global data structures: F - set of frontier cells

1: function ONLINECOVERAGE(s)
2: Mark s as visited
3: F ← {s}
4: UPDATEFRONTIER(s)
5: c← s ◃ c is the robot’s current cell
6: while F ̸= ∅ do
7: COMPUTECOSTTOFRONTIERS(c)
8: COMPUTEREACHABLESAFECELLS()
9: f ← CHOOSENEXTFRONTIER()

10: Move to f using f.path
11: Mark f as visited
12: UPDATEFRONTIER(f)
13: c← f

1: function COMPUTECOSTTOFRONTIERS(c)
2: Build a graph G that consists of the visited cells and

the frontiers, and its edge weights are defined by Eq. (3)
3: Run DIJKSTRA on G starting from c
4: for each frontier f ∈ F do
5: f.path← the safest path from c to f
6: f.P ← the probability of reaching f
7: f.L← |f.path|

1: function COMPUTEREACHABLESAFECELLS
2: for each frontier f ∈ F do
3: Build a graph G that consists of all the free and

safe cells in Mr(f) and f itself
4: Run BFS on G from f
5: f.N ← the number of unvisited vertices in G

that are reachable from f

1: function CHOOSENEXTFRONTIER
2: Pmax ← 0
3: for each frontier f ∈ F do
4: if f.P > Pmax then
5: Pmax ← f.P
6: f∗ ← f
7: else if f.P = Pmax then
8: if Pmax = 1 then
9: if f.L < f∗.L then

10: f∗ ← f

11: else if f.N > f∗.N then
12: f∗ ← f
13: else if f.N = f∗.N and f.L < f∗.L then
14: f∗ ← f

15: return f∗

1: function UPDATEFRONTIER(f)
2: Remove f from F
3: for each cell c ∈ V(f) do
4: if c is an unvisited free cell and c /∈ F then
5: Add c to F

3832

safe paths between two vertices in the graph, the algorithm
will prefer the shorter one.

After running Dijkstra’s shortest path algorithm on the
graph, the safest path to each frontier is found by traversing
the shortest paths tree from the robot’s current cell. The
path, its probability to complete and its length are stored as
fields in the frontier’s data structure.

The function COMPUTEREACHABLESAFECELLS
computes the number of safe cells that can be reached
from each frontier, without going through any threat point.
For each frontier, it first builds a graph G that contains
the frontier and all the free safe cells in its Moore’s
neighborhood (this neighborhood is visible to the robot’s
sensor when the robot is located at that frontier). Then,
it runs BFS on G in order to find all the cells in the
neighborhood that are accessible from that frontier (i.e.,
there is a path from the frontier to them that does not go
through any obstacle or a threat point), and stores their
count in the frontier’s data structure.

The function CHOOSENEXTFRONTIER is responsible for
choosing the next frontier to be visited by the robot. It eval-
uates each candidate frontier f , according to the following
components:

1) the probability of reaching f
2) the length of the path leading to f
3) the number of unvisited safe cells that can be reached

from f , without going through any threat point
First, the algorithm prefers the frontier with the safest

paths from the robot’s current location. If there are two
frontiers with equally safe paths from the robot’s current
location, then we distinguish between two cases:

Case 1. The paths to both frontiers are completely safe
(i.e., their probability to complete is 1). In this case, the
algorithm chooses the frontier with the minimum path length.
In this case we do not care about the safety of the regions
that can be reached from the frontiers, because the robot can
move between the frontiers safely.

Case 2. The paths to both frontiers are not completely safe.
In this case, the algorithm prefers the frontier that enables
the robot to reach a safer region. If the regions reachable
from these frontiers are equally safe, then the algorithm again
prefers the frontier with the minimum path length.

The emergent behavior of the robot following this algo-
rithm is that it will first visit all the safe cells that can
be reached from its current location. After visiting all the
reachable safe cells, all the frontiers become dangerous (i.e.,
contain threat points). The robot then will move to the safest
frontier, i.e., the frontier with minimum threat probability. If
there is more than one such frontier, the robot will move to
the frontier that enables it to reach the safest region, i.e., a
region with the highest number of unvisited safe cells.

V. ANALYSIS OF THE OAC ALGORITHM

In this section we consider several properties of the
OAC algorithm. We first prove that the algorithm creates

a complete coverage path, i.e., a path that visits every free
cell of the environment that is reachable from the robot’s
starting location.

Theorem 1 (completeness): The OAC algorithm covers
every free cell accessible from the starting cell s. 1

We now analyze the run-time and memory requirement of
the OAC algorithm.

Theorem 2: Let n be the total number of free cells acces-
sible from the starting cell s. Then OAC covers the given
area in O(n2lgn) time using O(n) memory.

We now prove the correctness of the function COMPUTE-
COSTTOFRONTIERS, i.e., that it finds the safest path from
the robot’s current location to each frontier.

Theorem 3: (correctness) The function COMPUTECOST-
TOFRONTIERS finds the safest path from the robot’s current
location to each frontier. If there is more than one safest path
to a frontier, it finds the shorter one.

We now establish bounds on the minimum completion
probability and the length of the safest coverage path gen-
erated by OAC. We start with the following lemma, which
establishes a bound on the number of visits in each cell.

Lemma 1: Let l be the number of dangerous threat levels.
Consider a cell c that belongs to threat level i, 0 ≤ i ≤ l.
Then c is visited at most 4(l− i+ 1) times along the safest
coverage path generated by OAC.

Using lemma 1, we can now prove the following theorem.

Theorem 4: Let l be the number of dangerous threat
levels. Denote the number of cells that belong to each
threat level by n0, ..., nl and the threat probabilities of
these levels by p0, ..., pl (p0 = 0). Then the coverage
path generated by OAC covers the given grid using a
path whose length is at most

∑l
i=0

[
4ni(l − i + 1)

]
and

its probability to complete is at least
∏l

i=1(1−pj)4ni(l−i+1).

VI. EMPIRICAL EVALUATION

We first use a specific map to illustrate the operation of the
OAC algorithm. The sample map consists of 10× 10 square
cells, out of which 25% contain obstacles, 25% contain
threats and the other 50% are free and safe. The probability
of being hit by a threat was set to 10% (changing this value
does not affect the coverage path generated by the algorithm;
it only affects the scaling of the results). The locations of the
threat points and the obstacles were randomly chosen.

Figure 2 shows the safest coverage paths found by OAC
on the sample map for two different sensing ranges: r = 1
(upper figure) and r = 3 (bottom figure). The robot starts
the coverage in cell (1,1). The numbers in the cells indicate
their visit order (e.g., the cell with number 1 was the first
cell visited by the robot).

1Full proofs can be found in [12].

3833

Fig. 2. OAC’s generated coverage paths on a sample map. The upper figure
shows OAC’s coverage path when the sensing range was r = 1, while the
bottom figure shows OAC’s coverage path when r = 3.

When r = 1, the expected coverage of the path was
43.25%, while its length was 156. On the other hand, when
r = 3, the expected coverage of the path was 46.36%, while
its length was 171. The larger sensing radius enables the
robot to choose frontiers that lead to larger areas of safe
cells before moving to visit dangerous areas. To illustrate
this point, let us examine the first frontier that was chosen
differently between the two coverage paths. As can be seen
in the figure, up until the 14th visited cell, both coverage
paths are identical. At that point, the robot is located at cell
(3, 4) and there are 4 possible frontier cells the algorithm
can choose from: f1 = (2, 1), f2 = (3, 3), f3 = (4, 4), and
f4 = (4, 7). The path to f1 is more dangerous than the paths
to the other three frontiers, since it involves passing through
two other dangerous cells, thus it cannot be chosen as the
next frontier for both sensing ranges. However, when the
sensing range is r = 1, the number of unvisited safe cells
that can be reached from each frontier and can be detected
by the robot’s sensor are: f2.N = 2, f3.N = 3, f4.N = 3.
Since f3.N = f4.N , the algorithm chooses f3, which is
the nearest frontier to the robot’s location. On the other
hand, when the robot’s sensing range increases to r = 3,
the number of unvisited safe cells that are reachable from
each frontier and can be detected by the robot’s sensor are:
f2.N = 4, f3.N = 5, f4.N = 13, thus f4 is chosen as the
next frontier to be visited by the robot. Since moving to
this frontier enables the robot to visit many more safe cells
before moving to a dangerous cell, the expected coverage
percentage increases.

We now describe the results of running the online algo-
rithm on 500 random maps of size 30 × 30, with varying
sensor ranges between 1 and 15. In all the experiments,
the obstacles ratio and the threats ratio were both set to
20% of the cells and the threat probability in the dangerous
cells was set to 5% (changing the absolute value of this
probability does not change the coverage path generated by
the algorithm; it only affects the scaling of the results). The
locations of the threat points and the obstacles were randomly
chosen.

Figure 3 shows the results. As can be seen from the graph,
the expected coverage keeps increasing as the range of the
sensor increases. However, when the sensor’s range reaches
r = 9, the expected coverage does not improve any more.
This can be explained by the observation that under the
given map settings (20% obstacles and 20% threat points),
increasing the size of the visible neighborhood of a frontier
to more than 9 cells does not allow the robot to reach more
safe cells from that frontier without going through any threat
point. Therefore, the decision of which frontier to choose is
not affected by the sensor’s range.

As for the coverage path length, it initially increases from
1829 when r = 1 to 1884 when r = 2 and then remains
around 1875. The initial increase in the path length can be
explained by the fact that when the robot has better sensing
capabilities, it occasionally prefers to move to a frontier that
is further away from its current location, but enables it to
reach a safer area. As we have seen, for higher values of r,
the decision of which frontier to choose is not affected by
r, thus the coverage path length is also not affected by the
sensor’s range.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
61

62

63

64

65

Sensor Range

E
xp

ec
te

d
C

ov
er

ag
e

%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1820

1830

1840

1850

1860

1870

1880

1890

Sensor Range

T
ot

al
 P

at
h

Le
ng

th

Fig. 3. Expected coverage percentage and coverage path length for different
sensor ranges.

We now compare the performance of the online adversarial
coverage with a sensor range that is equal to the map size
(which has the same effect as providing the robot with the

3834

entire map in advance) to the two algorithms for solving
the offline version of the adversarial coverage problem men-
tioned in [14], namely, STAC and GSAC. Figure 4 compares
the expected coverage percentage, number of threats visits
and the coverage path length for different threat ratios in the
range between 0.0 and 0.5. In these experiments, we used a
map size of 20×20 and the sensor’s range was set to r = 20
(the maximum possible sensor range for this map size). The
ratio of the obstacles was set to 20%.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

Threats ratio

E
xp

ec
te

d
C

ov
er

ag
e

%

OAC
STAC
GSAC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

100

200

300

400

Threats ratio

T
hr

ea
ts

 v
is

its

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
400

500

600

700

800

Threats ratio

T
ot

al
 P

at
h

Le
ng

th

Fig. 4. Expected coverage percentage, number of threats visits and coverage
path length for different threat ratios.

As anticipated, the expected coverage percentage de-
creases while the number of threat visits increases as we add
more threats to the map. The coverage path length increases
until the threat ratio reaches the level of around 20% and
then it starts decreasing. The reason for this is that when the
majority of the cells in the map are of the same type (either
safe or dangerous), there is less repetitive coverage in the
transition between different types of areas.

OAC consistently achieves higher expected coverage per-
centages than both STAC and GSAC (up to 8% increase
relative to STAC and up to 14.8% relative to GSAC). The
results are statistically significant (a one-tailed t-test between
OAC and STAC yields p = 4.19 · 10−10, and between OAC
and GSAC yields p = 2.11 · 10−14). OAC’s number of
threats visits and total path length are higher than GSAC’s,
but still lower than STAC’s. These results can be explained
by the fact that OAC’s main goal is to cover as many of
the safe cells before visiting dangerous cells, and this often
implies repetitive coverage in the transition between different
frontiers.

VII. DISCUSSION AND FUTURE RESEARCH

In this paper we have presented the online version of
the adversarial coverage problem. We have shown how a
frontier-based approach can take advantage of the robot’s

sensing capabilities in order to select the best location to
be visited by the robot. We have also shown that the same
approach can significantly improve the expected coverage
percentage that can be achieved in the offline version of the
problem.

In the future we plan to generalize the online algorithm
so that it can generate coverage paths that meet any desired
levels of risk and coverage time, and not only the safest
coverage path. We also intend to extend the algorithm
for multi-robot systems; using multiple robots for coverage
has the potential for more efficient coverage and greater
robustness.

REFERENCES

[1] F. Amigoni and V. Caglioti, “An information-based exploration strat-
egy for environment mapping with mobile robots,” Robotics and
Autonomous Systems, vol. 58, no. 5, pp. 684–699, 2010.

[2] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation al-
gorithms for lawn mowing and milling,” Computational Geometry,
vol. 17, no. 1, pp. 25–50, 2000.

[3] Y. Gabriely and E. Rimon, “Competitive on-line coverage of grid
environments by a mobile robot,” Computational Geometry, vol. 24,
no. 3, pp. 197–224, 2003.

[4] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, 2013.

[5] M. Keidar and G. A. Kaminka, “Efficient frontier detection for robot
exploration,” The International Journal of Robotics Research, vol. 33,
no. 2, pp. 215–236, 2013.

[6] C. Luo, S. X. Yang, D. A. Stacey, and J. C. Jofriet, “A solution to
vicinity problem of obstacles in complete coverage path planning,” in
ICRA, 2002, pp. 612–617.

[7] C. H. Papadimitriou and M. Yannakakis, “Shortest paths without a
map,” in Automata, Languages and Programming. Springer, 1989,
pp. 610–620.

[8] V. Shivashankar, R. Jain, U. Kuter, and D. S. Nau, “Real-time planning
for covering an initially-unknown spatial environment,” in Proc. of the
Twenty-Fourth International Florida Artificial Intelligence Research
Society Conference (FLAIRS-11), 2011.

[9] E. W. Weisstein, “Moore neighborhood,”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/MooreNeighborhood.html, 2005.

[10] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA-97), 1997, pp. 146–151.

[11] R. Yehoshua and N. Agmon, “Adversarial modeling in the robotic
coverage problem,” in International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-15), 2015.

[12] ——, “Online adversarial coverage: Proofs,” Bar Ilan University,
Computer Science Department, SMART Group, Tech. Rep. SMART
2015/02, available at http://www.cs.biu.ac.il/∼yehoshr1/, 2015.

[13] R. Yehoshua, N. Agmon, and G. A. Kaminka, “Robotic adversarial
coverage: Introduction and preliminary results,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS-13), 2013, pp. 6000–6005.

[14] ——, “Safest path adversarial coverage,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS-14), 2014, pp.
3027–3032.

[15] ——, “Frontier-based RTDP: A new approach to solving the robotic
adversarial coverage problem,” in International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-15), 2015, to
appear.

[16] A. Zelinsky, R. A. Jarvis, J. Byrne, and S. Yuta, “Planning paths of
complete coverage of an unstructured environment by a mobile robot,”
in International Conference on Advanced Robotics (ICAR), vol. 13,
1993, pp. 533–538.

3835

