
Multi-Robot Adversarial Coverage

Roi Yehoshua and Noa Agmon1

Abstract. This work discusses the problem of adversarial cover-
age, in which one or more robots are required to visit every point of
a given area, which contains threats that might stop the robots. The
objective of the robots is to cover the target area as quickly as pos-
sible, while maximizing the percentage of covered area before they
are stopped. This problem has many real-world applications, from
performing coverage missions in hazardous fields such as nuclear
power plants, to surveillance of enemy forces in the battlefield and
field demining. Previous studies of the problem dealt with single-
robot coverage. Using a multi-robot team for the coverage has clear
advantages in terms of both coverage time and robustness: even if one
robot is totally damaged, others may take over its coverage subtask.
Hence, in this paper we describe a multi-robot coverage algorithm
for adversarial environments that tries to maximize the percentage of
covered area before the team is stopped, while minimizing the cov-
erage time. We analytically show that the algorithm is robust, in that
as long as a single robot is able to move, the coverage will be com-
pleted. We also establish theoretical bounds on the minimum covered
area guaranteed by the algorithm and on the coverage time. Lastly,
we evaluate the effectiveness of the algorithm in an extensive set of
environments and settings.

1 Introduction

Coverage path planning is one of the fundamental problems in
robotics. The goal of coverage path planning is to find a sequence
of world locations which allows the robot(s) to visit every part of the
target area while optimizing some criteria, usually minimizing travel
cost while avoiding obstacles. This problem has many real-world ap-
plications, from automatic floor cleaning [2] and coating in super-
markets [4], to field demining [14] and surveillance by unmanned
aerial vehicles (UAVs) [7].

In a recently introduced version of the problem, adversarial cover-
age (e.g., [20]), the robot has to cover the given terrain without being
stopped by an adversary. Each point in the area is associated with a
probability of the robot being stopped at that point. The objective of
the robot is to cover the entire target area (including the threat points)
as quickly as possible while minimizing the probability that it will be
stopped before completing the coverage. This problem is a general-
ization of the original problem of coverage in neutral environments
(without adversarial presence), where risks do not exist, thus are not
accounted for, and the only goal is to minimize coverage time [13],
[5], [8].

Previous work of adversarial coverage dealt with the single-robot
version of the problem. There are obvious advantages in using mul-
tiple robots in the adversarial coverage task. Using multiple robots

1 Bar Ilan University, Israel, email: yehoshr1@cs.biu.ac.il, ag-
mon@cs.biu.ac.il

clearly decreases the time to complete the task due to workload di-
vision, as seen in the original multi-robot coverage problem [8], [1].
Additionally, using multiple robots improves robustness, as failure
of some members of the robot team can be compensated by oth-
ers. Therefore, in this paper we extend adversarial coverage to multi-
robot systems. We focus on coverage using a map of the work-area
(known as offline coverage [6]).

First, we formally define the multi-robot version of adversarial
coverage, and the problem of finding the safest coverage path for
a multi-robot team. In this paper we are mainly concerned about the
survivability of the team and not the coverage time. Nevertheless,
the algorithm we propose also tries to minimize the coverage time,
as long as the robots’ safety is not compromised. Clearly, there is
a tradeoff between the two objectives of survivability and coverage
time: trying to minimize the risk to the robots along their coverage
paths typically means making some redundant steps, which in turn
can make their coverage paths longer, and thus increase the risks in-
volved, as well as the coverage time.

Second, we describe an efficient distributed multi-robot adversar-
ial coverage algorithm, that tries to maximize the survivability of the
team while optimizing the coverage time. The algorithm is based on
decomposition of the target area into connected areas of safe and
dangerous locations, and prioritization of the coverage such that cov-
erage of safer areas comes before coverage of more dangerous ones.
Our method also utilizes graph partitioning techniques in cases where
more than one robot is assigned to the coverage of a given area, in
order to speed up its coverage. We provide a theoretical bound on
the expected coverage percentage guaranteed by the algorithm, and
also analyze the best-case and worst-case completion times for the
algorithm.

Finally, we evaluate our method in an extensive set of experiments.
The results show that adding more robots to the coverage task can
significantly increase the percentage of the area covered as well as
reduce the coverage time.

2 Related Work

The problem of single and multi-robot coverage has been extensively
discussed in the robotic literature (see Galceran and Carreras [6] for
a recent survey). Most approaches to multi-robot coverage extend
single-robot ideas to multiple robots by using a strategy to divide
the workload. Hazon and Kaminka [8] generalized the STC method
to multi-robot teams in the family of Multi Robot Spanning Tree
Coverage (MSTC) algorithms. Their solution, along with decreasing
the total coverage time, achieved robustness in the sense that as long
as one robot works properly, the coverage of the terrain is guaranteed.
They have also shown that in multi-robot teams redundancy might be
necessary for more efficiency. Agmon et al. [1] proposed a spanning

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1493

1493

tree construction algorithm that provides efficient paths in terms of
distance, and can be used as a basis for MSTC.

Rekleitis et al. [16] presented a collection of algorithms for the
coverage planning problem using a team of mobile robots on an un-
known environment, based on an exact cellular decomposition. To
achieve coverage in line-of-sight-only communications, the robots
take two roles: some members, called explorers, cover the bound-
aries of the current target cell, while the other members, called cov-
erers, perform simple back-and-forth motions to cover the remainder
of the cell. For task/cell allocation among the robots, a greedy auc-
tion mechanism is used.

Other approaches to multi-robot coverage found in the literature
include methods inspired by biological behaviors found in nature.
For example, Luo and Yang [12] presented a biologically inspired
neural network approach for coverage tasks to multi-robot scenarios
where the robots see each other as moving obstacles. Wagner and
Bruckstein [17] explored the problem of room cleaning by a group
of robots, and proposed a robust algorithm for complete coverage
of a terrain. In their case, the robots have limited capabilities and
communicate with each other mainly using pheromones.

The offline single-robot adversarial coverage problem was for-
mally defined in [21], in which we proposed a simple heuristic al-
gorithm for generating a coverage path aiming at minimizing a cost
composed of both the survivability of the robot and the coverage path
length. The heuristic algorithm worked only for obstacle-free areas,
and without any guarantees. In a follow-up paper [22] we have ad-
dressed a more specific version of the problem, namely, finding the
safest coverage path. There we suggested two heuristic algorithms:
STAC, a spanning-tree based coverage algorithm, and GAC, which
follows a greedy approach. We have shown that while STAC tends
to achieve higher expected coverage, GAC produces shorter cover-
age paths with lower accumulated risk. In [18] we have built a more
sophisticated model of the adversary, in which it can choose the best
locations of the threat points, such that the probability of stopping the
covering robot is maximized. Lastly, the online single-robot version
of the problem was presented in [19].

In the related patrol problem ([15], [3]), a multi-robot team needs
to patrol around a closed area with the existence of an adversary at-
tempting to penetrate into the area. The patrol problem resembles the
coverage problem in the sense that both require the robot or group of
robots to visit all points in the given terrain. However, while coverage
seeks to minimize the number of visits to each point (ideally, visiting
it only once), patrolling seeks to maximize it (while still visiting all
points).

3 Problem Formulation

A team of k robots R = {R1, ..., Rk} needs to cover a given area.
The area contains threats that may stop the robots, as well as ob-
stacles. In contrast to obstacles which the robots cannot go through,
threat locations are places that the robots must visit, but might be
stopped at. The robots are given a map of the environment in ad-
vance. We assume that communication between the robots is avail-
able without any restrictions. Each robot autonomously covers the
area it is assigned, keeping track of all the covered and uncovered
space by communicating with the other robots (see section 4.2 for
the communication requirements).

Furthermore, we assume that the given area can be decomposed
into a regular grid with n cells. Let us denote this grid by G. G
contains two types of cells: free cells and cells that are occupied
by obstacles. Some of the free cells contain threats. Each free cell

i is associated with a threat probability pi, which measures the like-
lihood that a threat in that cell will stop a robot visiting it. We define
safe cells as cells in which the threat probability is pi = 0, while
dangerous cells are those in which pi > 0. The robots can move in
the four basic directions (North, South, East, West), and can locate
themselves within the work-area to a specific cell.

Figure 1 shows an example world map of size 20 × 20, with 8
robots located at the upper-left corner of the area. Obstacles are rep-
resented by black cells, safe cells are colored white, and dangerous
cells are represented by 5 different shades of magenta. Darker shades
represent higher values of pi (more dangerous areas).

Figure 1. A sample map with 8 robots located at the upper-left corner of
the environment. Darker shades represent more dangerous areas.

We assume that robots that have been stopped by threats do not
block live robots, i.e. other robots can move through their cells, and
that the threats remain there. An example for a real-world scenario in
which this assumption holds is when the covering robots are UAVs,
and the threats are constant in time (e.g., an anti-drone weapon aimed
at a particular location).

The survivability measure can be defined in two levels: the surviv-
ability of each single robot, and the survivability of the team. We say
that a robot survives the coverage, if it manages to finish its coverage
task unharmed. To formally define the survivability of a robot Ri, we
first denote the coverage path that it follows by Pi = (ci1, c

i
2, ..., c

i
ni
),

where cij is the cell that robot i is located at in time step j. Thus, the
probability that a robot Ri survives the coverage is:

Surv(Ri) =

ni∏
j=1

(1− pij) (1)

where pij denotes the probability that the robot is stopped by a
threat in cell cij .

We say that a team of robots survives the coverage, if at least one
of the robots in the team survives until all cells in the area are visited
(coverage completed). Thus, if it takes t time steps to cover the area,
the probability that a team of k robots R = {R1, ..., Rk} is able to
cover this area is:

Surv(R) =
t∏

j=1

[
1−

k∏
i=1

pij

]
(2)

R. Yehoshua and N. Agmon / Multi-Robot Adversarial Coverage1494

Following these definitions, we can now define the Multi-Robot
Safe Adversarial Coverage Problem (MRSACP) as follows:

Definition 1 Multi-Robot Safe Adversarial Coverage Problem (MR-
SACP): Given a team of k robots and a grid representation of a world
that contains obstacles and threat points, find a coverage path of the
grid that maximizes the survivability of the team.

The NP-hardness of MRSACP follows directly from the NP-
hardness of the single-robot safest coverage path problem [22].

4 Multi-Robot Adversarial Coverage Algorithm

The Multi-Robot Adversarial Coverage algorithm (MRAC, de-
scribed in Algorithm 1) uses a layered-based approach. It first tries
to cover all the safe cells in the target area as efficiently as possible,
using the given k robots. Then it covers the dangerous areas from the
least dangerous ones to the most dangerous ones. This way the al-
gorithm tries to maximize the coverage percentage before the entire
group of robots is stopped.

Before describing the algorithm in detail, let us introduce the fol-
lowing definitions:

Definition 2 A connected area is a connected subset of cells in the
grid that belong to the same threat level.

We also use the terms safe areas and dangerous areas to refer to
connected areas that are composed of only safe cells or only danger-
ous cells. Figure 2 shows an example of a grid containing two safe
areas and five dangerous areas that belong to two different threat lev-
els. The two low-threat-level areas are outlined by yellow lines and
the three high-threat-level areas are outlined by blue lines.

Figure 2. An example of a grid containing two safe areas and five
dangerous areas that belong to two different threat levels.

In addition, we denote the distinct threat probabilities that exist in
the grid by p0, ..., pl(p0 = 0) (l is finite, since the number of cells in
the grid is finite), and define threat level i as the group of all the cells
that contain threats with probability pi of stopping the robot.

The main steps of the multi-robot coverage algorithm are:

1. Split the target area into layers according to the threat levels, i.e.
layer i contains all the cells that belong to threat level i.

2. For each threat level i, denote by Ai
1, A

i
2, ..., A

i
ni

the connected
areas that belong to level i.

3. Each robot is assigned to a safe area A ∈ {A0
1, ..., A

0
n0

}, which
has the safest path from its current location. Areas with more than
one robot assigned to them are split between their assigned robots.

4. For the coverage of each area, we use a modified version of GAC
(Greedy Adversarial Coverage), the state-of-the-art solution to the
single-robot adversarial coverage problem [20].

5. When a robot Ri completes its current coverage task, it is allo-
cated an uncovered area from the safest threat level which has not
been completed yet. If more than one such area exists, the area
with the minimum-risk path from the robot’s current location is
chosen. If all areas have been allocated, then the robot is added to
an area that is already being covered by another robot. This area
is split into two, where each robot is assigned to the sub-area with
the safest path from its current location.

6. If a robot is hit by a threat during the coverage of its allocated
area, then this area is returned to the pool of unassigned areas.

7. If all the robots have completed their area coverage, and there are
no uncovered cells, then the robots declare the environment cov-
ered.

The algorithm consists of two main phases: the first phase (steps
1–3) is executed prior to the coverage and computes the initial al-
locations of areas to the robots. This computation can be performed
either offline or online by one of the robots, and then its results can
be transmitted to all the other robots in the team. The second phase
(steps 4–7) is executed independently by each of the robots in a dis-
tributed manner during the coverage process itself.

4.1 Multi-level Graph Partitioning

There are several places in the algorithm where we need to use a
graph partitioning scheme, in order to divide a given area between
several robots. More specifically, we need to apply graph partition-
ing in the initial allocation of areas to robots, and at the end of the
coverage when all the areas have been allocated and there are some
idle robots that can help their teammates finish their coverage task.

The problem of partitioning a graph into k equally-sized compo-
nents is known to be NP-Hard [10]. Therefore, practical solutions
are based on heuristics. Here we use a multi-level graph partitioning
algorithm [9], that consists of three main phases: coarsening, parti-
tioning, and uncoarsening (Figure 3). In the coarsening phase, a se-
quence of smaller graphs, each with fewer vertices is obtained by col-
lapsing vertices and edges into single vertices of the next level, which
are called multi-nodes. Then, in the partitioning phase, the coarse
graph obtained is partitioned. Lastly, in the uncoarsening phase, the
partitioning is refined while the original graph is restored.

4.2 Data Structures

The algorithm maintains a list of connected areas, denoted by A.
Each area can be in one of the following states:

1. Sunassigned - unassigned to any robot
2. Sassigned - assigned to a robot and not completely covered yet
3. Scovered - covered

An area that has been assigned to a robot can change its state to ei-
ther being covered (if the robot has successfully finished covering it)
or to unassigned (if the robot has been stopped by a threat during its
coverage). An area that has been completely covered cannot change
its state.

For each area A, we maintain the following fields:

R. Yehoshua and N. Agmon / Multi-Robot Adversarial Coverage 1495

Figure 3. The three phases of multilevel k-way graph partitioning. [9]

• A.level - the threat level this area belongs to
• A.cells - the group of cells that belong to this area
• A.state - the current state of the area
• A.initial robots - the group of robots initially assigned to this

area. If the group contains more than one robot, then this area
would need to split between them.

• A.robot - the robot currently assigned to this area

Each robot in the team can be in one of the following states:

1. Sidle - waiting for a task assignment. This is the initial state of
each robot.

2. Straveling - traveling to the next area that the robot has to cover.
3. Scovering - in the process of covering a given area.
4. Sdone - the robot has finished covering its allocated area and there

are no more areas to be covered.
5. Sdead - the robot has been hit by a threat.

The transitions between the robot’s states are described in section
4.4. For each robot R, we maintain the following fields:

• R.state - the current state of the robot
• R.area - the current area the robot is assigned to
• R.location - the robot’s location
• R.path - the path the robot is currently following. This path can

be either the transition path to the robot’s next allocated area or
the coverage path of the area it is currently covering.

In addition to the global map, we assume that the following data
structures are shared (and synchronized) between the robots:

1. The status of each cell in the map (visited or not).
2. The list of connected areas and their states.
3. The states of all the robots, and the areas that they are assigned to.

4.3 Initial Allocation

Algorithm 1 is run prior to the coverage itself. It is responsible for
pre-processing of the map and the initial allocation of coverage tasks
to the robots.

The procedure Allocate Areas To Robots allocates the initial ar-
eas to the robots. The idea is to initially cover all the safe areas as fast
as possible, using all the robots available, before moving to the dan-
gerous areas. The procedure first computes the safest paths of each

Algorithm 1 Multi Robot Adversarial Coverage(G, R, d)
input: G - a grid representing the target area, R - group of k robots,
d - maximal area density
output: A - list of connected areas

1: A ← ∅
2: Group the cells in G into l + 1 threat levels, T0, ..., Tl
3: for each threat level i, 0 ≤ i ≤ l do
4: Build the graph Hi induced from the cells in Ti
5: Find the connected components (areas) of Hi using DFS
6: Let A1, ..., Ak be the connected areas of Hi
7: for each area Aj , 1 ≤ j ≤ k do
8: Aj .state← Sunassigned
9: Aj .level← i

10: Add Aj toA
11: Allocate Areas To Robots(A,R, d)

robot to every safe area. Then, it assigns each robot to the safe area
with the safest path from its current location, if this area is not too
dense with robots. We define a dense area as an area whose number
of cells is less than d times the number of robots assigned to it, i.e.,
each robot has less than d cells to cover on average (in experiments
we have found that d = 4 gave the best results). If the area chosen for
the robot is already too dense with robots, then the next safest non-
dense area will be allocated to it. After the allocation of areas for all
the robots, every area that is assigned to more than one robot is split
between the robots using the graph partitioning method described in
section 4.1.

1: procedure ALLOCATE AREAS TO ROBOTS(A,R, d)
input: A - list of connected areas,R - the group of robots, d - maximal
area density

2: S ← {A|A ∈ A ∧A.level = 0} � the safe areas
3: for each robot R ∈ R do
4: {Find safest paths to all safe areas}
5: for each area A ∈ S do
6: PA ← Find Safest Path To Area(A, R.location)
7: {Find safest non-dense area}
8: Let A1, ..., Ak be the areas sorted by PA.cost
9: i← 1

10: while i ≤ k and R.area = null do
11: if |A.initial robots| · d ≤ |A.cells| then � check if area is

not too dense with robots
12: Add R to A.initial robots
13: else
14: i← i+ 1
15: {Split the areas that are allocated to multiple robots}
16: for each area A ∈ S do
17: if |A.initial robots| > 1 then
18: Split Area Between Robots(A)
19: else if |A.initial robots| = 1 then
20: R← A.initial robots[0]
21: R.path← PA
22: Assign Area To Robot(A, R)

The procedure Find Safest Path To Area 2 searches for the
safest path from the current location of the robot to any of the cells
that belong to the given area. For that purpose, it runs Dijkstra’s
shortest paths algorithm on the graph induced from the grid’s cells,
using the following edge weights:

wij =

{
pj/pmin if cell j contains a threat
1/n otherwise

(3)

This weight function ensures that wij ≥ 1 for edges that target a
dangerous cell, while wij = 1/n (where n is the grid size) for edges

2 The pseudocode of some of the procedures is omitted due to space
constraints. The full pseudocode of these procedures can be found at
http://goo.gl/mfYn2Y

R. Yehoshua and N. Agmon / Multi-Robot Adversarial Coverage1496

that target a safe cell. This way, the cost of visiting one dangerous cell
is greater than the cost of visiting all the safe cells in the grid. Thus,
only when there are two equally safe paths, the robot will prefer the
shorter one.

The procedure Assign Area To Robot updates the data struc-
tures to indicate that an area A has been assigned to robot R.

The procedure Split Area Between Robots splits the given area
into k connected sub-areas using the multi-level graph partitioning
algorithm. Then it assigns each robot to the sub-area with the safest
path from its current location. Since each sub-area can be allocated
to only one robot, we use the Hungarian algorithm [11] for deciding
the optimal assignment.

1: procedure SPLIT AREA BETWEEN ROBOTS(A,R)
input: A - a connected area,R - the group of robots globals: A - list of
connected areas

2: Build the graph G induced from the area A’s cells
3: k ← |R|
4: Partition Graph(G, k)
5: Let G1, G2, ...Gk be the subgraphs created from the partition
6: for i← 1 to k do
7: Create a subarea Ai
8: Ai.cells← the nodes in Gi
9: Ai.level← A.level

10: Add Ai toA
11: {Compute the safest path of each robot to the sub-area}
12: for j ← 1 to k do
13: Pij ← Find Safest Path To Area(Ai, Rj .location)
14: Cij ← Pij .cost � the cost matrix
15: O ← Hungarian Method(C) � O is the optimal assignment of

robots to sub-areas
16: Oi ← optimal assignment of robot i
17: for i← 1 to k do
18: Ri.path← POi,i
19: Assign Area To Robot(Oi, Ri)
20: Remove A fromA

4.4 The Coverage Algorithm

We now describe the algorithm that is executed by each robot in-
dependently, after the initial allocations have been performed. Al-
gorithm 2 describes the action taken by each robot during one time
step.

The robot typically starts in the state Straveling , unless there were
not enough areas to allocate to all the robots in the initial phase (e.g.,
there was only one area with 20 cells and there are 10 robots). In
this case, the robot starts in Sidle and waits for a task assignment.
When the robot arrives at the area that it needs to cover, its state
changes to Scovering . If along the way to its designated area, the
robot completes a coverage of another area (e.g., an area that consists
of only one cell that resides on the connecting path between two
larger areas), then this area’s state is changed to Scompleted, and is
removed from the pool of available areas for coverage. Only when
the robot arrives at its designated area, the coverage path of this area
is computed. This is because by the time the robot gets to this area,
some of its cells may have already been visited along the connecting
paths of other robots.

When the robot finishes its coverage task, it is assigned a new area
to cover from the pool of unassigned areas and its state changes back
to Straveling . If there are no more unassigned areas, it joins another
covering robot to help it finish its coverage task. If there are no more
areas that can be shared, then the robot’s state changes to Sdone and it
waits until one of the areas becomes unassigned (e.g., when another
robot is stopped). If the robot is stopped during the coverage of its

assigned area or on its way to it, the robot’s state changes to Sdead

and its allocated area returns to the pool of unassigned areas.

Algorithm 2 Robot Action(R)
1: switch R.state do
2: case Straveling
3: c← next cell on R.path
4: Mark c as visited
5: A← the area that contains c
6: if all cells in A are visited then
7: A.state← Scompleted

8: if robot was hit by a threat in c then
9: R.state← Sdead

10: Reallocate Area(R.area)
11: else if c is the last cell on R.path then
12: R.path← Area Coverage(R.area,R.location)
13: R.state← Scovering

14: case Scovering
15: c← next cell on R.path
16: Mark c as visited
17: if robot was hit by a threat in c then
18: R.state← Sdead
19: Reallocate Area(R.area)
20: else if c is the last cell on R.path then
21: R.area.state← Scompleted
22: Allocate Next Area(R)
23: case Sdone, Sidle
24: if an unassigned area exists inA then
25: Allocate Next Area(R)
26: case Sdead
27: R.area.state← Sunassigned

The procedure Allocate Next Area allocates a new area to cover
for a robot that has completed its coverage task. If there are any unas-
signed areas, the robot is assigned to the safest unassigned area with
the safest path from its current location. If all the areas are already
assigned, the robot joins another covering robot to help it finish its
coverage task.

The procedure Find Area To Share tries to find for a given idle
robot an assigned area that it can help finish covering. If the path
from the given robot’s location to the designated area is longer than
the number of unvisited cells in that area, then there is no point of
sending the robot there, since by the time the robot arrives there, its
coverage will have been completed. If an area that can be shared has
been found, its connected unvisited parts are defined as new areas and
added to the pool of unassigned areas instead of the original area. If
there is only one such part (e.g., its assigned robot has not started
covering it), then it is split into two balanced parts. Finally, both the
assigned robot and the idle robot are (re-)assigned to the sub-areas
with the safest paths from their current location.

The procedure Assign Robot To Safest Area finds the safest
path from the robot’s location to each of the given areas and assigns
the robot to the area with the safest path.

For the coverage of each area, our algorithm is based on the
Greedy Adversarial Coverage (GAC), the state-of-the-art solution
to the single-robot adversarial coverage problem described in [20].
GAC follows a greedy approach, where in each step it leads the robot
to the safest nearest cell to its current location which has not been
covered yet.

We have modified the original coverage algorithm to take into ac-
count cells that have already been visited in the target area (see Al-
gorithm 3). By the time the designated area is allocated to the robot
and the robot reaches this area, other robots may already have visited
some cells in this area on the way to their own designated areas. Thus,
in order to avoid repeated coverage of these cells, we have changed
the algorithm to cover only unvisited cells in the given area. When

R. Yehoshua and N. Agmon / Multi-Robot Adversarial Coverage 1497

transitioning between unvisited cells in the target area, the robot is
allowed to visit cells that belong to other areas (if they make the con-
necting path safer).

Algorithm 3 Area Coverage(A, s)
input: an area A, and a starting cell s
output: a coverage path P that covers all unvisited cells in A

1: P ← ∅
2: Build the graph H induced from A’s cells with the weight function w

from eq. (3)
3: Add the starting cell s to P
4: Mark s as visited
5: while there are unvisited cells in A do
6: Run Dijkstra’s shortest paths algorithm on H from s
7: v ← an unvisited node in A with minimum weighted distance from

s
8: Add the path s� v to P
9: Mark v as visited

10: s← v
11: return P

Finally, the procedure Reallocate Area is used to reallocate an
area whose coverage was stopped in the middle, because its assigned
robot was hit by a threat. The procedure finds all the unvisited parts
of the given area and creates new unassigned areas from them. Then
these areas are added to the list of connected areas instead of the
given area. The next idle robot will be assigned to one of these sub-
areas in its next cycle (lines 24–25 in algorithm 2).

5 Analysis of the MRAC algorithm

We now analyze the MRAC algorithm. We first prove that the algo-
rithm is complete, i.e., that it generates coverage paths that together
cover all the accessible cells in the given area.

Theorem 1 (Completeness) Algorithm MRAC generates paths for
the robots that together cover every cell accessible from their starting
locations.

Proof. MRAC partitions the target area into k connected areas,
whose union is equal to the target area. Each of these areas is
eventually assigned to one of the robots, since no robot remains idle
while there are more areas to be covered (lines 24–25 in algorithm
2). The areas are covered by using the GAC algorithm. Previous
work has shown that GAC is complete, i.e. that it produces a path
that covers all the accessible cells in its given area (Theorem 8 in
[20]). Thus, the union of the coverage paths of the k connected areas
covers every accessible cell in the target area. �

As key motivation for using multiple robots comes from robust-
ness concerns, we now prove that MRAC is robust to robotic failures.

Theorem 2 (Robustness) Algorithm MRAC guarantees that the cov-
erage will be completed as long as at least one robot remains active.

Proof. The target area is divided into a set of connected areas.
Each area is eventually assigned to one of the robots. If a robot is
stopped while covering its assigned area, the uncovered parts of
this area are returned to the pool of unassigned areas (in procedure
Reallocate Area). These sub-areas are eventually assigned to one
of the remaining robots, since no robot remains idle while there are
more areas to be covered (lines 24–25 in algorithm 2). �

We now provide a bound on the minimum expected number of
cells that the robots will cover when following the policy generated

by the MRAC algorithm. We will use the definition of expected cov-
erage from [20]. Given a coverage path A of a robot R, we denote
the sequence of new cells discovered along A by (b1, ..., bn), and the
number of new cells visited by the robot until it is stopped by CA.
Furthermore, for each cell in the sequence bi, we will denote the sub-
path in A that leads from the origin cell a1 to it by gi. Then, under
the threat probability function p, the expected number of new cells
that robot R visits can be expressed as:

E(R) =
∑

i∈(b1,...,bn)

∏
j∈gi

(1− pj) (4)

Theorem 7 in [20] provides a bound on the minimum expected
number of cells that a single robot will be able to cover, given its
coverage path A and the threat probability function p.

Let l be the number of dangerous threat levels and the threat prob-
abilities of these levels be p0, ..., pl (p0 = 0). Let Ai,1, ..., Ai,ki be
the connected areas of threat level i, arranged in the order of their
visit by the robot R. Let |Ai,j | be the size of area Ai,j and mi,j the
number of cell visits needed to cover this area (mi,j ≥ |Ai,j |). Let
Ci,j be the set of cells on the connecting path between two consecu-
tive areas Ai,j and Ai,j+1, and Ci,ki be the set of cells on the con-
necting path between the last area of threat level i and the first area of
threat level i + 1. Denote by P (Ci,j) the probability to traverse the
cells in Ci,j without being hit by a threat. Then the expected number
of cells robot R will be able to cover before it is stopped is at least:

E(R) ≥ |A0,0|+
l∑

i=0

ki∑
j=1

[i−1∏
x=0

[
(1−px)

∑kx
y=1 mx,y

kx∏
y=1

P (Cx,y)
]

· (1− pi)
∑j

y=1 mi,y

j−1∏
y=1

P (Ci,y)

]
|Ai,j |

(5)

We now use this theorem to provide a lower bound on the expected
coverage that can be attained by the entire robotic team.

Theorem 3 Let R be a group of k robots R = {R1, ..., Rk}. Let
l be the number of dangerous threat levels. Let A be the group of
connected areas and let C be the set of cells on the connecting path
between two areas. Then the expected number of cells the team R
will be able to cover before all robots in R are stopped is at least:

E(R) ≥
k∑

i=1

E(Ri)− |C| (6)

Proof. Since different robots in the team cover different areas
(when one area is assigned to more than one robot, it is split between
them), the expected number of cells that will be covered by the entire
team is equal to the total number of cells that will be covered by
each robot individually minus the number of cells on the connecting
paths between areas, since those might be visited multiple times by
different robots. �

Notice that the ideal expected coverage is attained when the robots
visit the cells precisely in increasing order of their threat probabili-
ties, i.e., when they first visit all the safe cells, then all the cells with
threat probability p1, etc. Thus, if we denote the cells that belong to
threat level i by ci,1, ..., ci,ni , then the ideal expected coverage is:

R. Yehoshua and N. Agmon / Multi-Robot Adversarial Coverage1498

l∑
i=0

ni∑
j=1

[i−1∏
x=0

(1− px)
nx

]
· (1− pi)

j−1 (7)

In most environments the ideal expected coverage cannot be at-
tained, since typically some of the cells that belong to a given threat
level are disconnected, and the robots have to visit cells that belong
to a higher threat level or revisit threat points that have already been
covered in order to move between the disconnected cells. In these
cases, the cell visits cannot precisely follow the order of the threat
levels.

By comparing equations (6) and (7), we can see that the gap
between the ideal expected coverage and the expected coverage
achieved by MRAC depends on the quality of the coverage algorithm
of each connected area (which determines the gap between nx and∑kx

y=1 mx,y). Finding an optimal solution to the coverage problem is
NP-Hard [20]. However, MRAC uses for the coverage of each area
the algorithm GAC, which creates a close-to-optimal coverage paths
[20]. In fact, MRAC can utilize any single-robot coverage algorithm
for the internal coverage of each area.

The next theorem provides a bound on the coverage time that can
be attained by the robots following the policy generated by MRAC.

Theorem 4 The worst-case coverage time for k robots is equal to
that of a single robot. The best-case coverage time for k robots is
approximately 1/k the coverage time of a single robot.

Proof. The worst-case scenario is where all the robots start at
locations that are all inside dangerous areas, and thus they will be
stopped by threats in the beginning of their coverage paths. In such
case, using more than one robot will not improve the total coverage
time. The best-case scenario is when the target area consists of only
one contiguous safe area (or a few large safe areas with connecting
paths that have very low risk). In such scenario, the area is split into
k almost equally-sized components that are covered concurrently by
the k different robots. In such scenario, the coverage time of MRAC
highly depends on the quality of the graph partitioning algorithm,
which has no theoretical guarantee, however, in practice, it almost
always generated equally-sized sub-graphs. The coverage time in
this case also depends on the initial locations of the robots, e.g., if
the robots start the coverage at the same location, it will take them
some time to move to their assigned areas. �

6 Experimental Results

We have fully implemented the MRAC algorithm and evaluated it
in various types of simulated environments with varying parameters,
such as map size, number of robots, number of threat levels, distri-
bution of threats, number of obstacles, number of threats, etc. We
provide here the most interesting results from our experiments.

First, we demonstrate the algorithm’s results on a specific grid map
of size 20 × 20 (Figure 4). In this example, the maps contained 10
contiguous threat areas which were divided into 5 different threat lev-
els with the following threat probabilities: 4%, 8%, 12%, 16%, and
20%. We ran the algorithm on this map with two team sizes of 4
robots and 10 robots. All the robots start in the upper-left corner of
the area (as shown in Figure 1). The figure shows the locations of
the robots after the coverage has finished, and the total number of
times each cell in the grid has been visited by the robots. Using 10
robots instead of 4 robots has increased the coverage percentage from
80.33% to 97.33% and reduced the coverage time from 311 to 244

time steps. As can be seen in both maps, more dangerous areas are
less frequently visited by the robots.

Figure 4. A sample map with the results of MRAC with 4 robots (upper
figure) and 10 robots (lower figure). The number in each cell indicates the

number of visits in that cell.

Second, we examined the effect of changing the team size on
the performance of the algorithm. We used 500 randomly-generated
maps of size 20× 20, with varying number of robots between 1 and
20. In all the experiments, the obstacles ratio and the threats ratio
were both set to 25% of the cells. The maps contain 10 contiguous
threat areas which are divided into 5 different threat levels with the
following threat probabilities: 4%, 8%, 12%, 16%, and 20%. The lo-
cations of the obstacles were randomly chosen. Figure 5 shows the
percentage of covered area and the coverage time for each team size.

As can be clearly seen in the graph, the coverage percentage in-
creases and the coverage time decreases as we add more robots to
the team. Although the area that the robots are able to cover increases
as the team grows, they are able to cover it more quickly. The small
increase in the coverage time in the transition from one robot to two
robots is due to the fact that the area that two robots are able to cover
is significantly larger than one robot (62% for two robots vs. 44% for

R. Yehoshua and N. Agmon / Multi-Robot Adversarial Coverage 1499

2 4 6 8 10 12 14 16 18 20
40

50

60

70

80

90

100

Number of Robots

C
ov

er
ag

e
%

2 4 6 8 10 12 14 16 18 20
150

200

250

Number of Robots

C
ov

er
ag

e
Ti

m
e

Figure 5. Comparing coverage percentage and coverage time for 1 to 20
robots in environments with contiguous areas of threats.

one robot), thus it takes more time until the two robots are stopped
despite the division of the workload between them (e.g., one robot
may be stopped much earlier than the second one).

Next, we examined environments where the threats are randomly
scattered across the map. We kept all the other map settings as in the
previous experiment (i.e., the same ratio of obstacles and threats, and
the same number of threat levels). Figure 6 shows the results.

2 4 6 8 10 12 14 16 18 20
30

40

50

60

70

80

90

Number of Robots

C
ov

er
ag

e
%

2 4 6 8 10 12 14 16 18 20
180

190

200

210

220

230

Number of Robots

C
ov

er
ag

e
Ti

m
e

Figure 6. Comparing coverage percentage and coverage time for 1 to 20
robots in environments with randomly-scattered threats.

As previously, the coverage percentage increases and the coverage
time decreases as we add more robots to the team. However, the cov-
erage percentage that the team is able to achieve in this type of envi-

ronments is smaller than in environments with contiguous dangerous
areas, and it takes longer time for the team to complete the cover-
age. When the threats are scattered, the effectiveness of the team is
mitigated, since the robots spend much of their time in moving be-
tween cells with different threat levels than in covering large areas.
As a consequence, locations that reside on connecting paths between
cells that belong to different threat levels are repetitively visited by
different robots.

Lastly, we have examined the effect of changing the threats ratio in
the environment on the ability of the robotic team to cover it. Figure
7 shows the coverage percentage and coverage time for various threat
ratios between 0% and 35%. In all the experiments we used teams
of 8 robots to cover the area and the threats were concentrated in 10
dangerous areas. As expected, adding more threats the environment
causes the team to cover smaller percentage of the area. Note that
when the threats ratio is more than 15% the coverage time begins to
decrease, since the area that needs to be covered gets smaller thus the
team is able to cover it more quickly.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
65

70

75

80

85

90

95

100

Threats Ratio

C
ov

er
ag

e
%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
60

80

100

120

140

160

180

200

220

Threats Ratio

C
ov

er
ag

e
Ti

m
e

Figure 7. Comparing coverage percentage and coverage time for varying
threat ratios between 0 and 0.35.

7 Conclusions and Future Work

In this paper, we described a multi-robot coverage algorithm for ad-
versarial environments that is complete and robust in face of threats
harming the robots. Our approach is based on decomposition of the
target area into areas of different danger levels, and assignment of
the robots to these areas based on the safety of the paths leading to
them. In our approach no robot remains idle while there are areas to
be covered. We examined the efficiency of the algorithm in terms of
both the survivability of the team and the coverage time, and have
shown that adding more robots to the team significantly improves
both measures. For future work, we would like to extend the multi-
robot coverage algorithm to online scenarios, in which the robots are
not given a map of the area in advance. In addition, we would like
to consider non-stationary environments, where the locations of the
threat points may change over time.

R. Yehoshua and N. Agmon / Multi-Robot Adversarial Coverage1500

REFERENCES

[1] Noa Agmon, Noam Hazon, and Gal A Kaminka, ‘Constructing span-
ning trees for efficient multi-robot coverage’, in IEEE International
Conference on Robotics and Automation (ICRA-06), pp. 1698–1703,
(2006).

[2] J Colegrave and A Branch, ‘A case study of autonomous household
vacuum cleaner’, AIAA/NASA CIRFFSS, 107, (1994).

[3] Yehuda Elmaliach, Noa Agmon, and Gal A Kaminka, ‘Multi-robot area
patrol under frequency constraints’, Annals of Mathematics and Artifi-
cial Intelligence, 57(3-4), 293–320, (2009).

[4] Hermann Endres, Wendelin Feiten, and Gisbert Lawitzky, ‘Field test of
a navigation system: Autonomous cleaning in supermarkets’, in IEEE
International Conference on Robotics and Automation (ICRA-98), vol-
ume 2, pp. 1779–1781, (1998).

[5] Yoav Gabriely and Elon Rimon, ‘Competitive on-line coverage of grid
environments by a mobile robot’, Computational Geometry, 24(3),
197–224, (2003).

[6] Enric Galceran and Marc Carreras, ‘A survey on coverage path planning
for robotics’, Robotics and Autonomous Systems, 61(12), 1258–1276,
(2013).

[7] Anouck R Girard, Adam S Howell, and J Karl Hedrick, ‘Border patrol
and surveillance missions using multiple unmanned air vehicles’, in De-
cision and Control, 2004. CDC. 43rd IEEE Conference on, volume 1,
pp. 620–625, (2004).

[8] Noam Hazon and Gal A Kaminka, ‘On redundancy, efficiency, and ro-
bustness in coverage for multiple robots’, Robotics and Autonomous
Systems, 56(12), 1102–1114, (2008).

[9] George Karypis and Vipin Kumar, ‘Multilevel k-way partitioning
scheme for irregular graphs’, Journal of Parallel and Distributed com-
puting, 48(1), 96–129, (1998).

[10] Robert Krauthgamer, Joseph Seffi Naor, and Roy Schwartz, ‘Partition-
ing graphs into balanced components’, in Proceedings of the twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 942–949,
(2009).

[11] Harold W Kuhn, ‘The Hungarian method for the assignment problem’,
Naval research logistics quarterly, 2(1-2), 83–97, (1955).

[12] Chaomin Luo, Simon X Yang, and Deborah A Stacey, ‘Real-time path
planning with deadlock avoidance of multiple cleaning robots’, in IEEE
International Conference on Robotics and Automation (ICRA-03), vol-
ume 3, pp. 4080–4085, (2003).

[13] Chaomin Luo, Simon X Yang, Deborah A Stacey, and Jan C Jofriet,
‘A solution to vicinity problem of obstacles in complete coverage path
planning’, in IEEE International Conference on Robotics and Automa-
tion (ICRA-02), volume 1, pp. 612–617, (2002).

[14] Jean Daniel Nicoud and Maki K Habib, ‘The Pemex-B autonomous
demining robot: perception and navigation strategies’, in IEEE/RSJ
International Conference on Intelligent Robots and Systems, ’Human
Robot Interaction and Cooperative Robots’, volume 1, pp. 419–424,
(1995).

[15] David Portugal and Rui Rocha, ‘A survey on multi-robot patrolling
algorithms’, in Technological Innovation for Sustainability, 139–146,
Springer, (2011).

[16] Ioannis Rekleitis, Ai Peng New, Edward Samuel Rankin, and Howie
Choset, ‘Efficient boustrophedon multi-robot coverage: an algorithmic
approach’, Annals of Mathematics and Artificial Intelligence, 52(2-4),
109–142, (2008).

[17] Israel A Wagner, Michael Lindenbaum, and Alfred M Bruckstein, ‘Dis-
tributed covering by ant-robots using evaporating traces’, IEEE Trans-
actions on Robotics and Automation, 15(5), 918–933, (1999).

[18] Roi Yehoshua and Noa Agmon, ‘Adversarial modeling in the robotic
coverage problem’, in International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-15), pp. 891–899, (2015).

[19] Roi Yehoshua and Noa Agmon, ‘Online robotic adversarial coverage’,
in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS-15), pp. 3830–3835, (2015).

[20] Roi Yehoshua, Noa Agmon, and Gal A Kaminka, ‘Robotic
adversarial coverage of known environments’, International
Journal of Robotics Research, Advance online publication.
doi:10.1177/0278364915625785, (2016).

[21] Roi Yehoshua, Noa Agmon, and Gal A Kaminka, ‘Robotic adversar-
ial coverage: Introduction and preliminary results’, in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS-13), pp.
6000–6005, (2013).

[22] Roi Yehoshua, Noa Agmon, and Gal A Kaminka, ‘Safest path adver-
sarial coverage’, in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS-14), pp. 3027–3032, (2014).

R. Yehoshua and N. Agmon / Multi-Robot Adversarial Coverage 1501

