
Multi-Robot Containment and Disablement

Yuval Maymon1 and Noa Agmon2

Abstract— This paper presents the multi-robot con-
tainment and disablement (CAD) problem. In this
problem, a team of (ground or aerial) robots are
engaged in a cooperative task of swarm containment
and disablement (for example, locust swarm). Each
team member is equipped with a tool that can both
detect and disable the swarm individuals. The swarm
is active in a given physical location, and the goal of
the robots is twofold: to contain the swarm members
such that the individuals will be prevented from
expanding further beyond this area (this is referred
to as perfect enclosure), and to fully disable the locust
by reducing the size of the contained area (while
preserving the perfect enclosure). We determine the
minimal number of robots necessary to ensure perfect
enclosure, and a placement of the robots about the
contained area such that they will be able to guar-
antee perfect enclosure, as well as a distributed area
reduction protocol maintaining perfect enclosure. We
then suggest algorithms for handling the case in which
there are not enough robots to guarantee perfect
enclosure, and describe their performance based on
rigorous experiments in the TeamBots simulator.

I. INTRODUCTION

Robot teams are considered for use in various
tasks such as search and rescue, security, and deliv-
ery. Recently, robots are becoming more prevalent
also in agriculture [1] for missions such as dealing
with resistance weed [2], field work [3], and pest
control [4]. In our work we are motivated by the
problem of disabling locust swarm or other mobile
pests, that cause severe damage to crops and are
considered a devastating natural disaster.

We therefore define a new robotic problem,
multi-robot containment and disablement, in which

*This work was not supported by any organization
1Yuval Maymon is with the Computer Science De-

partment, Bar-Ilan University, Ramat Gan 5290002, Israel
yuvalmaymon30@gmail.com

2Noa Agmon is with the Computer Science Depart-
ment, Bar-Ilan University, Ramat Gan 5290002, Israel
agmon@cs.biu.ac.il

a team of robots are engaged in a cooperative task
of containing and disabling a swarm of mobile enti-
ties, in our case locust swarm. Each team member
is equipped with a tool that can both detect and
disable the swarm individuals. The locust swarm
is mobile and active in a given physical area,
and the goal of the robots is twofold: to contain
the locust such that the swarm will be prevented
from expanding further beyond this area (causing
additional damage), and minimize the time to dis-
abling all swarm members. The problem draws
similarities to several canonical robotic problems:
robotic coverage, enclosure, and convergence, yet
it raises complex, innovative, challenges that are
handled herein.

The solution concept proposed in this paper is
composed of two stages: spread the robots around
the area guaranteeing that no locust swarm member
will be able to leave the area undetected (we refer to
this as Perfect Enclosure), and incrementally move
the robot team members towards one another, even-
tually meeting, and by that covering the contained
area and disabling all locust swarm members. We
show that these two tasks are twine together, and
specifically finding the minimal number of robots
to enclose an area might not result in the ability to
provide a finite upper bound on the meeting time.

We determine the number of robots and their
placement around the borders of this area guar-
anteeing perfect enclosure and meeting, and show
correlation to an upper bound on the meeting time
of the robots, as well as a distributed protocol
guaranteeing that the robots meet and maintain
perfect enclosure while they do so. We then suggest
different protocols for handling the case in which
there are not enough robots to guarantee perfect
enclosure, referred to as Imperfect Enclosure, and
examine those empirically using the TeamBot sim-
ulator.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11724

II. RELATED WORK

The CAD problem is strongly related to different
canonical problems in multi-robot systems, such as
coverage (mainly refers to an area/path coverage)
[5-8], enclosure (a robots formation around a spe-
cific area) [9-11] and gathering (robots gathering
together to perform a task) [12]. In this section
we briefly stroll through these and other research
areas, and explain the unique challenges of the
CAD problem compared to them.

Lien et al. [13] examine the sheep herding prob-
lem, in which a group of robots cooperate in order
to control the motion of a flock, using no com-
munication. They suggest several behaviors, based
on team formation, for successfully steering the
flock to a desired location. Pierson and Schwager
[14] also consider the herding problem by multiple
robots for relocating the herd to a desired location,
assuming a non-cooperative herd with non-linear
response of the individuals to the herding robots.
They focus on a control strategy for the robots using
repulsive and attractive forces. Cowling and Gmein-
wieser [15] examine the herding problem with one
robot travelling in circling paths for guiding the
sheep to a certain location. Evered et al. [16] exam-
ine empirically practical aspects of using a robot to
herd sheep, concluding that the sheep quickly adapt
to robot presence. All these concentrate on leading
the flock to a desired location, while we focus on
containment and disablement.

Cheng et al. [17] examine the containment prob-
lem, presenting how leader robots contain followers
robots and proceed to a predefined target. Guo et
al. study the moving-target-enclosing problem [10],
and show that with only local measured informa-
tion, the robots asymptotically form a formation
enclosing the target. Mehendale [18] presents a
containment of randomly located singular adver-
sarial agents using potential functions.These ap-
proaches do not examine the minimal number of
robots achieving containment, nor do they strive to
meet.

Kubo et al. [19] analyze conditions in which
a robotic swarm with a simplest communication
device can succeed to enclose a target. In our re-
search we assume perfect communication between

a robot and its closest neighbours, and we focus on
containment of multiple agents and not just one.

A relatively new problem concerning the ability
to externally effect the behavior of a swarm comes
from the field of ad-hoc teamwork [20], [21]. In
this problem, a team of more informed agents (or
robots) attempt to lead the swarm members into
acting in a certain way that will result in a better
group utility.In our work, however, the robots do
not share the same goals of the swarm agent but
they have conflicting goals.

The CAD problem resembles also the coverage
problem, in which a team of robots are required
to jointly visit all points in a given area [5-8]. Karl
Obermeyer et al. [8] propose a distributed coverage
algorithm for the Art Gallery Theorem with Holes
problem. He assumes the robots have a line-of-sight
sensing and provides an upper bound of n+2h−2
on the number of robots, where n is the number
of vertices of the polygon and h is the number
of holes. The CAD problem is slightly different
because the robots have a field-of-view sensing,
rather than line-of-sight sensing. Also in the CAD
problem the robots should cover together all points
in the area for disabling all swarm members. How-
ever, since the swarm agents are mobile, simply
covering the area will not suffice: the swarm agents
might spread further and incrementally increase the
area to be covered. Thus we must maintain perfect
enclosure as well as covering the area.

Li Huang et al. [22] survey multi-robot adversar-
ial patrolling problems. As in [22], we try patrolling
in a cyclic path around a closed polygon. Moreover,
we propose a new approach of minimizing this
polygon in a cyclic path too.

III. CAD PROBLEM DEFINITION

We are given a team of n homogeneous robots
R = {r1, . . . , rn} engaged in a cooperative task
of locust-swarm enclosure and disablement. The
robots may be grounded, or aerial. Each robot is
equipped with a tool that allows it to detect and
disable swarm agents within a range of 360°, where
for aerial robots the detection and disablement is
in a cone projection of angle α, thus we refer to
its associated 2D circle projection of radius d. We

11725

denote this 2D circle projection of robot ri as its
field of view, or fovi (wherever possible, we will
simply use the term fov). For ground robots, this
refers to the 2D sensing/disablement circle of radius
d. We assume that the communication range of each
robot is limited, but it can at least communicate
with robots in distance of 2d from it. We also
assume that the robots maintain collision avoidance
between themselves.

Given a group of m locust agents A =
{a1, . . . am} (agents, in short), each ai located at
time t in point pti, where Pt = {pt1, . . . , ptm}. First,
we would like to determine the minimal number of
robots and their location (a polygon) guaranteeing
that all locust agents in the environment will be
contained in time 0 within the fov of all robots,
without the ability to escape. That is, an agent
will not be able to leave the area without being
detected/disabled by some robot. This is referred
to as Perfect Enclosure. Next, given that the robots
are placed around the determined polygon P , they
should reduce its area while guaranteeing the per-
fect enclosure is maintained and eventually the
robots will meet, that is, P \{

⋃n
j=1

⋃
t fov

t
j} = ∅,

where fovtj is the fov of robot j in time t.
Therefore, a solution to CAD should fulfill the
following two objectives:

1) Guarantee that the initial enclosure is perfect,
and will remain perfect even if the robots are
moving.

2) The time to fully reduce the area, denoted at
meeting time, is minimized.

The CAD problem is examined in Section IV.
If the number of robots is not enough to guarantee
perfect enclosure, this is referred to as Imperfect
Enclosure, and the goal of the robots would be to
maximize the percentage of disabled locust agents.
We present an empirical analysis of this case in
Section V.

IV. PERFECT ENCLOSURE

In this section we first examine the basic CAD
problem, that is, finding the minimal number of
robots guaranteeing perfect enclosure, and deter-
mining the initial placement of the robots for that
purpose. We start by determining the structure

of the area for containment that will require the
minimal number of robots for perfect enclosure
(with respect to P0).

We would like to find the structure minimizing
the number of robots necessary to cover the border
of the structure (enclose it). Considering continuous
shapes, we compare between two options: the mini-
mal enclosing polygon of the location of the agents
(denoted as MEP(P0)) or the convex hull of those
points (denoted as CH(P0)). Denote by rmin(P)
the minimal number of robots with fov of radius
d necessary to fully cover a path P , that is, each
point in P is in the fov of some robot from the
team. Note that we examine placements of robots
only on the circumference of the polygon, since
finding the minimal number of robots to fully cover
a polygon, or even a boundary area of a polygon,
is a hard problem [23].

The CH requires less robots than the MEP on the
concave segments (due to triangle inequality). How-
ever, if there are overlaps between fovs of robots
on different edges (such as a sharp star shape),
rmin(MEP) may be smaller than rmin(CH). As
seen in our experiments, these cases are rare, thus
in this paper we focus our analysis on CH.

Based on this initial placement, the robots move
towards the center of the polygon while maintaining
the perfect enclosure and allowing the robots to
progress in a way that will eventually result in a
complete disablement of the locust agents.

A. Initial Robot Placement

Given the convex polygon which contains the
area, the robots are placed along the edges of the
polygon. We assume that the robots start on a
random places and converge to their initial location
on the containing polygon. We also assume that the
containing polygon is shared with all robots before
they start moving. The robots know when they
should start moving by a simple synchronization
protocol shared with their neighbours.

In order to obtain perfect enclosure, it is suffi-
cient to place the robots along the polygon such that
the distance between two adjacent robots is ≤ 2d
(clearly, a distance > 2d will violate the perfect
enclosure). Denote the length of the circumference

11726

of a polygon P by len(P). The minimal number of
robots required for a perfect enclosure of the initial
polygon, rmin(P0) equals d len(P0)

2d e. However, we
show in Lemma 1 that if the intersection between
the fovs of two neighboring robots along the poly-
gon is one point, then it is impossible to guarantee
both that the perfect enclosure is maintained, and
provide a finite bound on the meeting time. This
means that even if we find the minimal number of
robots to guarantee perfect enclosure, it might not
be enough to solve the CAD problem. Denote the
distance between two points p and q by dist(p, q).

Lemma 1. Given a team of n robots, each with
fov of radius d, placed along a convex polygon
P with such that the fov of every two adjacent
robots ri and rj along the polygon touch at a point
l(i,j). There is no distributed algorithm A that can
guarantee convergence within time tB < ∞ while
maintaining perfect enclosure.

Proof. Let ra, rb and rc be three adjacent robots
along the circumference of the polygon, such that
the fovs of ra and rb touch at l(a,b), and the fovs
of rb and rc touch at l(b,c). We first consider the
case in which ra, rb and rc are on the same edge.
Without loss of generality, let rb move a distance of
ε to the point z either perpendicular to the polygon
edge, or in an angle 6 rcrbz = β < π. Thus,
from the law of cosines on the triangle 4rczrb
it follows that dist(rb, ra) ≥

√
(2d)2 + ε2 >

2d, hence the fovs of ra and rb are detached,
breaking the perfect enclosure. Therefore rb has
to move in coordination with ra and rc. However,
similar argument holds for both robots adjacent to
ra and rc, and to their adjacent neighbors, and
so on. Therefore the only algorithm guaranteeing
maintaining perfect enclosure is one that schedules
all robots to travel in unison, which is impossible
for a distributed control algorithm for robots with
communication range of 2d.

Therefore assume that ra, rb and rc are not on
the same edge. We would like to show that even in
the case in which rb proceeds more than the overlap
area, then still the distance it passes is ε −→ 0, hence
the robots can not proceed and the algorithm will
not converge. Without loss of generality, let ra be

on edge ei and rb and rc be on other edge ej . The
case in which l(a,b) is not the intersection between
ej and rb is not possible since the perfect enclosure
will not be maintained.
Since ra and rb are not on the same edge, and
since the perfect enclosure must be maintained,
l(a,b) must be the intersection point between ej and
rb (see Fig. 1). Denote the angle between ei and
ej as α, and the intersection point as C.
Consider first the case in which α = π − ε, where
ε −→ 0, thus α −→ π.
Robot rb can move in a direction between 0 to
π/2. Robot rb can not move outside of the overlap
area between its fov and ra’s fov, otherwise the
perfect enclosure will not be maintained. Denote
as rb′ the center of rb after it proceeded in a
perpendicular direction to edge ej , until its fov is
touching ra’s fov. Note that |rbrb′ | is the longest
distance rb can proceed until it is detached from
ra.
Since α −→ π then <) l(a,b)raC = β −→ 0. By
angle rules, we get that <)ral(a,b)rb = α+ β. l(a,b)
is on the fov’s of ra and rb, hence |ra, l(a,b)|=
|rb, l(a,b)|= d. By the cosine rule of the non-right
triangle ral(a,b)rb we get:
|ra, rb|2= limα→πβ→0 d

2+d2− 2 ∗d ∗d ∗ cos(α+
β) = limα→πβ→0 2d

2 − 2d2 ∗ cos(α + β) = 4d2.
We get |ra, rb|= 2d.
Since the triangle ral(a,b)rb is an isosceles triangle,
<) l(a,b) = (π − α − β)/2. Also, <)Crbrb′ = π/2,
we get <)rb′rbra = (α+β)/2. The triangle rb′rbra
is also an isosceles triangle because |ra, rb′ |= 2d,
so <)rb′rarb = π − α − β. By the cosine rule we
get:
|rb′rb|2= limα→πβ→0 4d

2+4d2−2∗4d2 ∗cos(π−
α− β) = 8d2 − 8d2 ∗ cos(0) = 0.
We get that the size of rbrb′ = ε −→ 0 as α −→ π.

Therefore, the robots are placed with a fov-
overlap of at least 0 ≤ x ≤ d (see illustration
in Fig. 2). Hence the minimal number of robots
obtaining the fov-overlap of x is rminx(P0) =

d len(P0)
2d−x e. Note that if x ≥ d then the contribution

of at least one robot is redundant, and thus can be
removed. The value of x determines the speed of

11727

Fig. 1: Illustration of Lemma 1

convergence.

B. Area Reduction

As established in the previous section, our so-
lution concept is based on the fact that we placed
the robots around the agents’ initial locations. Note
that if we place all robots in a way that will create
a complete coverage of the boundaries of initial
polygon, then any agent attempting to move outside
of the polygon will be disabled.

After creating the perfect enclosure, all robots
progress into the polygon such that they maintain
perfect enclosure of the area. Therefore, no robot
can travel too far into the polygon to avoid breaking
the enclosure. The direction and distance travelled
are defined as follows:
Direction The movement direction is defined to be
the perpendicular line to the edge which the robot
is located on.
Distance The robot moves as far as it can while
maintaining a fov-overlap with its neighbours (any
overlap). We denote this distance by ρ(x). That
is, ρ(x) = The distance between two intersection
points of two adjacent robot’s fovs (see illustration
in Fig. 2).

Let r1 and r2 be two adjacent robots along the
enclosing polygon, and denote the two intersec-
tion points between their fovs by A and B. We
define the maximal distance traveled by r1 while
still maintaining fov-intersection by ρ(x), that is,
ρ(x) = |AB|.

Lemma 2. ρ(x) = 2
√
dx− x2

4

Proof. Let C be the middle point on the line AB,
that is, dist(A,C) = dist(C,B). Therefore |AB|=
2|AC|. Since all fovs have the same radius d, C is
the middle point of the line between the centers of

Fig. 2: Illustrating the direction and distance (ρ(x))
travelled by a robot at each time step in a fraction of
the enclosing polygon.

the fovs H1 and H2. |H1H2|= 2d − x, therefore
we get that |H1C|= d− x

2 . The angle between the
H1H2 and AB is π

2 , thus by Pythagorean Theorem
we get: |AC|2+|H1C|2= |AH|2
⇒ |AC|2+(d− x

2)
2 = d2

⇒ |AC|=
√
dx− x2

4

Finally we get: ρ(x) = |AB|= 2|AC|=
2
√
dx− x2

4

Algorithm ReduceArea describes the area re-
duction procedure, leading the full reduction of the
area. Note that each robot needs to communicate
only with its two adjacent robots during the ex-
ecution of the algorithm. Therefore, this can be
executed in a completely distributed manner, once
the robots arrive at their initial positions. Once the
robots move towards the center of the polygon,
the size of the polygon decreases, and thus some
robots are no longer used for the area reduction
procedure. Formally, a robot ri is redundant if
the fovs of its both adjacent neighbors along the
polygon ri−1, ri+1 are overlapping, or it is outside
the containing polygon. The time complexity of the
algorithm is O(1).

Theorem 1. Given a team of n robots with fov =
d and traveling in velocity v placed around a con-
vex polygon P of diameter Dp, with fov-overlap x,
0 < x ≤ d, and network connection time w. Then
if the robots follow Algorithm ReduceArea, it is
guaranteed that they maintain perfect enclosure at
all time step t > 0, and that the upper bound on the

11728

Algorithm 1 ReduceArea(i, ie, x, n)

i = index of the robot by the placing order
ie = index of the robot on the edge
x = fov-overlap distance
n = number of robots

1: next = robot number (i+ 1)%n
2: previous = robot number (i− 1)%n
3: if robot i is not redundant then
4: if ie is even then
5: if next and previous are standing then
6: Move forward ρ(x) distance
7: Stand
8: end if
9: else

10: if previous has moved and standing then
11: Move forward ρ(x) distance
12: Stand
13: end if
14: end if
15: end if

convergence of the polygon P is Dp

v +
Dp∗w

2

√
dx− x2

4

time units.

Proof. Let round be the time it takes one robot to
proceed a distance of ρ(x) and sending a message
to its neighbours to start moving. By the time ∗
velocity = distance equation we get that a robot
passes a distance ρ(x) in ρ(x)

v time units. We get
that round = ρ(x)

v +w. Following Lemma 2, at the
first round a robot can move towards the center
of the polygon a distance of ρ(x) = 2

√
dx− x2

4 .
Since the robots travel alternately (odd and even
robots), after two rounds both the odd and the
even robots proceed. We would like to show that
Dp decreases by at least 2ρ(x) every 2 rounds.
We define the vertices of Dp as vi and vj (which
reside on ei and ej respectively) - the two most
distant points of the polygon. Define vi′ as the
intersection point between Dp and the edge after
the proceeding of ρ(x). Also define A as the
intersection between edge ei and the perpendicular
line from vi′ to ei. Since |(A, vi′)|= ρ(x) and that
the hypotenuse (vi, vi′) is bigger than the other

edges in the right triangle Avivi′ , we get that
(vi, vi′) > (A, vi′) = ρ(x). This is the same case
for vj , hence the distance between the two most
distant edges of the polygon decrease by at least
2ρ(x). In the next time step the fov-overlap either
stays the same (along the edges of the polygon) or
increases (close to the vertices), thus the progress
of the robots will be at least as the initial ρ(x),
since ρ(x) is monotonically increasing. Therefore,
if the diameter of the polygon P is Dp, the robots
will necessarily meet after at most 2Dp

2ρ(x) =
Dp

ρ(x)

rounds. Because each round = ρ(x)
v + w time

units, we get that the total runtime of the algorithm
is at most Dp

ρ(x) ∗ (
ρ(x)
v + w) =

Dp∗ρ(x)
ρ(x)v +

Dp∗w
ρ(x) =

Dp

v +
Dp∗w
ρ(x) =

Dp

v +
Dp∗w

2

√
dx− x2

4

Note that algorithm ReduceArea does not
make use of the redundant robots, that is, a redun-
dant robot is removed from the task. However, a
redundant robot may potentially move inside the
polygon and assist in disabling the locust agents.
We leave this direction for future work.

V. IMPERFECT ENCLOSURE

In the previous section we have examined the
case of perfect enclosure, in which the locust agents
are dominated by the robots and can not escape
from the initial containing polygon, that is, n ≥
n∗ = rmin(P). However, in many cases there
are not enough resources to guarantee a perfect
enclosure. We therefore examine in this section the
case in which we have less than n∗ robots to contain
the locust, referred to as Imperfect Enclosure.

In the case of imperfect enclosure, the goal
is to provide heuristics for the robots such that
the percentage of locust individuals that are not
eliminated by the robots (referred to as the escaping
locust), is minimized.

Following the previous section, given enough
robots, forming them around a closed polygon guar-
antees perfect enclosure for the locust agents within
that polygon. Thus when given n < n∗ robots,
we examine different algorithms for converging to
a closed polygon, for maximizing the number of
eliminated locust agents. We define that polygon to
be the MEP surrounding the centroid of the initial

11729

locations of locust agents such that the n robots can
create a perfect enclosure along this polygon, and
each robot is defined a destination point it needs
to reach along this polygon. We have examined
two convergence algorithms: the straight and spiral
algorithms, described as follows. See illustration
in Fig. 3. The Straight Convergence Algorithm is
a simple algorithm in which the robots converge
straightly to their destination point, as defined
above. The time complexity of the algorithm is
O(1) per robot.

Fig. 3: The trails of the robots from their initial location
(left) to their destination points in a straight movement
(middle), and in a spiral movement (right). The black line
emphasizes a trail of one specific robot.

The second algorithm is the Spiral Movement
Algorithm. This algorithm is focusing on disable-
ment of as many locust agents as possible. The
spiral movement is predefined for each robot, and it
travels along a “shrinking” polygon, each time by
a distance d, until reaching the destination point.
The time complexity of the algorithm per robot
is O(|V |∗ddistanceToCentroid2d e), where |V | is the
number of vertices and distanceToCentroid is the
distance between the centroid and the closest vertex
to it.

A. Imperfect Enclosure - Evaluation

We have implemented both algorithms in the
2D TeamBots simulator1, a simulator designed to
support robot control systems and execution of
teams of multiple robots. We describe here rigorous
experiments we have conducted, focusing on the
percentage of locust agents that were not eliminated
(referred to as escaping locust). Due to space limits,
we describe here a subset of the results.

1https://www.cs.cmu.edu/˜trb/TeamBots

We have examined the two algorithms on
10 different worlds, using varying number of
robots (10, 20, 30, 40, 50), a fixed number (100)
of randomly-moving locust agents, and different
locust velocity compared to the robots’ velocity
(robot velocity was fixed to 8, and the locust
velocity varied as 2, 4, 6, 8). We wanted to examine
the impact of the number of robots and locust
velocity on the number of escaping locust. We have
conducted a total of 8000 runs.

The left chart in Fig. 4 presents a correlation
between the number of robots and the number
of escaping locust. The more robots there are,
more locust agents are being detected and disabled
by the robots. Moreover, the spiral algorithm re-
sults in lower percentage of escaped locust agents
compared to the straight convergence algorithm.
The right chart shows a correlation between the
spiral algorithm, locust velocity and the number of
escaping locust: as the velocity of the locust agents
increases, the number of escaping agents increases.
However, for the straight convergence algorithm
the difference is negligible: moving faster does not
result in higher escape rate, as the straight algorithm
does not focus on disablement of most of the locust
but getting to the MEP as fast as possible.

Fig. 4: On the left: the number of escaping locust with
different number of enclosing robots. On the right: the
number of escaping locust with different locust velocity.

Fig. 5 shows the correlation between the polygon
area and the escaping locust. We can see that when
using the straight algorithm, bigger area causes
more escaping locust. However for the spiral algo-
rithm, no significant difference was viewed as the
polygon area grows.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the (CAD) problem, in which
a team of robots are required to be placed around

11730

Fig. 5: The number of escaping locust in areas of
different size. The x axis describes the polygon area size,
the y axis describes the number of escaping locust.

a group of locust agents such that they fully con-
tain them (perfect enclosure), and gradually de-
crease the enclosed area while disabling the locust
agents. We examined the minimal number of robots
guaranteeing perfect enclosure, and their behavior
for solving CAD. We then examined empirically
two possible behaviors for imperfect enclosure, in
which there are not enough robots to guarantee
perfect enclosure. There are still many directions to
pursue in the future, among those making better use
of the redundant robots in the ReduceArea algo-
rithm, examining theoretically the case of imperfect
enclosure, and evaluating more possible behaviors
in this case.

REFERENCES

[1] D. Albani, J. IJsselmuiden, R. Haken, and V. Trianni,
“Monitoring and mapping with robot swarms for agri-
cultural applications,” in International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS), 2017.

[2] D. Ball, P. Ross, A. English, T. Patten, B. Upcroft, R. Fitch,
S. Sukkarieh, G. Wyeth, and P. Corke, “Robotics for
sustainable broad-acre agriculture,” in Field and Service
Robotics, 2015.

[3] C. Zhang and N. Noguchi, “Development of a multi-robot
tractor system for agriculture field work,” Computers and
Electronics in Agriculture, vol. 142, 2017.

[4] P. Gonzalez-de Santos, A. Ribeiro, C. Fernandez-
Quintanilla, F. Lopez-Granados, M. Brandstoetter,
S. Tomic, S. Pedrazzi, A. Peruzzi, G. Pajares, G. Kaplanis
et al., “Fleets of robots for environmentally-safe pest
control in agriculture,” Precision Agriculture, vol. 18,
no. 4, 2017.

[5] Y. Elmaliach, N. Agmon, and G. A. Kaminka, “Multi-robot
area patrol under frequency constraints,” Annals of Math
and AI, vol. 57, no. 3–4, 2010.

[6] J. J. Acevedo, B. C. Arrue, I. Maza, and A. Ollero,
“Distributed approach for coverage and patrolling missions
with a team of heterogeneous aerial robots under commu-
nication constraints,” International Journal of Advanced
Robotic Systems, vol. 10, no. 1, p. 28, 2013.

[7] E. Galceran and M. Carreras, “A survey on coverage path
planning for robotics,” Robotics and Autonomous systems,
vol. 61, no. 12, 2013.

[8] K. J. Obermeye, A. Ganguli, and F. Bullo, “Multi-agent
deployment for visibility coverage in polygonal environ-
ments with holes,” robust and nonlinear control, 2011.

[9] Y. Shi, R. Li, and K. L. Teo, “Rotary enclosing control of
second-order multi-agent systems for a group of targets,”
International Journal of Systems Science, vol. 48, no. 1,
2017.

[10] J. Guo, G. Yan, and Z. Lin, “Local control strategy
for moving-target-enclosing under dynamically changing
network topology,” Systems and Control Letters, vol. 59,
no. 10, 2010.

[11] M. Kubo, A. Yamaguchi, T. Yoshimura, and H. Sato,
“Swarm based enclosure model for unspecified number of
targets,” in IEEE/SICE International Symposium on System
Integration (SII), 2011.

[12] H. Park and S. Hutchinson, “A distributed robust conver-
gence algorithm for multi-robot systems in the presence
of faulty robots,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2015.

[13] J.-M. Lien, S. Rodriguez, J.-P. Malric, and N. M. Amato,
“Shepherding behaviors with multiple shepherds,” in IEEE
International Conference on Robotics and Automation
(ICRA), 2005.

[14] A. Pierson and M. Schwager, “Bio-inspired non-
cooperative multi-robot herding,” in IEEE International
Conference on Robotics and Automation (ICRA), 2015.

[15] P. I. Cowling and C. Gmeinwieser, “Ai for herding sheep,”
in Sixth Artificial Intelligence and Interactive Digital En-
tertainment Conference, 2010.

[16] M. Evered, P. Burling, M. Trotter et al., “An investiga-
tion of predator response in robotic herding of sheep,”
International Proceedings of Chemical, Biological and
Environmental Engineering, vol. 63, 2014.

[17] L. Cheng, Y. Wang, W. Ren, Z.-G. Hou, and M. Tan,
“Containment control of multiagent systems with dynamic
leaders based on a pin-type approach,” IEEE transactions
on cybernetics, vol. 46, no. 12, 2016.

[18] B. U. Mehendale, “Potential field based approach for
multi-threat containment with cooperative robots,” Ph.D.
dissertation, Rochester Institute of Technology, 2006.

[19] M. Kubo, H. Sato, A. Yamaguchi, E. Kitamura, and A. Na-
matame, “Probability of mixing up the nearest neighbor
robot under target enclosure by robot swarm,” Journal of
Robotics, Networking and Artificial Life, vol. 2, no. 3,
2015.

[20] K. Genter, N. Agmon, and P. Stone, “Ad hoc teamwork
for leading a flock,” in International Conference on Au-
tonomous Agents and Multiagent Systems, 2013.

[21] P. Stone, G. A. Kaminka, S. Kraus, and J. Rosenschein,
“Ad hoc autonomous agent teams: Collaboration without
pre-coordination.” in AAAI, 2010.

[22] L. Huang, M. Zhou, K. Hao, and E. Hou, “A survey of
multi-robot regular and adversarial patrolling,” IEEE/CAA
JOURNAL OF AUTOMATICA SINICA, vol. 6, no. 4, 2019.

[23] G. Rabanca and I. Vigan, “Covering the boundary of a
simple polygon with geodesic unit disks,” arXiv preprint
arXiv:1407.0614, 2014.

11731

