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Abstract— Robotic coverage is one of the canonical problems
in robotics research, seeking to find a path that visits each point
in an area while optimizing some criteria, usually minimizing
the time to complete the coverage. This paper considers a
variant of the robotic coverage problem, multi-robot adversarial
coverage, in which a team of robots is required to cover an
area containing threats that might stop the robots with some
probability. Motivated by the advantages of using heteroge-
neous robots for this mission, we formulate the problem while
accounting for the trade-off between the coverage time and the
expected number of covered cells, considering also the different
(heterogeneous) characteristics of the robots involved in the
mission. We formulate the problem as a Dec-POMDP and use
multi-agent reinforcement algorithms to compute an optimal
policy. We have implemented our RL-based methods along with
an enhanced heuristic algorithm, and show their superiority
compared to the state of the art. Finally, we discuss the possible
limitations of learning-based algorithms in different settings.

I. INTRODUCTION

Robotics coverage path planning is one of the fundamental
problems in robotics. The goal of coverage path planning is
to find a sequence of world locations that allows the robot(s)
to visit every part of a target area while optimizing some
criteria, usually minimizing travel time or cost while avoiding
obstacles. The problem has many real-world applications,
from mapping and surveillance [1] to forest fire monitoring
[2] and search and rescue in disaster areas [3], [4], etc.

Adversarial coverage path planning [5] is a variant of the
canonical coverage problem, which refers to a robot, or a
team of robots, that needs to cover an area containing threats,
that might disable the robots, and thus stop them during their
coverage task. Adversarial coverage is widely applicable,
from military applications in which the enemy may attack the
robots, to search and rescue in disaster areas, where debris
may harm the robots and prevent them from completing their
mission. The objective of the robot in adversarial coverage
path planning includes maximizing the survivability of the
robots or the covered area, along with minimizing the travel
time or cost.

When performing coverage in adversarial environments,
it is highly beneficial to use a team of robots rather than
a single robot, because redundancy and survivability are
very important, especially compared to the non-adversarial
setting. The robots in the team may be homogeneous, but
often they are heterogeneous, such that robots differ in
their velocity, capabilities, or immunity to threats in the
environment.

1Yair Korngut is with the Department of Computer Science, Bar-Ilan
University, 5290002 Ramat-Gan, Israel. kornguy@biu.ac.il

2Noa Agmon is with the Department of Computer Science, Bar-Ilan
University, 5290002 Ramat-Gan, Israel. agmon@cs.biu.ac.il

Previous work of adversarial coverage dealt mainly with
single-robot coverage [6], optimizing both the number of
covered cells and the time to complete the coverage, and
a simplified, multi-robot problem that considers only maxi-
mization of the number of covered cells, while ignoring the
time it takes for covering them [7], [8]. In many adversarial
environments, ignoring the coverage time results in highly
inefficient coverage paths, as robots tend to travel back and
forth in the environment, trying to avoid threats.

In this work, we therefore examine the heterogeneous
multi-robot adversarial coverage (HMRAC) problem, in
which a team of possibly heterogeneous robots covers a given
area containing threats.

We formally define the HMRAC problem and formulate an
objective function that accounts for both the number of cov-
ered cells and the coverage time, allowing a more complex
trade-off between the covered area and the coverage time.
We approach the problem using both a heuristic algorithm
and a learning system and prove that the learning system
converges to an optimal solution. Following, we model the
HMRAC problem as a Dec-POMDP and use multi-agent
reinforcement learning (MARL) methods to find an optimal
solution (i.e., policy) for the problem. We show that using RL
straightforwardly in some environments containing threats
may be unstable and converge to a sub-optimal solution for
single-robot coverage, thus we suggest an alternative process
for training, leading to a faster, more stable convergence.

Finally, we performed a rigorous empirical evaluation,
comparing our suggested methods with the state-of-the-art.
We show the superiority of our methods in terms of coverage
time and covered area and discuss the limitations of using
reinforcement learning to solve the HMRAC problem. An
open-source implementation of all the algorithms and tasks
is available for full reproducibility1.

II. RELATED WORK

The multi-robot coverage is a canonical robotics problem,
in which one or more robots are required to visit each
point in a given area at least once, usually while trying to
minimize the coverage time or cost. A comprehensive review
of robotics coverage research can be found in [9].

Yehoshua et al. [6] defined the problem of robotic adver-
sarial coverage in which the area contains threats that may
stop the covering robots, thus the goal is to either maximize
the survivability of the coverage path and minimize the
coverage time. The problem was proven to be hard, thus
three approaches were presented for the single-agent variant

1https://github.com/YairKorn/MAPS



[5], [10] - a greedy algorithm, an algorithm that utilizes
Spanning Tree Coverage and an algorithm that models the
problem as MDP and uses real-time dynamic programming
to find a solution. The first two approaches were combined
into a heuristic algorithm for the homogeneous multi-robot
case [7], called MRAC.

A variation of the multi-robot adversarial coverage prob-
lem was defined by Jorgensen et al. [8], in which each
robot is required to survive with a minimal probability ρ.
They presented a greedy algorithm similar to the greedy
algorithm [5] for the multi-robot case and also considered
the heterogeneous case by computing the greedy heuristic
regarding the threats that affect each robot.

Note that adversarial coverage is more a general problem
than the resilient coverage problem (RCP) [11], [12], [13],
[14], since the RCP problem assumes an equal probability of
failure in the whole environment, while the adversarial cov-
erage problem is able the take advantage of the distribution
of threat in the environment for optimizing a given criterion.

The use of reinforcement learning for generating single-
and multi-robot coverage paths is found in the literature.
Lakshmanan et al. [15] used experience-replay actor-critic
(ACER) to plan a complete coverage path and Boufous [16]
used DQN for single-robot complete coverage path planning.

Xiao et al. [17] used distributed cooperative Q-learning
for multi-agent coverage under communication restrictions.
Hu et al. [18] used GANs to allocate subareas to the robots.
Rückin [19] combined MCTS and CNN for coverage.

In our work, we implemented multi-agent reinforcement
learning methods with frequent rewards, allowing the robots
to learn to coordinate optimally and fast. In the adversarial
problem, we focused on, robots can be disabled, therefore
good coordination is essential, and the methods mentioned
above cannot learn to coordinate well, due to sub-optimal
assignments or sparse rewards. In section IV we describe
the methods that allow us to find optimal coverage paths for
the heterogeneous multi-agent adversarial coverage.

III. PROBLEM DEFINITION

In the heterogeneous multi-robot adversarial coverage
(HMRAC) problem, a team of heterogeneous robots is re-
quired to cover an environment that contains threats, such
that a robot that enters a threatened cell might be disabled
with some probability, and will thus not be able to continue
to cover the environment. We consider the coverage problem
in its offline setting, in which the environment is known in
advance and it is fully observable, i.e., the robots know the
location of the obstacles and the location and probability
distribution of the threats in the environment, and know their
absolute location at any time.

A group of m robots R = {r1, . . . rm} is required to
cover an area S. The robots are heterogeneous, such that
each robot is associated with one of K types {R1, . . . RK},
R = ⊕1≤k≤KRk. The heterogeneity of the robots is reflected
by their immunity to threats, that is, the probability of being
disabled by a threat might differ between robots.

Let S, the area needed to be covered, be represented by a
grid of n cells S = {c1, . . . cn}. Each cell ci in the grid is
associated with a risk vector [p1i , p
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i , . . . , p

K
i ], that is static

and known in advance, such that pki is the probability of
a robot of type k that enters cell ci to be disabled. The
risk profile P (ci) is the function that maps for each cell
ci its corresponding risk vector [p1i , p

2
i , . . . , p

K
i ]. A cell is

considered to be covered when a robot enters the cell (thus
a cell is considered covered even if the robot was disabled
by the threat associated with that cell).

Note that the threat distribution in the area, as viewed from
different robots’ eyes, may differ not only by scalar factor.
Some areas may be of more danger to one robot, while other
areas may be more dangerous to another. This property is
demonstrated in Figure 1.

A path for a robot rj ∈ R, denoted by Tj , is a sequence
of cells, Tj = {c1j , c2j , . . . } such that clj ∈ S and is obstacle-
free, and clj , c

l+1
j ∈ Tj are adjacent cells in S. A path may

contain a cell more than once (that is, cells may be revisited).
Paths are dynamic, i.e., a robot is able to modify its path to
deal with changes in the environment (e.g., another robot
that has been disabled). We assume that the robots cover
one cell per time step, therefore the coverage time of a robot
rj is the number of cells in Tj (denoted by |Tj |), and the
coverage time of the team of robots R is defined as the
maximal coverage path of its members, that is, maxrj∈R |Tj |.

The goal of this work is to find an algorithm that de-
termines a set of paths, T = T1, T2, . . . , Tm such that⋃m

j=1 Tj = S, that maximize optimization criterion (de-
scribed below) for the given group of m robots, the area
S, and the risk profile P in the area.

A. Optimization Criterion

As mentioned above, there is a trade-off between the
number of covered cells and the coverage time of each
member, and the team. One path may induce higher risk
but a shorter time, while another may induce lower risk but
a longer time.

For determining the relative importance of coverage suc-
cess (i.e., the number of covered cells) and coverage time,
we define the optimization criterion as follows:

C(T ) = E[A(T )]− αE[maxi|Ti|] (1)

the left expression (E[A(T )]) is the expectation of the num-
ber of covered cells, and the right expression (E[maxi|Ti|])
is the expectation of the maximal length of the robots’ paths.
Our purpose is to maximize this criterion.

The constant α determines the relative importance of the
coverage success and coverage time. For α = 0, the robots
do not care about coverage time but only about coverage
success. In this scenario, the robots will try to avoid risk as
long as they can, thus we expect them to visit threatened
cells starting from lower-risk cells to higher-risk cells.

For α → ∞, the problem is not a coverage problem
and the optimization criteria is C(T ) ≈ −αE[maxi |Ti|],
ignoring the covered area. An optimal solution for this
scenario might be a path that disables the robots as soon



Fig. 1. The threat distribution in the area as viewed by different robot types. Black cells are obstacles; the darker the cell, the higher the risk associated
with it.

as possible and minimizes the path length (equivalent to the
coverage time). Hence, we focus on reasonable values of α,
limiting it by 0 < α ≤ 1.

The effective value of α depends on the number of robots.
That is, in an environment with m robots, in one time step the
team can cover up to m cells, hence effectively the behavior
of the robots depends on α/m rather than α.

B. Modeling HMRAC as a Dec-POMDP

For solving the HMRAC problem using multi-agent RL
methods, we modeled the problem as a Dec-POMDP. Though
we focused on the fully-observable case, we followed the
convention in MARL to model the general, partial-observable
case. A Dec-POMDP is a tuple (N ,S,A, T ,Z,O,R, γ),
such that N is the number of agents, S is the state space,
A =(a1, . . . , aN ) is the joint-action space, such that ai ∈ Ai

is the i-th agent’s action space, T : S × A → P (S) is the
probabilistic transition function, Z is the observation space,
O : S ×N → Z is the observation function, R : S ×A×S
is the joint reward function, and 0 < γ ≤ 1 is the discount
factor.

In our problem:
• States: A state s ∈ S is defined by the locations of the

active robots (that is, that were not yet disabled) and
the coverage status of each cell (covered or not).

• Observations: Since our problem is fully-observable,
an observation o ∈ O is similar to the state, and
also indicates for each robot its own location in the
environment.

• Actions: At each step, every active robot selects an
action ai ∈ {Up, Down, Left, Right, Stay}. Actions
that cause collisions with other robots or obstacles are
masked and cannot be selected.
Since Dec-POMDP models cannot express a change
in the number of agents, we model this change by
removing the robots from states and observations and
considering them to select ai = Stay until the end of
the episode.

• Transitions: Movements are deterministic, such that an
action is always carried out successfully. When a robot
of type k enters a cell with an associated risk of pki , the
robot gets disabled with probability pki , and remains
active with probability 1 − pki . These probabilities are

independent, i.e., the result of the joint action is a
multiplication of the results of the single-robot actions.
If more than one agent tries to enter the same cell, one
of them (selected arbitrarily) succeeds, while the others
stay in their cells.

• Reward: When a robot enters an uncovered cell, a
reward of +1 is given. At each time step, a reward of
−α is given. In addition, if the robots have successfully
covered the whole area, a high reward (e.g., 100) is
given, which helps the robots converge faster to a
solution.
We defined a heuristic reward function for the single
robot case that improves the learning for that case,
described in Section IV-A.

• Discount factor: γ = 0.99. However, we evaluated
different values, 0.93 ≤ γ ≤ 0.99, and observed that
this value has very little effect on the solution quality
and the convergence properties.

Based on this model, one can use MARL methods to find an
optimal policy π that maximizes the optimization criterion,
as described above.

IV. SOLVING HMRAC

In this section, we describe the algorithms we used to solve
the HMRAC problem, including the reward function for the
RL-based solutions, and the heuristic algorithm HMRAC*.

A. Single-Agent Reward Function

A major challenge in utilizing reinforcement learning to
solve the adversarial coverage problem is the accessibility
of the state space. During the training phase, it is important
to explore the environment, but threats in the environment
might disable the robot, preventing it from continuing the
exploration and making the whole exploration process inef-
ficient (i.e., very slow) or insufficient (i.e., focusing only on
safe areas of the environment).

To overcome this problem, the agent was not disabled
by threats but rather got a negative reward when entering
a threatened cell that estimates the effect of the threat in that
cell on the expected reward. We refer to this as simulated
mode and for the problem with the reward function that is
defined in Section III and active threats we refer to it as real



mode. Accordingly, we defined the following reward for the
single-robot case:

Rt = NC − α− (1− α)pkiC (2)

Such that NC is 1 if a new cell was covered, otherwise
NC = 0. α is the optimization constant, as described above;
pki is the threat in the cell of the agent, and C is the number
of remaining uncovered cells in the environment. Intuitively,
(1−α)pkiC is an approximation of the effect of the possible
robot disablement on the reward, since in simulation mode
it is no longer represented by the transition function.

Let us examine the reward function in more detail. For
simplicity, we first consider an environment with only one
threatened cell. Denote the robot’s path as T , such that its
length |T | = t; the number of uncovered cells when the robot
enters the threat as C; the time it enters the cell as tC ; and
the number of obstacle-free cells in the environment as n.
The total expected reward using simulated mode is:

Esim
T [R] = n− αt− (1− α)pkiC =

= (n− pkiC)− α(pki (t− C) + (1− pki )t)
(3)

while the expected reward using real mode is:

Ereal
T [R] = (n− pkiC)− α(pki tC + (1− pki )t) (4)

Therefore, ∆ET [R] = αpki ((t − C) − tC). The expression
((t−C)−tC) is the difference between the remaining length
of the path (t − tC) and the number of new cells in it (C).
At high values of α, this difference is usually small because
paths tend to be time-efficient, while at low values of α, the
whole expression is small because it is multiplied by α.

For paths containing more than one threatened cell, these
expressions can be easily expanded, such that ∆ET [R] =
α
∑

j p
k
ij
((t− Cj)− tCj

) for Cj , tCj
the number of un-

covered cells and the time when the robot enters the j-th
threatened cell in the path, respectively.

In practice, despite the potential bias, the simulated mode
stabilizes the learning process and performs much better than
the real mode, as shown in Section V-A.

Note that the described mechanism fits well with the
single-robot problem, but not necessarily with the multi-robot
problem because when trying to learn a multi-robot policy,
robots need to learn how to behave when some robots are
disabled. Using a ”simulated mode” that does not disable
robots, does not allow the robots to learn a policy for these
states. Therefore, we used this mechanism to enhance single-
robot learning, but not multi-robot learning.

B. Multi-Agent Reward Function
In this subsection, we prove the optimality of the reward

function, as described in Section III, for the multi-agent
settings. Therefore, given sufficient run-time and exploration,
the learning will converge to the optimal solution.

Lemma 4.1: A team of robots with a policy π that max-
imizes the expected reward R, maximizes the optimization
criterion C (eq. 1).
The proof is in the supplementary2.

2https://u.cs.biu.ac.il/˜agmon/HMRAC-Sup.pdf

C. Heuristic Approach

Yehoshua et al. [7] presented a heuristic algorithm for
solving the multi-robot adversarial coverage problem for
homogeneous robotic teams. In the following subsection, we
briefly describe it, then present two novel extensions for their
algorithm - the first one allows the algorithm to heuristically
solve the problem regarding the aforementioned optimization
criterion, rather than the simpler criterion offered in [7] that
takes into account only the coverage success. The second
extension allows the algorithm to solve the problem for
heterogeneous teams.

The basic algorithm (MRAC) [7], works as follows:
1) Create a list of connected areas in the graph that have

the same level of risk (e.g., using BFS).
2) Create a graph representing the cost of entering a cell,

defined as:

ci =

{
1/N, for pi = 0
pi/pmin, for pi > 0

}
(5)

For N the number of cells in the area and pmin the
value of the minimal non-zeroed threat.

3) Assign each robot to an area with the lowest threat
level available. If there is more than one area available,
select the area with the lowest cost of the path to the
area. If more than one robot is assigned to an area,
split it between the robots.

4) For covering an area, at every step select the uncovered
cell that the path to (from the robot’s location) is the
lowest, based on the aforementioned graph.

5) While there is at least one active robot and the envi-
ronment is not completely covered:

• A robot that finishes covering its area, is assigned
to another one.

• If a robot gets disabled, return its area to the pool.
This algorithm has some drawbacks that lead to a sub-

optimal solution even when regarding only the number of
covered cells. In particular, the assignment mechanism pri-
oritizes areas with low threat levels, even if the optimal path
to these areas is more dangerous than covering another area.
That increases the probability of a robot getting disabled,
resulting in a lower expected number of covered cells.

Based on this algorithm, we present HMRAC*, which is
similar to MRAC but contains two significant extensions:

1) Optimizing Coverage and Time: The first extension
allows the algorithm to heuristically solve the more general
MRAC problem, which takes into account not only the
number of covered cells but also the coverage time. For that,
we modified the graph used to assign areas to the robots
and to build paths towards and within areas. We define the
modified graph as follows:

ci = (1− α/NA)piC + α (6)

Such that pi is the threat in that cell (note that if pi = 0,
we get ci = α, the cost of a single time step), C is the
number of remaining uncovered cells in the environment,
and NA is the number of active robots in the environment



(since, as explained in section III, the effective value of α
is α/N ). This expression is inspired by the reward function
for the single-agent problem, as described above.

This heuristic cost function is not a good approximation
for the multi-agent case as it is to the single-agent case
because the effect of a disabled robot on the obtained reward
highly depends on the exact threats and obstacles distribution
and the number and location of the other robots. Therefore,
using this heuristic function would present a bias in the
learning process. Accordingly, we didn’t use this heuristic
during the learning.

In addition, instead of assigning the safest available areas
to the robot, we assigned areas to the robots based on the cost
of the path only, since an optimal solution for higher values
of α may require the robots to cover closer, more dangerous
areas before far, safer areas, hence it is unreasonable to
assign more dangerous areas earlier.

2) Heterogeneous Extension: The second extension al-
lows the algorithm to handle environments that contain
robots of different types. In this case, one cannot consider
connected areas in the environment as areas with the same
level of risk, because different robots may experience differ-
ent threats in the same area. For that reason, we incorporated
two modifications to the algorithm:

First, the definition of a connected area is an area that
has the same level of threats for all the robot types in the
environment, i.e., two adjacent cells i, j are contained in the
same area iff ∀k : pki = pkj . In practice, similar to the base
algorithm, before comparing the level of threats, we round
up the threats to the closest quarter, creating larger areas,
which score better results.

Second, instead of building one graph for all the robots,
each robot has a graph that considers the threats from its
perspective, i.e.:

ci = (1− α/NA)p
k
iC + α (7)

Because decisions are made locally, each robot tries to
maximize the optimization criterion as it experiences it. That
way, the heterogeneous robots work together to maximize
the optimization criterion in a similar fashion to the homo-
geneous case.

V. EMPIRICAL ANALYSIS

In this section, we compare the performance of the clas-
sical algorithms MRAC, the novel extension HMRAC*, and
a learning-based method for the HMRAC problem described
above. Additionally, we compare the performance of single-
agent adversarial coverage with and without simulated mode.

For learning a policy for the HMRAC problem, we used
Deep Coordination Graphs (DCG), a multi-agent reinforce-
ment learning algorithm described in [20].

We evaluated the algorithms in various environments,
and classified environments into four groups, based on the
distribution of threats and obstacles in the environments (see
illustration in Figure 2). First, we distinguished between
environments with connected threats (i.e., the threats in the
environments are clustered, creating few big connected areas

of threats) and scattered threats (i.e., the threats are scattered
across the environment, creating many small connected areas
of threats). Based on their mechanism, we expect the heuris-
tics algorithms to perform better in connected environments.

Second, we distinguished between environments with di-
viding and flank threats. Dividing threats are threats that
the robots must cross to reach a substantial part of the
environment, while flank threats are threats that are not.
Dividing threats makes the exploration process harder, there-
fore we expect the learning to perform worse in divided
environments.

The exact encoding of the observation, as it was fed to
the neural networks used for reinforcement is presented in
Figure 3. The experiment’s configuration, additional results,
and further analysis can be found in the supplementary.

A. Single-Robot Adversarial Coverage

We utilized single-agent reinforcement learning for com-
paring the results of single-agent adversarial coverage in
simulated and real mode as described in section III-B.

We evaluated Q-learning in several environments, includ-
ing environments with dividing and flank threats. We set
α = 0.2, 0.05. The results are presented in figure 4. As
expected, the simulated mode is superior compared to the
real mode, which improves the results and stabilizes the
learning process consistently.

B. Heterogeneous Multi-Robot Adversarial Coverage

We evaluated the HMRAC algorithms (MRAC, HMRAC*,
Learning) in multiple environments from different environ-
ment types as detailed above. Figure 5 presents the results
of the optimization criterion for α = 0.1, 0.5, 1.0. Due
to space limitations, we present here one representing an
environment for every class. In heterogeneous environments,
we compared HMRAC* and learning with a version of
MRAC that includes the heterogeneous extension, since the
basic algorithm cannot run in heterogeneous environments.

Note that as α increases, the maximum possible value
of the optimization criteria decreases, because the coverage
time’s importance increases and time is a non-negative value.
In addition, the maximal value of the optimization criterion
varies between environments. Hence, the results should be
evaluated by the difference between the results, rather than
the absolute value.

As expected, HMRAC* outperforms MRAC for all envi-
ronments and α values, with confidence p ≥ 0.95 in most
experiments. Since MRAC does not consider the coverage
time, the coverage paths remain the same for all values of
α while the relative importance of the time changes. For
that reason, the results of the MRAC significantly drop as α
increases - the coverage time remains the same but the cost
of the time increases. On the other hand, HMRAC* which
considers both the coverage time and the number of covered
cells, successfully balances time and coverage success.

Furthermore, we found that learning does not work well
for lower values of α (e.g., α = 0.1), apparently because
the difference in the cumulative reward is not significant



Fig. 2. An illustration of the different types of environments. As demonstrated in (a, b), in connected environments the threats are clustered, while in
scattered environments (c, d) they are spread all over the area. As demonstrated in (a, c), flank environments contain threats that allow robots to move
freely, while divided environments (b, d) requires the robots to cross threatened area for travel in the environment. Yellow cells represent the starting
positions of the robots - five robots in (a, b) and four in (c, d)

Fig. 3. The encoding of observation as fed to the neural network. The observation consists of the following layers: a one-hot vector for each cell that
encodes the type of robot in that cell (if there are no robots, the vector is zeroed); the coverage status of each cell (marked with light-blue in the figure)
in the environment, such that obstacles are marked as covered; the risk and obstacles distribution as the observing robot experience them; and a one-hot
representing the location of the observing robot.

Fig. 4. Value of the optimization criterion in single-agent environments,
as obtained by the Q-learning with the real mode (blue) and with simulated
mode (red). Note that obstacles do not count as part of the reward, since
they are not covered.

enough. In some cases, the learning takes a very long time to
converge, especially in bigger environments, and frequently
converges into a sub-optimal solution. Hence, for lower
values of α it is recommended to use HMRAC*, while for
higher values of α (e.g., α ≈ 1) utilizing learning achieves
better results.

VI. CONCLUSIONS

In this paper, we described the heterogeneous multi-agent
adversarial coverage and presented a heuristic algorithm
and a learning model for finding optimal paths for the
robot that maximizes an optimization criterion that considers
both coverage time and coverage success. Nevertheless, the

Fig. 5. Value of the optimization criterion in different environments, for
(from left to right) α = 0.1, 0.5, 1.0.

adversarial coverage problem can be extended in other direc-
tions, such as time-dependent threats or partial-observable
environments, or heterogeneous robots that differ not only
in their immunity to threats but also in their travel cost. We
believe that future work on these topics may benefit from
the ideas presented in this paper.
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