
Safest Path Adversarial Coverage

Roi Yehoshua1, Noa Agmon1 and Gal A. Kaminka1,2
1Computer Science Department and 2Gonda Brain Research Center

Bar Ilan University, Israel
{yehoshr1,agmon,galk}@cs.biu.ac.il

Abstract— Coverage is a fundamental problem in robotics,
where one or more robots are required to visit each point
in a target area at least once. While most previous work
concentrated on finding a solution that completes the coverage
as quickly as possible, in this paper we consider a new version
of the problem: adversarial coverage. Here, the robot operates in
an environment that contains threats that might stop the robot.
We introduce the problem of finding the safest adversarial
coverage path, and present different optimization criteria for
the evaluation of these paths. We show that finding an optimal
solution to the safest coverage problem is NP-Complete. We
therefore suggest two heuristic algorithms: STAC, a spanning-
tree based coverage algorithm, and GSAC, which follows a
greedy approach. These algorithms produce close to optimal
solutions in polynomial time. We establish theoretical bounds
on the total risk involved in the coverage paths created by
these algorithms and on their lengths. Lastly, we compare
the effectiveness of these two algorithms in various types of
environments and settings.

I. INTRODUCTION

In robotic coverage, a robot is required to visit every
part of a given area as efficiently as possible ([1], [3],
[4], [5], [7], [8]). Coverage has many applications in a
multitude of domains, including search and rescue, mapping,
and surveillance. The coverage problem is analogous to the
traveling salesman problem, which is known to be NP-
complete [1]. However, it is possible to find polynomial-time
solutions to the coverage problem that are close to optimal
through heuristics and reductions (e.g., [1], [3], [5], [8]).

Almost all previous studies of the coverage problem
dealt with non-adversarial settings, where nothing in the
environment is hindering the robot’s task. However, in many
occasions, robots and autonomous agents need to perform
coverage missions in hazardous environments, such as oper-
ations in nuclear power plants, exploration of Mars, demining
and surveillance of enemy forces in the battle field.

In the adversarial coverage problem [10], the target area
contains locations with potential threats of harming the robot,
in addition to obstacles which the robot cannot go through.
The robot’s task is to cover the entire target area as quickly
as possible without being damaged by a threat point. In this
paper we discuss the offline version of this problem, where
a map with the locations of the potential threats is given
in advance, therefore the coverage path of the robot can
be determined prior to its movement. In addition, here we
focus on the problem of finding the safest coverage path

Support in part by ISF grant #1511/12.

in an adversarial environment, i.e., we are only concerned
about the survivability of the robot and not the coverage
time. Nevertheless, the algorithms we propose will also try
to minimize the coverage time, in cases where the robot’s
safety is not compromised. We will refer to this problem as
the Safest Coverage Path Problem.

We formally define the safest coverage planning prob-
lem and show it is NP-complete. We then propose two
algorithms for solving it heuristically in polynomial time.
The STAC (Spanning-Tree Adversarial Coverage) algorithm
splits the target area into connected areas of safe and
dangerous cells, and then it covers the safe areas before
moving to the dangerous ones. The GSAC (Greedy Safest
Adversarial Coverage) algorithm follows a greedy approach,
which leads the robot from its current location to the nearest
safest location which has not been covered yet. We provide
optimality bounds on both algorithms, and show that while
STAC tends to achieve higher expected coverage, GSAC
produces coverage paths with lower accumulated risk.

II. RELATED WORK

The problem of robot coverage has been extensively
discussed in the literature (see [4] for a recent exhaustive
survey). Grid-based coverage methods, such as we utilize
here, use a representation of the environment decomposed
into a collection of uniform grid cells (e.g., [3], [7]).

As a basis for our adversarial coverage planning algorithm,
we chose to use the Spiral Spanning Tree Coverage (Spiral-
STC) algorithm. This algorithm, introduced by Gabriely and
Rimon [3], provides close-to-optimal coverage paths in a
uniform grid based terrain. Spiral-STC assumes that a single
robot is equipped with a square shaped tool of size D placed
on grid. The grid is then coarsened such that each new cell
is of size 2D×2D, and a spanning tree is built over this new
coarse grid. Then the robot follows the edges of this spanning
tree, while covering each 2D-cell internally. The main result
is that Spiral-STC covers any planar grid in O(n) time using
a path whose length is at most (n + m)D. Here, n is the
number of D-size cells and m ≤ n is the number of cells
that share at least one point with the grid boundary.

The offline adversarial coverage problem was formally
defined by us in a recent study [10]. There we proposed a
simplistic heuristic algorithm that generates a coverage path
which tries to minimize a cost function, which takes into
account both the survivability of the robot and the cover-
age path length. However, the heuristic algorithm worked



only for obstacle-free areas, and without any guarantees, or
analysis of the problem complexity, in contrast to the novel
algorithms and analysis suggested in this paper.

III. SAFEST COVERAGE PATH PROBLEM

In this section we will formally define the safest coverage
path problem and discuss its complexity.

A. Problem Definition

We are given a map of a target area T , which contains
obstacles and also points with threats, which may stop the
robot. We assume that T can be decomposed into a regular
square grid with n cells, whose size equals the size of the
robot. Some cells in T contain threat points. Each threat point
i is associated with a threat probability pi, which measures
the likelihood that the threat will stop the robot. We assume
the robot can move continuously, in the four basic directions
(up/down, left/right), and can locate itself within the work-
area to within a specific cell. The robot’s task is to plan
a path through T such that every accessible free cell in T
(including the threat points) is visited by the robot at least
once. Refer to [10] for a more detailed description of the
problem.

In this paper, two objective functions will be considered
with respect to the safest coverage path problem:

1) Minimize the total accumulated risk along the coverage
path (i.e., maximize the probability of covering the
whole target area).

2) Maximize the coverage percentage of the target area
before the robot is first hit (i.e., maximize the expected
coverage percentage).

The second objective function has been used in [10], while
the first one has not been considered before.

Let us now formally define these objective functions. First,
we denote the coverage path followed by the robot by A =
(a1, a2, ..., am). Note that m ≥ n, i.e., the number of cells
in the coverage path might be greater than the number of
cells in the target area, since the robot is allowed to repeat
its steps. We define the event SA as the event that the robot
is not stopped when it follows the path A. The probability
that the robot is able to complete this path is:

P (SA) =
∏

i∈(a1,...,am)

(1− pi) (1)

Thus, the first objective is to find a coverage path A that
maximizes the probability P (SA). Note that in this objective,
the order of visits of the cells is not important, as long as
the number of visits of threat points along the coverage path
is minimized (ideally, visiting each threat point only once).

For the second objective, we will use the definition of
expected coverage from [10]. Given a coverage path A, we
denote the sequence of new cells discovered along A by
(b1, ..., bn), and the number of new cells visited by the robot
until it is stopped by CA. Furthermore, for each cell in the
sequence bi, we will denote the sub-path in A that leads
from the origin cell a1 to it by gi. Then, under the threat

probability function p, the expected number of new cells
that the robot visits can be expressed as:

E(CA) =
∑

i∈(b1,...,bn)

∏
j∈gi

(1− pj) (2)

Thus, the second objective is to find a coverage path A
that maximizes the expected coverage E(CA). Note that in
this objective, the visit order of the cells is crucial, since the
robot is trying to cover as much as possible before getting hit
by a threat (ideally, covering all the safe cells before visiting
a threat point).

In this paper we focus on a special case of the safest
coverage problem, where all the threat points are associated
with the same threat probability p. We will refer to this case
as the Uniform-Threat Safest Coverage Problem.

B. Problem Complexity

We now prove that the uniform-threat safest coverage path
problem is NP-hard for both objectives.

Definition 3.1: The Uniform-Threat Maximize Coverage
Completeness Probability Problem (UMCP): Given a grid
representation of a world that contains obstacles and threat
points with uniform threat probability, find a coverage path
of the grid that contains minimal number of threat points.

Theorem 1: The UMCP problem is NP-Hard. 1

Proof: (Sketch). The NP-hardness of the problem be
shown by reduction from the Hamiltonian path problem on
grid graphs, which is known to be NP-complete [6].

Definition 3.2: The Uniform-Threat Maximize Expected
Coverage Problem (UMEC): Given a grid representation of
a world that contains obstacles and threat points with uni-
form threat probability, find a coverage path with maximum
expected coverage percentage.

Theorem 2: The UMEC problem is NP-Hard.

Given the proven hardness of the problem, it is natural to
look for polynomial-time approximate solution algorithms.
Two such algorithms are presented in sections IV and V.

IV. STAC ALGORITHM

The Spanning Tree Adversarial Coverage algorithm
(STAC for short) uses a layered approach. It first covers all
the safe cells, using a minimum-risk path to move between
disconnected cells (if there are any). Then it covers all the
dangerous cells, also using a minimum-risk path to move
between disconnected cells. This way the algorithm tries to
cover as many safe cells as possible before attempting to
cover any dangerous cell, and thus maximize the coverage
percentage before the robot is first hit by a threat.

Let us define a safe area as a connected subset of safe cells
in the grid, while a dangerous area is defined as a connected
subset of dangerous cells. Figure 1 shows an example of a
grid containing two safe areas and three dangerous areas.

1Full proofs can be found in [9].



1. An example of a grid containing
two safe areas and three dangerous
areas. Obstacles are colored in black,
dangerous cells are colored purple,
and safe cells are colored white.
The dangerous areas are outlined by
blue, green and yellow thick lines,
respectively.

For the coverage of each connected area, we use the Spiral-
STC algorithm as described in [3], with a few changes.
Specifically, the original algorithm always returns to the
original cell from which it started the coverage. In our case
there is no need to do that. As soon as all the cells in a given
area are covered, the robot can proceed to the next one. In
addition, we addressed cases where the given area cannot be
decomposed into 2D-size cells (for example, if the area is
just a row of consecutive cells).

STAC uses a helper procedure called Cre-
ate Safe Coverage Path (CSCP for short) to create a
safe coverage path for a specific type of cells (in our case,
safe cells or dangerous cells). This procedure is composed
of four main stages. First, it identifies the connected areas
of the given cell type by running Depth First Search (DFS)
on the graph induced from its input cells. Second, it finds
a coverage path for each connected area by running the
modified Spiral-STC algorithm. Third, it finds the safest
route between each pair of connected areas. Finally, it finds
a minimum risk route that connects all areas. The final
coverage path returned by CSCP consists of the coverage
paths for each area and the route that connects them. CSCP
is fully described in [9].

The safest route between each pair of connected areas is
found by running Dijkstra’s shortest paths algorithm on the
graph induced from the entire grid cells with the following
edge weights:

wij =

{
1 if cell j contains a threat

1/n otherwise (3)

The weights represent the risks of traversing each edge in
the graph. However, since we also want to take into account
the path length, we set a small constant weight to edges that
connect safe cells. This weight is chosen small enough so
that only if there are two equally safe paths connecting two
nodes, we will prefer the shorter one.

The minimum-risk route that connects all the areas is
determined as follows. The algorithm creates a graph whose
nodes represent the connected areas. The weight of the edge
between two areas is determined by the length of their
connecting path. We then run an approximation algorithm
that solves TSP (Traveling Salesman Problem) on this graph
to find the safest possible route that visits each connected
area exactly once. Since the cost function here satisfies the
triangle inequality, we can use an approximate algorithm for
TSP that returns a tour whose cost is not more than 1.5 the

cost of an optimal tour (Christofides algorithm [2]).
STAC uses the CSCP procedure twice: to create a coverage

path of all the safe cells in the grid, and then to create a
coverage path of all the dangerous cells. In addition, it needs
to find a connecting route between the last visited safe cell
and the first cell in the dangerous areas, which is performed
in step 7 of the algorithm.

Algorithm 1 Spanning Tree Adversarial Coverage
Input: a grid G and a starting cell s
Output: a coverage path P that covers all reachable cells in G

from s

1: Create a new coverage path P
2: S ← all the safe cells in G that are reachable from s
3: PS ← Create Safe Coverage Path(G,S)
4: Add PS to P
5: D ← all the dangerous cells in G that are reachable from s

and are not included in PS

6: PD ← Create Safe Coverage Path(G,D)
7: Find a safest route between the last visited cell in PS and the

first visited cell in PD by using Dijkstra’s algorithm, and add
this route to P

8: Add PD to P
9: return P

Analysis of the STAC algorithm

Lemma 4.1 (completeness): STAC creates a path that cov-
ers every free cell accessible from the starting cell s.

The next lemma gives the run-time guarantees of STAC.

Lemma 4.2: Let n be the total number of free cells
accessible from the starting cell S, and a be the number
of connected areas. Then STAC covers the given area in
O(a2nlgn+ a3) time.

In the worst case, the number of connected areas is
a = Θ(n), and in such case the time complexity of the
algorithm is Θ(n3lgn). However, in practice, a ≪ n, and in
such environments the algorithm’s run-time is O(nlgn).

The following theorem establishes a bound on the number
of dangerous cells in the coverage path generated by the
STAC algorithm. We start with the following definitions.

Definition 4.1: Boundary cells are cells that share either
a point or a segment with a cell containing an obstacle, or
with the boundary of the area which they belong to.

Definition 4.2: Connecting cells are cells that reside on
a connecting path between two different areas.

Theorem 3: Let d be the total number of dangerous cells
in the accessible grid. Let b ≤ d be the total number of
dangerous boundary cells and c ≤ d the number of dangerous
connecting cells. Then STAC covers the given grid using a
path that contains x ≤ d+ b+ 2c dangerous cells.

Proof: (Sketch.) By theorem 1 in [3], the total number
of cells revisits in Spiral-STC is bounded by the number
of boundary cells in the work-area grid. Thus, the total
number of visits to dangerous cells during the coverage of the
dangerous areas is at most d+b. In addition, dangerous cells
may be visited along the connecting route between different



areas. The connecting route is found by the Christofides
approximation to TSP [2]. This route does not traverse the
same edge more than twice, thus the connecting dangerous
cells cannot be visited more than twice. Hence, the coverage
path generated by STAC contains at most d+b+2c dangerous
cells, where b ≤ d and c ≤ d.

In practice, b ≪ d and c ≪ d, and in such environments
STAC generates paths whose number of dangerous cells is
close to d.

The next theorem establishes a bound on the length of the
coverage path generated by the STAC algorithm. Its proof is
similar to the proof of Theorem 3.

Theorem 4: Let n be the total number of cells in the
accessible grid. Let m ≤ n be the total number of boundary
cells and r ≤ n the number of connecting cells. Then
STAC covers the given grid using a path that contains
y ≤ n+m+ 2r cells.

V. GSAC ALGORITHM

The Greedy Safest Adversarial Coverage algorithm
(GSAC for short) follows a greedy approach, where in
each step it searches for the next unvisited cell, which has
the safest route from the robot’s current location. For that
purpose, the algorithm runs Dijkstra’s algorithm on the graph
induced from the grid cells, in order to find a minimum
weighted path between the robot’s current position and all
the other cells in the grid (see Algorithm 2).

The weight function used for the graph edges is the same
as in Eq. (3). These weights represent the risks of traversing
each edge, while also considering the path length.

Algorithm 2 Greedy Safest Adversarial Coverage
Input: a grid G and a starting cell s
Output: a coverage path P that covers all reachable cells in G
from s

1: Create a new coverage path P
2: Build the graph GC whose nodes are the cells in G and its

edges connect neighboring cells in the grid G with the weights
as defined by formula 3

3: Add the starting cell s to P
4: Mark s as visited
5: while not all reachable cells in G have been visited do
6: Run Dijkstra’s shortest paths algorithm from s to each node

in GC

7: v ← the node in GC with the shortest distance from s that
has not been visited yet

8: Add the path s v to P
9: Mark v as visited

10: s← v
11: return P

Analysis of the GSAC Algorithm

Lemma 5.1 (completeness): GSAC creates a path that
covers every free cell accessible from the starting cell s.

Lemma 5.2: Let n be the total number of free cells
accessible from the starting cell S. Then GSAC covers the
given area in O(n2lgn) time.

The following theorem establishes a bound on the number
of dangerous cells in the coverage path generated by GSAC.

Theorem 5: Let d be the total number of dangerous cells
in the accessible grid. Then GSAC covers the given grid
using a path that contains at most 2d dangerous cells.

Proof: Consider the outgoing edges from a dangerous
cell c. The first time the algorithm traverses such an edge, it
is guaranteed that it will cover all the cells that are accessible
from that edge before it returns back to c, since all the other
cells in the grid will have longer paths from the current
position of the robot. Thus, each edge connected to c is
traversed at most once in each direction. Consequently, there
are at most 2d edges that touch dangerous cells along the
coverage path. Hence, the coverage path contains at most 2d
dangerous cells.

Note that in some environments the bound of 2d is tight.
However, as we will demonstrate in the next section, in
practice GSAC generates paths whose number of dangerous
cells is close to d. The next theorem establishes a bound
on the length of the coverage path generated by the GSAC
algorithm. Its proof is similar to the proof of Theorem 5.

Theorem 6: Let n be the total number of cells in the
accessible grid. Then GSAC covers the given grid using a
path that contains at most 4n cells.

VI. EXPERIMENT RESULTS

We use a specific map to illustrate the operation of both
algorithms and compare their performance (Section VI-A).
Then, we report on the statistical analysis based on multiple
randomly generated maps with varying parameters, such as
map size, number of obstacles, number of threat points, etc.
(Section VI-B).

A. An Example Run

We considered a target area consisting of 30× 30 square
cells, out of which 20% contain obstacles, 15% contain
threats and the other 65% are free and safe. The probability
of being hit by a threat was set to an arbitrary value of
0.15 (changing this value does not affect the coverage paths
generated by the algorithms). The obstacles are randomly
scattered across the map, while the threats are confined to
8 randomly chosen contiguous areas (some of them had
common borders so they merged into a single area).

See Figure 2 for the description of the map. Obstacles
are represented by black cells, dangerous cells are colored
purple and safe cells are colored white. The starting position
of the robot is cell (1, 1). We ran both STAC and GSAC on
this map. The coverage path generated by STAC is denoted
by a solid line, while the coverage path generated by GSAC
is denoted by a dotted line.

The expected coverage obtained by STAC and GSAC
was 76.68% and 55.31%, respectively. The number of times
STAC has visited a dangerous cell was 210, while the
number of times GAC has visited a dangerous cell was
158 (the map contained 141 dangerous cells). Thus, STAC



Fig. 2. An example map. STAC’s coverage path is denoted by a black
solid line, while GSAC’s coverage path is denoted by a blue dotted line.

achieved better expected coverage, but its coverage path is
less likely to complete. Note that for the uniform threats
case, maximizing the coverage completion probability (Eq.
(1)) is equivalent to minimizing dangerous cell visits. Thus,
to make computations easier, we used the number of threat
visits instead.

Examining the coverage paths created by the algorithms
reveals the difference in their behavior. The grid contains
two large safe areas. Both algorithms start with covering the
upper large safe area. When STAC finishes covering this area,
it finds the safest path to the bottom safe area, via the single
dangerous cell in row 21, column 13. On the other hand,
when GSAC finishes covering the upper safe area, it starts
scanning the dangerous area beginning with the cell in row
10, column 7, and exits this area only when it reaches a cell
on its border (the cell in (11, 1)). Thus, the greedy algorithm
visits 15 dangerous cells before moving to scan the next safe
area, while STAC visits only one dangerous cell.

We can also learn from these figures why GSAC suffers
less from repetitive coverage of dangerous cells than STAC.
Let us observe the coverage of the upper-right dangerous
area, that starts in row 2, column 16. In GSAC this area is
covered in two phases. First, GSAC covers cells located on
the left side of this area, then it continues to the dangerous
area to the left of it (that starts in row 2, column 14), and
then it returns back to cover the cells on the right side
of this area. This way, the number of cells revisits in this
area is significantly reduced to only one repetition. On the
other hand, STAC must cover this dangerous area completely
before moving to the next one. Covering this area in one
phase incurs a high number of repetitions (11 revisits of
cells). The fact that GSAC can jump between different areas
allows it to make less repetitions.

B. Controlled Experiments

In order to compare between the performance of the two
algorithms, we examined them in various types of environ-
ments and settings. We have examined maps with randomly

scattered threat points vs. maps with contiguous dangerous
areas (whose locations were also randomly chosen), and the
same for obstacles (maps with randomly scattered obstacles
vs. maps with contiguous areas of obstacles), i.e., four
types of environments. Here we report on three types of
environments, which offered the most significant insights.
All results are averaged on 50 randomized maps.

Randomly scattered threat points and obstacles.
Figure 3 compares the expected coverage percentage, number
of threats visits and the coverage path length for different
threat ratios in the range between 0.0 and 0.5. In all ex-
periments, we used a map size of 20 × 20 and the ratio of
obstacles was 20%. The locations of the threat points and
the obstacles were randomly chosen.

As anticipated, the expected coverage percentage de-
creases while the number of threat visits increases as we add
more threats to the map. The coverage path length increases
until the threat ratio reaches the level of around 27% and
then it starts decreasing. The reason for this is that when the
majority of the cells in the map are of the same type (either
safe or dangerous), there is less repetitive coverage in the
transition between different types of areas.

We see that for low numbers of threats, the two algorithms
have similar results. When the number of threats in the map
gets higher, STAC achieves a better expected coverage than
GSAC, albeit the difference is less than 5%. In this scenario,
there is no statistically significant advantage to STAC over
GSAC, since when the threats are scattered across the map,
most of the safe cells are connected to each other, i.e. there
is no need to pass through a large dangerous area in order to
move between safe cells, so both algorithms can cover most
of the safe cells before covering dangerous cells.

Regarding the coverage path length, GSAC consistently
produces shorter coverage paths than STAC, as it does not
waste repetitive coverage on the transitions between the
different areas. It just moves to the nearest unvisited cell from
the robot’s current position with the safest path. Moreover,
the inner coverage of each area in GSAC is more efficient
than STAC (at the expense of computation time).

Contiguous areas of threats and randomly scattered
obstacles. When the threats are confined to contiguous areas
and not scattered across the map, we can observe a clear
advantage to STAC in terms of expected coverage. Figure
4 shows the expected coverage percentage and number
of threats visits for a varying number of dangerous areas
between 2 and 40. We used maps with size 20×20, the ratio
of obstacles was 20% and the ratio of dangerous cells was
20%. In general, as there are more dangerous areas, both
algorithms achieve lower expected coverage but also less
repetitive visits of dangerous cells. The reason is that when
there are more dangerous areas, there are more disconnected
safe cells, thus the robot is able to cover less safe cells before
moving to cover the dangerous areas.

When the number of dangerous areas is around 10, STAC
generates coverage paths with a significantly better expected
coverage than GSAC (about 10% difference, which is sta-
tistically significant; one-tailed t-test p = 0.00047). This



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

Threats ratio

E
xp

ec
te

d 
C

ov
er

ag
e 

%

 

 
STAC
GSAC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

Threats ratio

T
hr

ea
ts

 v
is

its

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
300

400

500

600

700

800

Threats ratio

T
ot

al
 P

at
h 

Le
ng

th

Fig. 3. Expected coverage percentage, number of threats visits and coverage
path length for different threat ratios in environments with randomly
scattered threat points and obstacles.

can be explained by the fact that for such a number of
dangerous areas, GSAC has to pass through relatively large
dangerous areas when moving between the safe areas. When
the number of dangerous areas is lower, most of the safe
cells stay connected so GSAC can cover them without getting
stuck in a dangerous area. When the number is higher, each
dangerous area contains small number of cells, so crossing
a dangerous area has less impact on the expected coverage.

while the number of threat visits is always lower for
GSAC, the difference in the number of threat visits between
the two algorithms becomes smaller when the number of
dangerous areas gets higher. This is due to the fact that
STAC is less effective in covering large connected areas than
smaller ones (since there are more boundary cells).

Contiguous areas of obstacles and randomly scattered
threats. When the obstacles are concentrated in large con-
tiguous areas, the expected coverage in both algorithms is
significantly higher than in environments where the obstacles
are scattered. For example, STAC obtained an expected
coverage of 73.9% when there were only 4 obstacles areas,
while the expected coverage was 61.62% when the obstacles
were randomly scattered. This can be explained by the fact
that when the threats are randomly scattered, it is easier for
both algorithms to find a safe connecting route between the
safe areas when the obstacles are contiguous. On the other
hand, the number of threats visits is not affected by the
obstacle distribution (around 75 for STAC, 70 for GSAC).

VII. DISCUSSION AND FUTURE RESEARCH

In this paper we have presented the safest path adversarial
coverage problem. First, we have suggested two optimization
criteria for the evaluation of safest coverage paths. Next,
we proposed two polynomial-time algorithms that try to
meet these criteria, STAC and GSAC. We have provided

5 10 15 20 25 30 35 40
55

60

65

70

75

Number of dangerous areas

E
xp

ec
te

d 
C

ov
er

ag
e 

%

 

 

5 10 15 20 25 30 35 40
60

70

80

90

100

110

Number of dangerous areas

T
hr

ea
ts

 v
is

its

STAC
GSAC

Fig. 4. Expected coverage percentage and number of threats visits for
different numbers of dangerous areas in environments with contiguous areas
of threats and randomly scattered obstacles.

optimality bounds on the total risk involved in the coverage
paths generated by these algorithms and on their coverage
time. Experiments in various environments showed that
STAC tends to achieve higher expected coverage, while the
coverage paths generated by GSAC have lower accumulated
risk. We have also examined the coverage paths generated
by the algorithms and compared their structures.

In the future we plan to consider maps with multiple threat
levels (and not just safe and dangerous cells). We also would
like to extend the algorithms to multi-robot systems.

REFERENCES

[1] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation al-
gorithms for lawn mowing and milling,” Computational Geometry,
vol. 17, no. 1, pp. 25–50, 2000.

[2] N. Christofides, “Worst-case analysis of a new heuristic for the travel-
ling salesman problem,” Graduate School of Industrial Administration,
Carnegie-Mellon University, Tech. Rep. 388, 1976.

[3] Y. Gabriely and E. Rimon, “Competitive on-line coverage of grid
environments by a mobile robot,” Computational Geometry, vol. 24,
no. 3, pp. 197–224, 2003.

[4] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, 2013.

[5] M. Grigni, E. Koutsoupias, and C. Papadimitriou, “An approximation
scheme for planar graph tsp,” in 36th IEEE Annual Symposium on
Foundations of Computer Science, 1995, pp. 640–645.

[6] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter, “Hamilton paths
in grid graphs,” SIAM Journal on Computing, pp. 676–686, 1982.

[7] C. Luo, S. X. Yang, D. A. Stacey, and J. C. Jofriet, “A solution to
vicinity problem of obstacles in complete coverage path planning,” in
ICRA, 2002, pp. 612–617.

[8] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Optimal complete terrain
coverage using an unmanned aerial vehicle,” in ICRA, 2011.

[9] R. Yehoshua, N. Agmon, and G. A. Kaminka, “Safest path adversarial
coverage: Proofs and algorithm details,” Bar Ilan University, Computer
Science Department, SMART Group, Tech. Rep. SMART 2014/01,
available at http://www.cs.biu.ac.il/∼yehoshr1/, 2014.

[10] R. Yehoshua, N. Agmon, and G. A. Kaminka, “Robotic adversarial
coverage: Introduction and preliminary results,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS’13), 2013, pp. 6000–6005.


