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Abstract

This work deals with the problem of navigation while avoiding detection by a
mobile adversary, featuring adversarial modeling. In this problem, an evading agent
is placed on a graph, where one or more nodes are defined as safehouses. The agent’s
goal is to find a path from its current location to a safehouse, while minimizing
the probability of meeting a mobile adversarial agent at a node along its path (i.e.,
being captured). We examine several models of this problem, where each one has
different assumptions on what the agents know about their opponent, all using
a framework for computing node utility, introduced herein. Using risk attitudes
for computing the utility values, their impact on the constructed strategies is
analyzed both theoretically and empirically. Furthermore, we allow the agents
to use information gained along their movement, in order to efficiently update
their motion strategies on-the-fly. Theoretical and empirical analysis shows the
importance of using this information and these on-the-fly strategy updates.

1 Introduction

The problem of path planning is one of the fundamental problems in the field of
agents and robotics [29,36,39,43]. The goal in path planning is to find a sequence of
world locations which allows the agent to arrive at its destination while optimizing
some criteria, usually minimizing travel cost while avoiding obstacles.

In this work we examine the problem of navigating to a location while avoid-
ing an adversary, that wishes to intercept the agent’s movement towards its goal.
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The adversarial presence, as well as topological characteristics of the environment,
for example obscured or visible points, result in the fact that simply following
the shortest path might not guarantee a safe journey because once the adversary
detects the agent, it might infer its planned path and intercept it. Moreover, com-
mitting to a deterministic path (shortest path or other) may result in an increasing
chance of interception by a knowledgeable adversary. Hence, in such case, stochas-
tic movement could be a better option. Therefore, we introduce a new variant of
traditional path planning problem: SAfe Navigation in Adversarial Environments
(or SANE, in short). In this problem, we aim at planning a path for our agent (de-
noted as R), while avoiding being captured by a mobile adversarial agent (denoted
as C). The agents travel along a graph, representing a map of the environment,
where some nodes in this graph are defined as safehouses. The goal of R is to arrive
at one of the safehouses without being intercepted by C on its way there (being
captured).

The problem of traveling in an environment while avoiding threats has been
studied from different perspectives [2,12,20,32,33,47]. In the problem of Pursuit-
Evasion [5,15,37,41], two or more rival agents move around the environment (e.g.,
along the edges of a graph), until the pursuer moves to the evader’s location. Most
research in pursuit evasion focuses on aspects concerning topology of the graph,
for example, on defining properties related to graph theory of the given graph,
in order to characterize graphs where the pursuer is guaranteed to capture the
evader or finding minimal number of pursuers required. In our problem, however,
the evader R moves to a certain destination, and does not try only evade its pursuer
indefinitely. Furthermore, R’s path is planned based on the topology of the graph,
its risk attitude, and the knowledge it has on C (and its understanding of C’s
knowledge).

We formally introduce the SANE problem and examine different variants of it,
which differ in the level of knowledge the agents have on their opponents, and on
the risk attitude they adopt. In our proposed solution to the SANE problem, we
refer to two layers of knowledge. The first layer is an a-priori evaluation of the map
nodes, expressed as the utility values, representing the safety of traveling through
the node based on the topology of the graph. If the agents have no knowledge
about their opponent’s location, they base their movement decision only on these
utility values. The second layer of knowledge is obtained by combining informa-
tion related to the opponent’s location. This information is received either as an
input (the initial location) or when the agent moves along the map graph (the
opponent’s current location in the online model). The agents choose their next
location throughout the game based on both initial utility of the nodes, as well as
on the information they have (or deduce) on their opponent’s location.

The framework, combined with the constructed strategies, is used to allow
updates by the agents during execution, i.e., on-the-fly updates. Assuming the
agents may gain information about their opponent while they are on their way to
their target—either a safehouse or interception, by R and C (respectively)—this
information is used to adjust the strategy efficiently.

Theoretical guarantees are proven for the proposed solutions for each variant,
e.g., expected utility maximization, or equilibrium. We have fully implemented
the algorithms, and show, by theoretical analysis and extensive experiments, that
these updates significantly increase the chances of R to reach its destination safely.
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We also examine the impact of the risk attitude of the agents on their chances of
successfully achieving their goals, both theoretically and empirically.

This paper is organized as follows. In Section 2 we discuss research literature
which addresses problems of capturing an evading mobile agent, and relate to
known solution concepts and their incompatibility to SANE. Section 3 provides
a formal definition to our problem. Section 4 presents the framework for com-
puting utility values for the nodes of the map graph, values which will be used
for constructing the motion strategies for both agents. Section 5 addresses vari-
ous scenarios in the offline modeling of SANE, namely constructing strategies for
each agent and providing guarantees. In Section 6 we allow on-the-fly strategy
updates, hence, modify the motion strategies accordingly and analyze the contri-
bution of the online strategy updates. Section 7 discusses additional aspects for
SANE: termination, handling hyperactive agent behavior and referring to zero-
knowledge players. In Section 8 we empirically evaluate our strategies for each
problem modeling and conclude in Section 9.

2 Related Work

The problem of safe navigation is tied to various fundamental problems in the lit-
erature: path planning [29,36,39,43], pursuit-evasion [4,5,15,37,41], path planning
with threats [38,47] and covert path planning [21,32,33,45,46]. In this section, we
present research literature addressing similar problems and discuss the differences
in the problem modeling.

Many authors have been dealing with problems where an agent has to evade
another pursuing agent, e.g., [2–4, 9, 18, 20, 25]. Pursuit-Evasion is a game where
one player, called the evader, must avoid capture by the other players, called pur-

suers, while all players move in some environment [31]. The term capture might
mean that the evader is caught in a pursuer’s line of sight [25], relate to a scenario
where both the evader and a pursuer reside at the same location [9] or surround the
evader [15]. Existing literature mainly focus on characterizing graphs with some
graph-theoretic properties, such as ensuring that the evader will be captured even-
tually, determining the minimal number of pursuers required to capture the evader,
or examining the class of graphs where a given number is the minimal number of
pursuers required to capture the evader [15]. Furthermore, in these problems the
evader usually moves randomly until caught. In our problem, the evader has a des-
tination location (one or more) and acts with response to the pursuer’s knowledge
(strategically). Moreover, we incorporate adaptive strategies with the concept of
pursuit-evasion (Section 6). In addition, our game is simultaneous with incomplete
information (e.g., initial and current location of the opponent might be unknown).

Adler et al. [1] present a randomized pursuit-evasion game on a graph. While
the pursuer (hunter) is restricted to moving on the edges, two models are examined
for the evader (rabbit): one where it can move on the edges, while in the other it is
allowed to jump to any node unrestrictedly. In all models, the players cannot see
each other unless occupy the same node. In our problem, though, the evader is also
restricted to the map graph. In addition, we examine several models of knowledge,
e.g., knowing the initial location of the opponent (Section 5.3) or allowing partial
observation throughout the game (Section 6).
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Barret et al. [6] present an empirical study of ad-hoc teamwork in the pursuit-
evasion domain. They evaluate a selection of algorithms used for generating on-line
behaviors for a single ad-hoc team agent which collaborates with various types
of teammates in the pursuit-evasion domain. The point of view of Barret et al.
is different from ours in several aspects. First, they construct the behavior for
the pursuers and address cooperation. However, we model the behavior of the
evader1. Second, although they relate to strategies, their evader is not strategic
(moves randomly), while in SANE both agents behave strategically. Moreover,
they assume perfect sensing, while we address scenarios with either no visibility
(Section 5) or with viewpoints (Section 6).

In the problem of covert path planning (or stealth-based path planning) a
robot must navigate efficiently from one point to another without being seen by
hostile entities [21,32,45]. While both covert path planning and our problem share
the aspect of evading another entity, in the former static threats are assumed,
and in this work the adversary poses dynamic threats. Örgen et al. [38] present a
problem of path planning for a UAV in an environment with threats, seeking to
minimize distance cost and risks. The UAV follows a deterministic path planned
offline. Having stochastic motion for at least one agent can be beneficial, since
it increases the opponent’s uncertainty regarding the agent’s location, therefore
we explore such stochastic solutions, considering also time-dependent (not only
constant) threats.

Foderaro et al. [19] address a problem where an agent needs to visit some
points of interest in a known environment (these locations are known a-priori),
while evading multiple adversarial agents. In their settings, each agent knows the
location of each other. Therefore, the adversaries actually chase the evading agent.
In contrary, we address the uncertainty arising when the agents are not aware of
the exact location of each other.

Boidot et al. [11] consider a problem of an autonomous agent traveling through
an environment where an adversary tries to set an ambush. Modeled as a flow
problem, the traveler starts from a source area and wins if reaches the target area.
However, the traveler loses if passes close enough to the location in which the
adversary has set its ambush. Although this problem shares common properties
with SANE, these problems relate to vastly different information models: Boidot
et al. assume the locations of the source and sink are known to both agents but no
sensing capabilities. We, however, tackle different assumptions on the knowledge of
the starting locations of the agents (Section 5) and further examine the influence on
the motion strategies when the agents incorporate information, gained at runtime,
regarding their opponent’s current location.

The SANE problem addresses scenarios where the agents choose their next
move stochastically, based on current world state only. Uncertainty concerning
opponent’s location implies not knowing the exact world state. Hence, it seems
as if our problem could have been modeled by a Partially Observable Markov
Decision Process (POMDP) [44]. The variant where both agents use information
gained along their movement (Section 6) associates with Interactive POMDP (I-
POMDP) [23]. At a map graph node, an agent chooses its move according to a
probability distribution over its neighbors. If such distributions would have been

1 In order to prove theoretical guarantees for the evader’s strategies, in each modeling of the
SANE problem, we present the optimal strategy for the pursuer, as well.



Safe Navigation in Adversarial Environments 5

considered as actions available at a world state, an action would have been choos-
ing a neighboring node at a certain probability. Since the probability variable is
continuous, it implies infinite number of possible actions at each state, making
modeling our problem using any variant of MDP simply impossible.

Huang et al. [26] present a framework for solving a two-player capture-the-flag
games, modeled as zero-sum differential games. Even though the authors consider
capture-the-flag games as being able to examine automated solutions for adver-
sarial games, there are some major differences between their problem modeling
and solution approach to ours. In their solution to the two-player game, agents are
allowed to know the past and present choices. In contrary, we cope with uncer-
tainty regarding the opponent’s initial or current locations (and sometimes both of
them). Furthermore, they constructed deterministic strategies. However, we con-
sider an adversary with equal computational abilities to our evading agent, thus
the adversary can perform the same computations as the evader agent. Therefore,
if the evader follows a deterministic strategy, once the adversary knows the loca-
tion of the evader, it can intercept the evader easily. Another difference relies in
the objectives of the agents. In capture-the-flag games, the agents need to attack
and defend at the same time, while our agents need to attack only.

In reachability games, one player has to reach a target set of world states, while
the other seeks to prevent the first one from succeeding [17]. In this modeling, a
strategy returns a player’s next move given a world state. Namely, a player makes a
move given the locations of both players. However, we handle uncertainty regarding
the opponent’s location and if such information is acquired at runtime, the motion
strategies are updated accordingly on-the-fly (Section 6).

Due to the strategic aspect of our problem, a Nash equilibrium could be used
for constructing a strategy for each agent. Yet, finding a Nash equilibrium for
mixed strategies is complex [16]. Uncertainty regarding adversary’s current lo-
cation implies a large number of possible actions, which increases problem size.
Moreover, this game is repeated, but there is a different game at each time step
(due to different neighboring nodes to which each agent can move). We will need
to compute it to a certain horizon (i.e., game duration in time steps), which could
be very large. Therefore, computing the stochastic motion strategies using mixed-
strategy Nash equilibrium requires solving an unbounded sequence of complex
sub-problems, which becomes infeasible.

In imperfect-information extensive-form games [42], the players might not be
aware of the choices of their opponent, thus these games are capable of modeling
simultaneous games, as well. The game is represented as a game tree, where nodes
match choices of the players, edges are possible actions and the terminal game
states are in the leaves. Computing equilibrium strategies requires solving a linear-
program, which can be solved in time polynomial in the size of the game tree.
However, as our game is of unbounded horizon (see Section 7.1), the maximum
depth of corresponding game tree would be unbounded. A known solution is to set
a user-defined bound on the game tree’s depth and treat the lowest nodes as leaves,
whose values are approximated by some heuristic function. Yet, we compute the
motion strategies in time polynomial – specifically, quadratic – in the map graph
size (Section 4.4), while the size of the bounded game tree might not guarantee a
linear-program solved in time polynomial of the map graph size. In addition, when
the agents receive information at runtime regarding their opponent’s whereabouts
(Section 6), modeling SANE as an imperfect-information extensive-form game
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would require on-the-fly changes of the information sets along the game tree. In
contrary, in our solution, node utility values are computed beforehand and are
used for constructing the motion strategies. These utility values are used whether
an agent is aware of its opponent’s initial location or not, and enable efficient
on-the-fly strategy updates in case new information is received at runtime.

A Stochastic game [30] is a repeated game where the players choose their action
and the next game state is drawn from a probability distribution over the game
states. In our problem, though, at least one player chooses its actions stochasti-
cally and given the chosen actions, the next game state is set deterministically.
Even though the probability in which an agent chooses actions can be used to
model the probability in which the next game state is set, stochastic games can-
not model our problem: the probability distribution over the next game state is
part of a stochastic game’s definition, while in our problem, the probability distri-
bution for choosing an action (which implies the next game state) is what we seek
to compute. Therefore, for each model of the SANE problem presented herein, R’s
strategies are computed based on utility of the related game states or configurations

(Section 4). These utility values are propagated throughout a graph (referred to
as the configuration graph), from configurations matching terminal game states (ei-
ther win or lose) to all other game states. Belief propagation (BP) is an algorithm
for computing marginal probabilities in a graphic model [10]. Even though BP
seems like a method for propagating values through a graph, for several reasons
it cannot be applied in order to compute the configurations utility values. First,
our utility values are not probabilities. Hence, the configuration graph is not a
probabilistic graphic model, and its nodes are not variables of some distribution,
rather possible game states. Second, in BP, values (messages) are passed around
the graph between neighboring nodes by conditioning probabilities on all values
that a node can receive from its neighbors. Thus, applying this method for prop-
agating our utility values would enable using risk neutral attitude only (namely,
taking an average on values received from the neighbors). Another BP version,
called the max-sum algorithm, maximizes the marginals of every variable. How-
ever, this is not equivalent to taking the maximal (or symmetrically, the minimal)
value among a node’s neighbors in the configuration graph, as our risk-seeking
function (or risk-averse, for minimal value). In addition, BP converges to the ex-
act values in a graphic model with no cycles. Loopy BP is used when cycles are
present, but its convergence is not always guaranteed. In contrary, our method is
much simpler – we simply propagate values from the terminal configurations. In
conclusion, BP is an algorithm for computing marginals, it is not designed for a
mere propagation of values through some general graph while applying functions
that are not specifically sums or products.

Security games address problems where a mobile agent (usually a patroller)
tries to detect an adversarial intruder. The intruding agent is assumed to be able
to observe the patrolling agent in order to devise its optimal strategy. This leads
to a leader-follower solution concept [8]. In SANE, though, we consider a different
modeling, which allows knowledge of the initial location only (in the offline model,
Section 5) or observation at runtime, used for on-the-fly strategy updates (in
the online model, Section 6). Basilico et al. [7] present a security game with the
requirement of responding to signals raised by an alarm system. As in SANE, their
work focuses on finding an optimal strategy for a patrolling agent, combined with
information provided at runtime (by the alarm system). Despite the resemblance
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to our problem, SANE cannot be modeled by this work. In this work of Basilico
et al., the alarm is triggered if a target is under attack, thus, information is gained
about an agent regardless of the patrolling agent’s location. However, in SANE,
an agent observes its opponent only if its current location is visible to the agent.
That is, observation depends on the locations of both agents and not only on the
penetrator’s location. Moreover, we consider on-the-fly strategy updates (which
are proven to improve the strategies).

Network security games are a variant of security games variants, which take
place on graphs. Jain et al. [27] present a network-based security game, where a
defender places security resources on the edges of the graph in order to protect
against an adversary, which moves along the edges. The authors consider multiple
static security resources, while we consider a single mobile resource (being our
agent R). McCarthy et al. [35] address a model which differs than SANE in similar
manners to [27]. In addition, we consider strategy adaptations at runtime, in con-
trary to these works. Zhang et al. [?] address the problem of scheduling defender
resources in order to capture an evading attacker. Even though both SANE and
their model consider dynamic threats, we handle a single defender resource (be-
ing the agent C) and allow the agents utilize their knowledge of their opponent’s
location in order to produce better motion strategies.

3 Problem Definition

The SANE (SAfe Navigation in Adversarial Environments) problem is formally
defined as follows:
Given a graph G = (V,E), representing a map of the environment (referred to as
map graph), VG⊆V a set of goal nodes (safehouses) and two distinct initial positions
of an agent R and an adversarial agent C, find a strategy that will maximize R’s
chances of reaching some node vg∈VG without being captured by C. R is captured
by C if both agents reside the same node (any node, including a safehouse vg ∈ VG).
R wins if it reached a goal node vg ∈ VG without being captured, while C wins if
it captures R.

Note that the strategy may be deterministic or stochastic, and changes based
on the knowledge the agents have on their opponent’s strategy and location, and
on the risk attitude adopted by the agents (discussed in details in Sections 5,6). We
assume that C and R act simultaneously, and that both are capable of performing
the same computations (i.e., each agent knows its opponent’s strategy).

4 Framework for Computing Node Utilities

In this section we establish a framework for computing utility values for the graph
nodes based on the graph topology, that will be used for the various models of the
SANE problem (Sections 5,6). The utility of v ∈ V expresses how safe it is for R

if moves to v, i.e., how probable it is to evade capture and reach a goal node (i.e.,
win), as demonstrated in Figure 1. This value is derived by evaluating the game
configurations (i.e., game states) where R resides at v. When there is no additional
information about the location of the agents, their decisions are made based on
this basic utility. We shall begin with introducing preliminary concepts.
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Fig. 1: Node utility values for each graph node (G1 is a goal). Greater utility means node is safer
for R

At time t, let vtR, vtC ∈ V be the nodes where R and C are located in, respectively.
We will omit t and refer to vR,vC wherever possible.

Our goal is to find a sequence of nodes (or a policy) for arriving safely at a
goal node. As a result, this path should avoid reaching certain nodes according to
our position and adversary’s estimated position at a given time. Since we consider
also C’s position, we refer to the game configurations rather than map locations:
A game configuration 〈vR, vC〉 holds the locations of both R and C. A configuration
is a win configuration if it is of the form 〈vg, v〉, such that vg ∈ VG and vg 6= v. A
configuration of the form 〈v, v〉, v ∈ V , is a lose configuration.

The configuration graph Gconf = (Vconf ,Econf ) is an undirected graph where
each node is a game configuration. Therefore, |Vconf |= |V |2. For each v1, v2∈V ,
Econf contains an edge2 (〈v1, u1〉, 〈v2, u2〉) if at least (v1, v2) ∈ E or (u1, u2) ∈ E.
A configuration is terminal if locations of R and C are the same (C has won),
or if only R’s location is a goal (R has won) or if it has no neighbors in the
configuration graph Gconf

3. Figure 2 demonstrates a map graph G and a portion
of its configuration graph Gconf (entire graph not shown for clarity).

4.1 Estimating Safety of Game Configurations

We define as follows a utility value for each game configuration V ∈ Vconf , which
expresses how probable it is for R to win if moves from V. Terminal configurations
are given a utility of 1 for a win configuration and 0 for a lose one. The utility of
a configuration depends on the utility of its neighbors. As a consequence, in an
undirected graph, it is necessary to determine the order of traversing through the
configuration graph in order to avoid mutual dependencies. Since utility values
are propagated from the terminal configurations, the non-terminal configurations
can be ordered in ascending order of distance (in terms of number of edges, i.e.,
hops) from terminal configurations. Utility of a configuration is computed based

2 Our motion strategies do not allow the agents to maintain their location in the next time
step (Sections 5,6), while the configuration graph does. Section 7.2 explains why.

3 Although it is impossible in connected undirected graphs, we would like to generalize our
definitions to match directed graphs, as well
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(a) Graph of a world map, where R starts at
V1 and C at V6. G1, G2 are goal locations (box-
shaped nodes)

(b) A portion of the matching configuration graph (entire graph not displayed for clarity).
Note that although G2 is a goal location, 〈G2, G2〉 is not a goal configuration because C
captures R, while 〈G2, V5〉 is a goal configuration (box-shaped node)

Fig. 2: An example of a graph of a world map and its generated (portion of) configuration graph

only on its neighbors whose utility value had already been computed, therefore,
such ordering ensures that the utility values are propagated in correct order from
the terminal configurations to the other ones.

Hence, a prior step is to calculate for each configuration its distance from
the terminal configurations. This distance is defined as minimal number of edges
required to reach a terminal configuration (i.e., hops). Algorithm msBFS (Multiple
Source BFS) calculates this distance by applying BFS Algorithm for a set of source
nodes, instead of the common version with a single source node.

Algorithm CalcConfigsUtil receives the configuration graph Gconf and uses
the result of Algorithm msBFS to traverse along the configuration graph Gconf in a
breadth-first manner. Moving along Gconf in such a way finds which neighboring
configurations had already been processed. Therefore, utility of a configuration
V ∈ Vconf can be easily computed based on neighboring configurations that had
been visited before. Various risk attitudes can be used: risk averse (utility of V
is minimal utility among visited neighbors), risk neutral (average utility among
neighbors). The risk attitude is an intrinsic factor of the agent, which defines the
agent’s behavior (or so to say, ”personality”). In contrary, prior knowledge about
the environment is an extrinsic factor. We have addressed these risk attitudes in
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order to examine the influence of the agent’s behavior on its strategy. However, in
case prior knowledge about the environment is available, then it could definitely
be used (e.g., a non-uniform probability distribution over the opponent’s initial
location), regardless of the risk attitude type.

Formally, the function fconfcost : 2Vconf → [0, 1] gets a set of visited neighbor-
ing configurations and returns the matching utility value. The utility value is
computed according to the risk attitude being applied, as shown in Algorithm
CalcConfigsUtil Line 13. Note that Algorithm CalcConfigsUtil does not con-
struct a strategy, rather is the first step towards obtaining the utility values of the
map graph nodes.

Algorithm 1 msBFS(G,Vsource)

Input:
G = (V,E) input graph
Vsource set of source nodes

1: initialize mapping d //d[v] maps v ∈ V to its distance
2: initialize mapping Π //Π[v] maps v ∈ V to parent node on shortest path
3: for all s ∈ Vsource do
4: d[s]← 0
5: Π[s]← NULL
6: end for
7: for all v ∈ V \ Vsource do
8: d[v]←∞
9: Π[v]← NULL

10: end for
11: V0 ← Vsource //Vi holds all nodes v s.t. d[v] = i
12: V∞ ← V \ Vsource //V∞ holds all non-source nodes
13: for all i← 0 to |V | do
14: for all v ∈ Vi do
15: for all u ∈ Neighbors(v) do
16: if d[u] > d[v] + 1 then
17: Vd[u].Remove(u)
18: Vd[v]+1.Append(u)
19: d[u]← d[v] + 1
20: Π[u]← v
21: end if
22: end for
23: end for
24: end for
25: return d,Π

4.2 Estimating Safety of Nodes Using the Configuration Graph

Utility for a map graph node v ∈ V is computed based on the utility of con-
figurations of the form 〈v, u〉 (u ∈ V ), i.e., configurations where R resides at
v. Once all configurations have been given a utility value (applying Algorithm
CalcConfigsUtil), the utility of each map graph node v ∈ V is the average util-
ity of the configurations where v is the location of R. In other words, the utility
for a map graph node v ∈ V is the average utility of all configurations V ∈ Vconf ,
such that V = 〈v, u〉, u ∈ V . Algorithm CalcNodesUtil computes utility values
for the map graph nodes, given the utility values of the configurations.
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Algorithm 2 CalcConfigsUtil(Gconf , Tconf , f
conf
cost )

Input:
Gconf = (Vconf ,Econf ) configuration graph
Tconf ⊆ Vconf set of the terminal configurations
fconf
cost function to calculate configuration utility according to utility values of given config-

urations
UR maps each configuration to its utility value

1: for each terminal configuration V∈Tconf , set UR(V) as 1 if a winning configuration, or 0
otherwise

2: for each non terminal configuration V∈Vconf\Tconf , set UR(V) as NULL
3: run msBFS(Gconf , Tconf ), denote by d the mapping from configurations to distances
4: for each distance value i in d, initialize a set Vi of configurations with distance i //V0 is

Tconf

5: for all distance values i← 1 to Max(d.Values) do
6: for all configurations V ∈ Vi at distance i from some terminal configuration do
7: initialize an empty set S
8: for all configuration U such that (V,U) ∈ Econf do
9: if UR(U) is not NULL then

10: add U to S
11: end if
12: end for
13: UR(V)← fconf

cost (S)
14: end for
15: end for

Computing node utility in this manner relates to a risk neutral type of player.
Other risk attitudes can be applied (by modifying Algorithm CalcNodesUtil Line
3), e.g., risk averse (utility of a node v is the minimal utility of a configuration
V = 〈v, u〉). Formally, the utility value of a map node v ∈ V is obtained by applying
fcost : 2Vconf → [0, 1]:

UR(v) = fcost ({〈v, u〉|u ∈ V }) (1)

For graphs without uniform travel cost, we could use this framework while
applying cost functions which take into account both the node utility and travel
cost. That is, utilize both the safety term and travel term. Section 7.4 explains how.

Although we assume capture is possible only when R and C occupy the same
node, our framework can easily support capture when the agents cross each other
when moving towards their next node (i.e., capture on the edges). In that case,
we shall assume the existence of a function fcross : Vconf × Vconf → 0, 1. fcross
receives configurations V, U ∈ Vconf and returns 1 if R is captured during the
transition from V to U , and 0 otherwise. Note that fcross depends on the map
graph layout, thus, can be considered as some metadata associated with the map
graph and returns an answer in O(1) time. Algorithm CalcConfigsUtil can be
modified as follows. When iterating over the neighbors of a configuration V (Line
6), denote V’s current neighbor as U . If fcross(V,U)= 1, consider U ’s utility as 0
(whether U had already been visited or not) when computing V’s utility. Namely,
U is considered as a lose configuration only in the context of V, i.e., indicating that
the current game step leads to a loss.



12 Ofri Keidar, Noa Agmon

Algorithm 3 CalcNodesUtil(G,Gconf )

Input:
G = (V,E) map graph
Gconf = (Vconf ,Econf ) configuration graph

1: for all v ∈ V do //for each map node
2: Sv ←

{
〈v, u〉 ∈ Vconf |u ∈ V

}
//initialize a set Sv of all configurations where v denotes location of R

3: set v.utility as average utility of configurations in Sv

4: end for

4.3 Utility Values for C

C’s objective is opposed to R’s, i.e., a win configuration for R is a lose one for C and
vice versa – as expected in a zero-sum game. Therefore, if a terminal configuration
where R is captured is given a value of 1 and a terminal configuration where
R resides at a goal node (and C at another node) is given a value 0, applying
Algorithms CalcConfigsUtil,CalcNodesUtil yields an evaluation of the map
graph nodes. In that case, greater utility values relate to nodes where it is more
probable for C to capture R. Therefore, for any risk attitude of R – averse (take
minimal value), neutral (take average value) and seeking (take maximal value) –
C’s utility values are defined to be opposed to those of R:

∀V ∈ Vconf : UC(V) = 1− UR(V) (2)

∀v ∈ V : UC(v) = 1− UR(v)

Where UR,UC are the utility values for R,C, respectively. This observation opti-
mizes performance when computing strategies which require utility values of both
agents (Sections 5.3, 5.4, 6). Unless stated otherwise, the term utility values refers
to R’s utilities.

4.4 Analysis of Utilities Computation

We shall first prove that Algorithm msBFS computes the correct distance between
nodes of the input graph and the source nodes. The conclusion would be that
Algorithm CalcConfigsUtil propagates the utility values from the terminal con-
figurations in ascending order of distances from the terminal configurations. Then,
running times of the algorithms involved in the computation of utility values will
be analyzed.

Lemma 1 Let G = (V,E) be a graph. For each u ∈ V , if Algorithm msBFS sets d[u]
as d[v] + 1, for some v ∈ V such that (v, u) ∈ E, then d[u] will not change.

Proof Let u, v, v′ ∈ V be nodes, such that (u, v), (u, v′) ∈ E and d[v′] < d[v]. Let
us assume that d[u] was set as d[v] + 1 at the i’th iteration and was then set as
d[v′]+1 at the j’th iteration. It must exist that j > i, otherwise it contradicts that
Vd[v] was accessed before Vd[v′] (Algorithm msBFS Line 14). Therefore, it follows
that d[v′] > d[v], which contradicts the assumption that d[v′] < d[v].
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Time complexity of Algorithm msBFS is linear in the input graph. The
initialization steps (Lines 3-7) require iterating over all nodes, therefore take O(|V |)
time. Following Vi’s definition, for each i, j such that i 6= j, Vi ∩ Vj = ∅. Therefore,
in Line 13 we iterate over all nodes, but in Line 14 each node is iterated once. For
each node, all neighbors are inspected in Line 15, that is, all edges are iterated
over. Hence, running time of the entire loop of Line 13 is O(|V |+|E|). In conclusion,
the total time complexity of Algorithm msBFS is O(|V |+|E|).

Time complexity of Algorithm CalcConfigsUtil is linear in the size of

the configuration graph. The initialization step requires iterating over all con-
figurations (Lines 1-2), which takes O(|Vconf |) time. Executing Algorithm msBFS

(Line 3) takes O(|Vconf |+|Econf |). In Line 5, |Vconf |−|Tconf | ≤ |Vconf | configu-
rations are iterated over. For each configuration, all its neighbors are inspected,
therefore all edges are iterated over. Cost of applying fconfcost (S) (Line 13) is O(|S|)
and for each V ∈ Vconf , |S|≤ |Neighbors(V)|. Hence, the combined cost of all the

times where fconfcost (S) is applied is O(|Econf |). Therefore, the cost of the loop of
Line 6 is O(|Vconf |+|Econf |). In conclusion, the total time complexity of Algo-
rithm CalcConfigsUtil is O(|Vconf |+|Econf |), which is polynomial in the size of
the input graph.

Time complexity of Algorithm CalcNodesUtil is linear in the config-

uration graph. Let v ∈ V be a map graph node. The algorithm generates all
configurations where R resides at v: 〈v, u〉, such that u ∈ V (Line 2). Hence, O(|V |)
elements. Then, the algorithm computes the average utility value of these con-
figurations, or takes either the minimal or maximal value (depends on the risk
attitude applied). These computations are linear in the number of elements in Sv
(Line 3). Therefore, O(|V |) work is performed for v. This process is repeated for
each map graph node (Line 1). Therefore, the total time complexity of Algorithm
CalcNodesUtil is O(|V |2) = O(|Vconf |).

In conclusion, given a map graph G = (V,E), the node and configuration util-
ity values are obtained by applying Algorithm CalcConfigsUtil and then Algo-
rithm CalcNodesUtil. This takes polynomial time in the input graph, specifically,
O(|Vconf |+|Econf |).

We shall now discuss several models of our problem and construct a strategy
for both agents, using the node utility values.

5 Offline Strategies

In the offline model the agents are not visible during the game, unless they occupy
the same map node. An exception is made for the initial location: four cases
are addressed herein, differ in which agent knows where its opponent starts. For
each of these scenarios, we analyze the strategy adopted by each agent. Table 1
summarizes the results for each of the examined scenarios where both agents plan
their motion strategy offline. These scenarios differ in the knowledge of each agent
regarding the initial location of its opponent.

5.1 Unknown Opponent’s Initial Location

This scenario assumes that no agent knows its opponent’s initial location.
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Does R know where C starts?
No Yes

Does C
know
where R
starts?

No R moves deterministically, C
stochastically. Both agents max-
imize their probability to win
(Section 5.1)

R moves deterministically, ignor-
ing the information regarding
C’s start. C moves stochastically
(Section 5.2)

Yes Stochastic strategies. Expected
payoff is maximized with risk-
neutral for both node and con-
figuration utilities (Section 5.4)

Stochastic strategies. Expected
payoff is maximized with risk-
neutral for both node and con-
figuration utilities (Section 5.3)

Table 1: Summarized results for each of the examined scenarios in the Offline Strategies model

R’s Strategy. Let p = 〈v1, . . . , vk〉 be a path. Define path utility U(p) as follows:

U(p) =
k∑

i=1

U(vi) (3)

Where U(v) is the utility value of v∈V . R plans a path which maximizes the path
utility to a goal node vg∈VG. Such path is obtained as follows:

1. Convert the undirected map graph G=(V,E) to a directed graph G′=(V ′, E′):
V ′=V , E′={(v1, v2), (v2, v1)|(v1, v2) ∈ E}

2. For each (v1, v2)∈E′, define the weight Umax−U(v2) (Umax is maximum utility
value among the map nodes)

3. Find the shortest path (in terms of edge weights) from R’s initial location to
any goal node vg∈VG, using a shortest-path algorithm (e.g., Dijkstra’s)

C’s Strategy. C is assumed to be capable of computing node utilities as R. Thus,
given R’s initial location, C can compute the path R would have taken. Since C has
no indication of where R starts, it is preferable for C to move stochastically while
maximizing the probability of intercepting R (presented formally in Algorithms
InterceptDetOpp, PlanInterceptingPath):

1. For each possible starting point for R v∈V \(VG ∪ {v0
C}) (v0

C is C’s initial loca-
tion), plan R’s path (according to R’s strategy)

2. For each of these paths, plan a path for intercepting R

3. For each map node, count number of intercepting paths that pass through it
4. At each node, choose a neighbor randomly with bias towards neighbors with

a greater counter value (i.e., towards nodes associated with more intercepting
paths, Algorithm InterceptDetOpp Line 10)

While an intercepting path relies on a specific time and location for the in-
terception to take place, C’s stochastic movement does not guarantee that C will
follow a certain interception path from start to end. However, C might have to
wait at the interception point k>0 time steps. For an intercepting path p, denote
C’s waiting time at p’s end as twait(p). Let v be the i’th node along p (1≤i≤|p|).
Therefore, twait(p)+i+1 is the latest time step that C can arrive at v and intercept
R if C follows p (Algorithm InterceptDetOpp Lines 7,9).

The following definition formalizes our criteria for an optimized strategy for R.

Definition 1 Let SecureTravel be the following prioritized optimization criteria
regarding a path p in the map graph G:
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Algorithm 4 PlanInterceptingPath(G, pR, d,Π)

Input:
G = (V,E) map graph
pR R’s optimal path from its assumed initial location
d d[v] maps v ∈ V to its distance from C’s initial location
Π Π[v] maps v ∈ V to parent node on shortest path from C’s initial location

1: for all i← |pR| to 1 do //find latest node C can reach before R
2: if d[pR[i]] is smaller than the number of steps required for R to reach pR[i] then //this

number of steps is i
3: use Π for backtracking the path from d[pR[i]], denote this path as pintcpt //the

interception point was found, reconstruct the path
4: reverse pintcpt

5: twait ← d[pR[i]]− i //compute C’s waiting time at the interception point
6: return twait, pintcpt //return the waiting time and intercepting path
7: end if
8: end for
9: return NULL, NULL //could not find an interception point

Algorithm 5 InterceptDetOpp(G,VG, v
0
C)

Input:
G = (V,E) map graph
VG set of goal nodes
v0

C C’s initial location
1: initialize a mapping Arrtimes from each node to its list of arrival times
2: run msBFS(G,

{
v0
C

}
), denote by d the mapping from nodes to distances

3: for all v ∈ V \ (VG ∪ {v0
C}) do //for each possible R’s start

4: plan R’s optimal path pR

5: twait(pintcpt), vintcpt ← PlanInterceptingPath(G, pR, d) //plan C’s intercepting
path pintcpt and compute C’s waiting time until interception: twait(pintcpt)

6: twait(pintcpt) is NULL, continue to the next iteration
7: for each node v along pintcpt:

Arrtimes.at(v).insert(twait(pintcpt) + iv − 1)
//set latest arrival time: iv − 1 is v’s index in pintcpt

8: end for
At runtime:

9: for each neighbor u of vC, remove all arrival times from Arrtimes.at(u) that are smaller
than current time step
//discard intercepting paths that are no longer relevant

10: choose a neighbor u of vC in transition probability:

PvC [u] =
|Arrtimes.at(u)|∑

v′∈N(vC)|Arrtimes.at(v′)|

1. Maximize the sum of the node utility values along p.
2. Minimize the number of hops along p.

We deal with an offline scenario where we know nothing about our opponent’s
location - neither its initial location nor its current location throughout the game
(and so is the adversary). Therefore, any node we reach can be treated as flipping
a coin - R is captured or not. Thus, R’s objective should be reaching a goal node
while minimizing the number of these ”coin flips” (since any further flip raises the
chance to be captured), and in each of the coins we have to flip, the probability
of success should be maximized. Minimizing the number of the coin flips is having
the fewest number of nodes along the path, as obtained from Corollary 1. As fol-
lows from Lemma 2, the utility of a map node grows with the probability that R
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avoids capture if goes through that node. Hence, higher probability of success in
each coin flip is tied to higher sum of utility values of the nodes along the path.

The following Lemma will be used for proving the likelihood of the safety of
R’s strategy in Theorem 1, based on the SecureTravel criteria.

Lemma 2 Assume R is risk neutral. Let v1, v2 ∈ V be nodes neighboring to vR such

that U(v1) > U(v2). Then, R’s expected probability for not being captured at v1 is

greater than at v2.

Proof R is risk neutral4. Then U(v1) > U(v2) implies:∑
vi∈V

U(〈v1, vi〉)
|V | >

∑
vi∈V

U(〈v2, vi〉)
|V | (4)

That is, the average utility of the game states where R resides at v1 is greater
than the average utility where R resides at v2. The better a game state is for R,
the greater its utility value is. Thus, v1 is associated with better game states than
v2. Therefore, R’s expected chance for a safe game state is greater if resides at v1,
hence, R is more probable to avoid being captured at v1 than at v2.

Corollary 1 Let v1, v2 ∈ V be nodes such that U(v1) = U(v2), thus R has the same

probability to be captured at v1 or at v2. Therefore, if p1 and p2 are paths which lead

R to a goal node, such that the utility along each node of p1 is the same as along p2, R

should follow the path with the fewer hops.

Theorem 1 In the offline model where none of the agents know the initial location

of its opponent, R’s proposed strategy based on the SecureTravel criteria is likely to

guarantee safest navigation.

Proof Let G′=(V ′, E′) be the weighted directed graph constructed as mentioned
above and let p = 〈v1, . . . , vk〉 be a path. Recall that U(v) ∈ [0, 1] for each v ∈ V .
Let w′(p) be p’s weight in G′ and let U(p) be p’s path utility.

w′(p) =
k∑

i=1

(1− U(vi)) = 1− U(v1) + 1− U(v2) + ...+ 1− U(vk) =

= k − U(p)

Therefore, the shortest path in G′ minimizes k − U(p), where k is the number
of nodes along the shortest path. First, since Dijkstra’s algorithm returns the
shortest path, this path will not be longer than necessary – satisfying requirement
1 of SecureTravel. Second, in order to minimize k − U(p), U(p) must be the
maximal among the paths with k nodes (and that terminate at some goal node,
of course), thus requirement 2 of SecureTravel is met.

In our settings, finding the shortest path in G′ (i.e., after the transition from
node utilities to directed edge weights) does not correlate to finding the longest
path in the map graph G, rather relates to satisfying SecureTravel criteria. We

4 If R would have been risk averse, then a map node’s utility would not relate to the expected
probability for winning, rather to the worst associated game state.
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shall now emphasize the difference:
As explained in the proof of Theorem 1, R’s path p minimizes k − U(p), where k
is the number of nodes along p. For example, consider a path with 3 nodes with
path utility 2.9 and a path with 25 nodes with path utility 20. While the first
path minimizes k − U(p), the longer path is the second one. However, as claimed
above, the first path is indeed preferable. Therefore R’s strategy is not intended
for finding the longest path in the map graph G.

Conjecture 1 Without any further knowledge, following Algorithm InterceptDetOpp

will maximize C’s probability to capture R.

We believe C’s proposed strategy is optimal, yet its optimality proof is left for
future work. The following is our suggested justification for this heuristic:
Suppose C’s proposed strategy does not maximize C’s probability to capture R

(i.e., win). Therefore, there exists an optimal strategy P ∗ which maximizes C’s

win probability. Namely, when C resides at a node v ∈ V at time t, P
∗(t)
v is a

distribution over v’s neighbors, such that if C chooses its next move according to

P
∗(t)
v , C maximizes its probability to capture R. Let u ∈ V be v neighboring node

such that P
∗(t)
v [u] is greater than any other neighbor of v. As a consequence, C’s

probability to capture R is greater at u than at any other neighbors of v. Thus,
most of C’s interception options go through u. This is how C’s proposed strategy
behaves: choose a neighboring node stochastically, biased towards nodes with more
interception options. Hence, P ∗ and C’s proposed strategy act the same.

Theorem 1 explains why R benefits the most if follows its proposed strategy,
based on the knowledge available to the agents, although regardless of C’s strategy.
Conjecture 1 claims that if R follows a deterministic strategy which is known to
C, then C should not deviate from its proposed strategy. Thus, the combination of
Theorem 1 and Conjecture 1 yields that in the scenario of Section 5.1, R should
follow its proposed strategy, and given this choice, C would not deviate from its
proposed strategy. Hence, a Nash equilibrium is indeed obtained.

Corollary 2 If both R,C follow their suggested strategies, a Nash equilibrium is ob-

tained.

Time complexity of computing R’s strategy is O(|E|log|V |). Generating
the directed graph G′ requires a traversal over the entire map graph G and O(1)
for each edge (creating the two directed edges), thus O(|E|+|V |). Constructing the
weight function over the edge set E′ of G′ takes O(|E′|), but since |E′|= 2·|E|, then
O(|E|). Applying Dijkstra’s algorithm on G′ takes O(|E′|log|V ′|) but since V = V ′,
then O(|E|log|V |). Therefore, total running time complexity is O(|E|log|V |).

Time complexity of the offline preprocessing computations of C’s strat-

egy is O (|V |(|E|log|V |)). In each iteration of the Algorithm InterceptDetOpp

(Line 3) C simulates R’s strategy (Line 4). Given a possible path for R, C plans a
suitable intercepting path (Line 5). This is obtained by first computing the dis-
tance (in terms of hops) from each map graph node to C’s initial location (applying
BFS Algorithm once). Then, C finds the first node on R’s assumed path that is
closer to C than to R’s assumed start (Line 5), thus traversing over a list of O(|V |)
nodes. Note that the distance from R’s assumed start to any node on its path is
the node’s index on the path. Once such node is found, C’s path is constructed
by backtracking Π (the mapping from a node to its parent on the shortest path)
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obtained from Algorithm msBFS. The construction of an intercepting path is fol-
lowed by another traversal over this path with O(1) work for each node (Line
7). Thus, each iteration takes O(|E|log|V |) + O(|V |) ∈ O(|E|log)|V | time and the
entire loop takes O(|V |+|E|) + O (|V |(|E|log|V |)) ∈ O (|V |(|E|log|V |)) time (there
are O(|V |) possible start locations for R).

Time complexity of the runtime computations of C’s strategy is O(|V|+|E|)
for the entire execution. At each time C has to choose its next move, the arrival
times which are smaller than the current time step are removed (Line 9). If the ar-
rival times are stored in a sorted manner, then the arrival times list can be iterated
from start until reaching the first element that is greater or equal to the current
time step. That is, each time another chunk of the arrival times list is removed.
The list is at most |V | elements long, because R’s longest simple path is of length
|V |−1. Hence, if combining the number of removed elements in all iterations, at
most |V | elements will be removed. Once the irrelevant arrival times had been re-
moved, the transition probability to each neighbor is computed. The denominator
in the transition probability expression in Line 10 can be computed once, and be
used for each neighbor. The denominator is obtained in O(|N(vC)|) work, where
N(vC) is the set of C’s neighbors. Therefore, throughout the entire execution, all
edges will be processed. Hence, O(|V |+|E|) work for the entire execution.

5.2 Evader Knows Where Pursuer Starts

This scenario assumes that R knows where C starts, but C has no knowledge
regarding R’s initial location.
R’s Strategy. Similarly to Section 5.1, R plans a path which maximizes its utility.
Since C’s initial location, v0

C, is now known, at time t R can ignore configurations
〈v, u〉, v, u∈V where u is more than t hops away from v0

C. Namely, R can ignore
game states that are not reachable at the moment. Due to the dependency of the
configuration space subset on the time step t, the edge weights of the directed
graph G′ (Section 5.1) are time-dependent as well, since node utility values are
drawn from configuration utilities (Section 4.2). Therefore, planning the shortest
path (i.e., utility-maximizing path) is now an instance of a path planning with
dynamic weights problem, solved by Algorithm MaxTimeDependUtil. (Note that
the table D can be replaced with 2 line vectors. D is used for simplicity). Ut(i, v)
(Line 6) is v’s utility at time i, based on reachable configurations at this time only:

UR,t(i, v) = fcost({〈v, u〉|d(v, u) ≤ i}) (5)

Where d(v, u) is the distance in terms of hops from v to u, and fcost is the risk
attitude applied in order to obtain the node utility value.
C’s Strategy. C’s strategy from Section 5.1 can cope with any deterministic motion
strategy for R. Therefore, C can apply Algorithm InterceptDetOpp.

Empirical Evaluation. We have evaluated R’s winning rate when both agents
plan their strategy offline, yet only R knows its opponent’s initial location (see
results in Figure 3). Even though C’s location is not known at runtime, R was ex-
pected to take advantage of knowing C’s initial location while C does not know R’s.
However, Figure 3 shows otherwise. R’s winning rate is much lower if it incorpo-
rates the knowledge of C’s initial location into its strategy. Namely, R should have
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Algorithm 6 MaxTimeDependUtil(G,Ut, v
0
R, v

0
C)

Input:
G = (V,E) map graph
Ut(i,v) node utility function, considers relevant configurations at time i
v0

R R’s initial location

v0
C C’s initial location

1: initialize a table D of size |V |×|V |, default values: −∞
//D[i][v] is optimal cost to v∈V at time i

2: initialize a table Π of size |V |×|V |, default values: NULL
//Π[i][v] is v’s parent on shortest path from v0

R at time i

3: for each neighbor v of v0
R: D[0][v]←Ut(0, v), Π[0][v]←v0

R
4: for all i ←1 to |V |−1 do //possible time steps along a simple path
5: for all v ∈ V do
6: D[i][v]←maxu∈V \VG

{D[i− 1][u] + Ut(i, v)|(u, v) ∈ E}
7: Π[i][v]←arg maxu∈V \VG

{D[i− 1][u] + Ut(i, v)|(u, v) ∈ E}
//set path maximal utility to v for current time obtained from some non-goal neighbor
u

8: end for
9: end for

10: backtrack to v0
R from vg ∈ VG with maximal D value

a symmetrical knowledge to C’s, regarding the initial location. We have further
inspected the settings of this scenario, and concluded that R plans its path based
on an unknowledgeable adversary C, while C plans its path trying to intercept the
knowledgeable R. That is, R knows that its opponent C does not know R’s initial
location. Thus, R plans its path under the assumption that its opponent does not
know R’s initial location. However, C is aware that its initial location is widely
known. Therefore, when C plans the path R would have taken given some possible
initial location, this path is planned under the assumption that C’s initial location
is indeed known to R. Namely, while R assumes an opponent which lacks knowl-
edge, C assumes an opponent which takes advantage of the available knowledge
(i.e., C’s initial location). Hence, while R plays against the same opponent, C takes
advantage of R’s knowledge. Thus, in this scenario, R follows the same strategy as
in Section 5.1 and consequently, C follows its strategy of Section 5.1, as well.

5.3 Mutually Known Initial Locations

This scenario assumes that both agents know each other’s initial locations. Since
C is capable of performing the same computations as R, and it knows R’s initial
location, then if R moves deterministically, C can intercept R. Hence, R should
move stochastically. Because R moves stochastically, C cannot apply Algorithm
InterceptDetOpp and has no reason to plan a deterministic path either.

Denote the stochastic motion strategies of R, C as SR, SC, respectively. SR, SC

are defined as follows.

R’s Strategy. Denote R’s location at time t as vtR. At each time step t, R com-
putes the expected utility value of its neighboring nodes, then chooses a neighbor
stochastically, with transition probabilities biased towards greater expected node
utilities. Let vi ∈ V be a neighbor of vtR. The transition probability from vtR to vi,

S(t)
R,vR

[vi], is obtained as follows:
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Fig. 3: R’s winning rate when both R,C compute their strategies offline. R’s performance when
knows C’s initial location is compared to when R does not know C’s initial location

S(t)
R,vR

[vi] =
EU

(t+1)
R (vi)∑

vj :(v,vj)∈E EU
(t+1)
R (vj)

(6)

Where (vR, vi)∈E. The expected node utilities at time t are computed as fol-
lows:

EU
(t)
R (v) = fcost

({
P̂

(t)
C [vi] · UR(〈v, vi〉)|vi ∈ V

})
(7)

Where P̂
(t)
C is a probability distribution over C’s location at time t. As in Equa-

tion 1, fcost denotes the risk attitude (e.g., risk neutral or risk averse). However,
instead of taking the configuration utility values as is, the utility value of a con-
figuration 〈v, vi〉 is multiplied by the probability that C resides at vi at the next
time step. Namely, more influence is given to the more probable game states. Note
that R’s transition probabilities at time t are derived from its expected utility at
time t+ 1, since R is biased towards the neighboring node which is expected to be
safer at the next time step.

P̂
(t)
C is initialized as P̂

(0)
C [v0

C] = 1,P̂
(0)
C [v] = 0 for v 6= v0

C. For the following time
step, this distribution is computed by applying C’s stochastic strategy SC at each

node (i.e., forming a transition matrix for time t, which is multiplied by P̂
(t)
C ). This

strategy is obtained symmetrically to Equations 6,7, due to the common knowledge

of initial locations. Note, however, that when R simulates SC for updating P̂
(t)
C ,

the computations of P̂
(t)
R are based on R’s node utilities (rather than the expected

utilities). Otherwise, a mutual-dependency would occur.
C’s Strategy. C follows a symmetric strategy to R’s.

Time complexity of obtaining transition probabilities of an agent is

O(max deg · |V |), where max deg is maximal degree in the map graph. Comput-
ing the expected utility value of some node v ∈ V at time t (Equation 7) requires
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O(1) work for each map node vi ∈ V , hence a total of O(|V |). At time t, if an agent
resides at v ∈ V , when computing its transition probabilities to its neighbors as
in Equation 6, the denominator can be computed once and be used for any vi.
Computing the denominator requires the expected utility of v’s neighbors, thus
O(|V |) for any of v’s neighbors. Once the denominator is obtained, the transition
probability from v to some neighbor vi is computed in O(1). Therefore, obtaining
the transition probabilities from v at time t takes O(deg(v) · |V |), where deg(v) is
v’s degree. Hence, bounded by O(max deg · |V |).
Note that when an agent simulates its adversary’s stochastic strategy, no new in-
formation is required for obtaining the estimated probability distribution over its

location (e.g., when R updates P̂
(t)
C ). Therefore, these computations can be per-

formed offline for future time steps, thus reducing the computations performed at
runtime.

Theorem 2 If the players apply risk neutral as configurations and map nodes utility

function when computing utility values, and follow the stochastic strategies SR, SR (as

described in Equation 6), then at each time step R,C maximize their expected payoff

(Equation 8).

Proof At time t, let vR,vC∈V be the locations of R,C, respectively. R’s expected
payoff for this sub-game at time t is as follows:

EP (R) =
∑

vi:(vR,vi)∈E
S(t)

R,vR
[vi] ·

 ∑
vj :(vC,vj)∈E

S(t)
C,vC

[vj ] · UR(〈vi, vj〉)

 (8)

As a risk-neutral player, R is biased towards neighboring nodes with greater ex-
pected node utility values (Equations 6,7). Lemma 2 has shown that nodes with
greater utility values have a greater chance to be associated with safer game states.

Therefore, if S(t)
R,vR

[vi] > S
(t)
R,vR

[vi′ ] ((vR, vi),(vR, vi′)∈E), then for all u ∈ V :

Pr
(
UR (〈vi, u〉) ≥ UR (〈vi′ , u〉)

)
> (9)

Pr
(
UR (〈vi, u〉) < UR (〈vi′ , u〉)

)
Hence, if R follows the stochastic strategy SR, then R maximizes its expected payoff
for the sub-game at time t (Equation 8). Note that this applies even if at time t the
game state is not completely visible (i.e., at least one agent might not observe its
opponent), because, as claimed above, SR maximizes the probability for a better
game state at the next time step regardless of the opponent’s choice. Proving for
C is symmetric.

Lemma 3 Let fcost : 2Vconf → [0, 1] be a utility function and let f̃cost be a utility

function which multiplies each configuration utility by 1
|V | .

Denote: U(v) = fcost ({〈v, u〉|u ∈ V }), Ũ(v) = f̃cost ({〈v, u〉|u ∈ V }).

Then, ∀v ∈ V , U(v) = 1
|V | · Ũ(v).

Proof Let us examine U(v) for each risk attitude:
Averse: U(v)=minu∈V

{
Uconf (〈v, u〉)

}
Neutral: U(v) =

∑
u∈V

1
|V |Uconf (〈v, u〉)
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Compare to Ũ(v):

Averse: Ũ(v)=minu∈V

{
1
|V |Uconf (〈v, u〉)

}
= 1
|V | minu∈V

{
Uconf (〈v, u〉)

}
= 1
|V |U(v).

Neutral: Ũ(v) =
∑

u∈V

(
1
|V |

)2

Uconf (〈v, u〉)= 1
|V |
∑

u∈V
1
|V |Uconf (〈v, u〉)= 1

|V |U(v).

Theorem 3 At time t, a node’s safety evaluation based on its current expected utility

value, is more accurate than its safety evaluation based on the time-independent utility

value.

Proof The entropy regarding the estimation of C’s location is maximum when P̂
(t)
C

is uniform. That is, R has no indication of C’s current location, hence, the expected
node utility values evaluate the nodes’ safety least accurately. According to Lemma
3, the time-independent utility values are equal up to a factor of 1

|V | to the expected

utility values if P̂
(t)
C is a uniform distribution. Since the transition probability to

a neighboring node v is v’s utility normalized by all other neighbors’ utilities, R

would be biased to the same nodes. That is, since the same factor is applied to all
of the nodes, the scale is maintained. Thus, the stochastic strategies would be the

same with the time-independent utility values or when P̂
(t)
C is uniform. Hence, at

time t, a node’s safety is more accurate using the expected node utilities rather
than the time-independent utility values.

5.4 Pursuer Knows Where The Evader Starts

This scenario assumes that C knows where R starts, but R has no knowledge
regarding C’s initial location. R and C move stochastically, for the same reasons of
Section 5.3.
R’s Strategy. R follows the same strategy SR proposed in Section 5.3, yet in this

scenario, P̂
(0)
C is initialized as: P̂

(0)
C [v0

R] = 0, P̂
(0)
C [vg] = 0 for vg ∈ VG and P̂

(0)
C [v] =

1
|V |−|VG∪{v0

R}|
for v /∈ (VG ∪ {v0

R}). That is, although R does not know C’s initial

location, R knows C does not start at a goal node nor at R’s start. Such initialization

of P̂
(0)
C takes advantage of R’s knowledge, as limited as might be. When simulating

C’s strategy, P̂
(0)
R is initialized with 1 for v0

R and 0 otherwise, because R is aware
that its initial location is known.
C’s Strategy. C follows the same strategy SC proposed in Section 5.3. In order to

match R’s strategy simulation to R’s actual strategy, P̂
(0)
C is initialized as R does.

This scenario is modeled the same as in Section 5.3, except for a slight difference
in the initialization. Note that the proofs for guarantees of Section 5.3 (Theorems
2, 3) do not rely on the manner in which the model is initialized. Therefore, these
theoretical guarantees apply in this scenario, as well.

6 Strategy Updates On-the-Fly

In the offline problem variant (Section 5), no new information was gained while
moving around the map graph. Strategies were computed offline, such that they
aim to reduce the probability that C captures R, based on the map graph’s topol-
ogy. However, relying solely on graph topology, i.e., offline planning, means no reac-
tion to new information gained while moving around the map graph. In this section,
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we discuss a model where some nodes can be observed by the other nodes, which
can be considered as viewpoints. Such nodes provide information (or, knowledge)
regarding an agent, e.g., tracks that the agent has left behind, or perhaps whether
the agent currently resides at the node. When the agents follow the stochastic
strategies (based on node expected utilities) – SR, SC – computed as described
in Section 5.3, they can use these viewpoints in order to acquire information con-
cerning their opponent’s location or visited nodes, and update their strategies
accordingly (each agent and its own objective).

For example, Figure 4 shows a scenario where R resides at node v2. v2 is
a viewpoint which provides information associated with itself and nodes v3,v5

(dashed edges). If C resides at v3, R can update the strategy at v2 such that
it reaches v5 at the next turn, and increase its chance to reach any of the goal
nodes (G1,G2) safely. Less trivially, if C resides at v4 and had left a track at v3

at previous turn. R does not know C’s exact current location, but it is less likely
to be v5 (agents move a single hop each turn, and v5 is 2 hops away from v4).
Therefore, R can update the strategy at v2 such that it favors moving towards v5.

Fig. 4: Map graph edges are straight lines, while dashed lines denote nodes that are visible from
other nodes

We shall now formally model the knowledge (i.e., information regarding an
agent’s whereabouts) and how it is acquired. Then, we present a binary knowledge
model (where an agent is either currently observed or not), followed by a method
to update the strategies efficiently online.

6.1 Knowledge Modeling and Definitions

Let Evisible ⊆ V ×V be a set of directed visibility edges, i.e., (v, u) ∈ Evisible means
that u is visible from v. Let dvisout(v) be the out-degree in terms of visibility edges
of a node v ∈ V . This implies that a viewpoint is any node v ∈ V with dvisout(v) > 0.
Each time an agent visits a map graph node v ∈ V , it gains some knowledge. This
information is associated with v and also with other nodes which are visible from
v. Formally, we denote by K the set of possible knowledge values (e.g., time stamp
of last visit). Therefore, K : V → 2V×K is defined as follows:

K(v) = {(u, k)|(v, u) ∈ Evisible, k ∈ K} ∪
{

(v, k′)
}
, k′ ∈ K (10)

The information utility associated with a node v ∈ V expresses the extent of
the map graph that v reveals. That is, the information utility of a node v ∈ V
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matches the a-priori value of the information gained at v. Various risk attitudes
can be applied:
Risk averse:

IU(v) = 1− dvisin (v)

max dvisin

(11)

dvisin (v) is v’s in-degree and max dvisin is maximal in-degree in terms of visibility
edges. This function favors nodes where an agent is less likely to be observed.
Risk seeking:

IU(v) =
dvisout(v)

max dvisout

(12)

max dvisout is maximal out-degree in visibility edges. This function favors nodes where
an agent observes a larger portion of the graph.
Risk neutral:

IU(v) = 0 (13)

An agent uses information gained at viewpoints, but does not seek new information
nor avoids locations where it can be observed.

Our discussion will focus on a binary knowledge model, where K = {0, 1∗}. 1∗

means an agent is currently observed, 0 means agent is not observed.

6.2 On-the-Fly Strategy Update Scheme

Because both agents receive information from the visibility edges, the agents can
be observed not only at their initial location, rather also along the game. Therefore,
both agents obey the stochastic strategies of Section 5.3. If R observes C’s initial

location, then P̂
(0)
C is 1 for C’s initial location and 0 for all other nodes (as in

Section 5.3). Otherwise, P̂
(0)
C is initialized as in Section 5.4. C operates similarly.

We shall now discuss the required modifications of the strategies SR, SC from
Section 5.3 for this online model.

P̂
(t)
R for R’s simulation of C’s strategy is initialized according to R’s knowledge

of C’s perspective. Namely, if C’s initial location is known, R knows whether C

observes R or not. Hence, P̂
(t)
R would be updated accordingly. In case R does not

initially observe C, the best R can do is initialize P̂
(t)
R as if R is not observed by

C (because there is no indication otherwise). Initializations performed by C are
symmetric.

Assume R’s location at time t, vtR, is a viewpoint. If C is observed at some node

v, R sets P̂
(t)
C with 1 for v and 0 otherwise. However, if C is not observed at any of

the visible nodes, then C is known not to reside at these nodes. Hence, P̂
(t)
C is set

with 0 for each observed node and then the former probabilities associated with
these nodes are split proportionally to the remaining nodes. Formally:
Denote the set of nodes being visible from vtR as Vvisible(vtR):

Vvisible(vtR) =
{
u ∈ V |(vtR, u) ∈ Evisible

}
(14)

Denote P̂
(t)
C before being updated as P̃

(t)
C , then:
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∀v ∈ Vvisible(vtR) : P̂
(t)
C [v] = 0

∀v ∈ V \ Vvisible(vtR) : P̂
(t)
C [v] = P̃

(t)
C [v] +

P̃
(t)
C [v] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

(15)

Note that if
∑

v∈Vvisible(vt
R) P̃

(t)
C [v] = 0, then the distribution over C’s location

is not changed. Namely, if C was not expected to reside at any of v ∈ Vvisible(vtR),

then the visibility edges do not provide new information, thus P̂
(t)
C [v] remains the

same.
Once P̂

(t)
C has been updated according to the visible nodes, P̂

(t)
C is multiplied

by C’s transition matrix in order to obtain P̂
(t+1)
C . In addition, the transition

probabilities are adapted:
If vtR is a viewpoint, then some information is received, i.e., C either resides at
the observed nodes or is known not to reside there. Therefore, R’s estimation of
C’s current location has not been proven wrong and can be used to re-weight R’s
transition probabilities:

S̃(t)
R,v[vi] =

S(t)
R,v[vi] ·

(
1− P̂ (t+1)

C [vi]
)

∑
vj :(v,vj)∈E S

(t)
R,v[vj ] ·

(
1− P̂ (t+1)

C [vj ]
) (16)

Where S(t)
R,v[vi] is computed as Equation 6. That is, although EU

(t)
R (vi) reflects

vi’s utility while increasing influence of more probable game configurations, it
is necessary to address the probability that C will move to vi at the next turn:

P̂
(t+1)
C [vi]. C operates symmetrically at a viewpoint, except that in Equation 16, C

multiplies the transition probabilities by P̂
(t+1)
R [vi]. That is, C favors nodes where

it is more likely to capture R, while R aims at avoiding C.
If vtR is not a viewpoint, then no new information regarding C is received.

P̂
(t+1)
C is obtained by multiplying P̂

(t)
C by C’s transition matrix. R’s transition

probabilities are re-weighted based on information utility of vtR’s neighbors. That
is, if R’s estimation of C’s current location cannot be supported, R reacts based on
its attitude towards new information (if risk neutral IU , no change is done):

S̃(t)
R,v[vi] =

S(t)
R,v[vi] · IU(vi)∑

vj :(v,vj)∈E S
(t)
R,v[vj ] · IU(vj)

(17)

C operates symmetrically at a node which is not a viewpoint.
We should note that although both agents update their common-knowledge

baseline strategies, an agent is not aware of the current state of its opponent’s
motion strategies.

Updating the transition probability distribution of some node is linear

in its degree. Let v ∈ V be the node where some agent resides at time t. The
update scheme, as given in Equations 16 and 17, is applied once the transition
probabilities from v to any of its neighbors (Equation 6) had been computed. The
denominator of Equation 16 is computed once and used for each of v’s neighbors.
Given the transition probabilities, the denominator is computed with O(1) work
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for each neighbor, thus O(deg(v)). Hence, applying the update scheme of Equation
16 is linear in v’s degree. As for Equation 17, its denominator can also be computed
once and be used for all of v’s neighbors. In case of risk averse or risk seeking IU
(Equations 11,12), the maximal visibility degree (either in-degree or out-degree)
can be computed offline, as well as the visibility degree of any other node. Thus,
the IU of any node can be obtained in O(1) at runtime. Therefore, given the
transition probabilities, the denominator of Equation 17 is computed with O(1)
for each of v’s neighbors and applying this update scheme is linear in v’s degree,
as well.

6.3 Contribution of On-the-Fly Updates

We shall now prove that relying on information received online for updating the
strategies SR, SC at runtime, provides a more accurate estimation of C’s current
location, thus yields better strategies.

Definition 2 Let P ,Q be two discrete probability distributions on the countable
set Ω. Their Hellinger Distance [22] is defined as follows:

H(P,Q) =

√∑
ω∈Ω

(√
P (ω)−

√
Q(ω)

)2

(18)

Theorem 4 Denote the actual probability distribution over C’s location at time t as

P
(t)
C (i.e., P

(t)
C is 1 for C’s location and 0 for any other node). P̃

(t)
C denotes R’s estima-

tion for P
(t)
C before updating it with the information received from Vvisible(vtR), while

P̂
(t)
C denotes P̃

(t)
C after being updated. Incorporating the information received from the

visibility edges for updating P̂
(t)
C , improves the accuracy of this estimation. Namely,

H(P̃
(t)
C , P

(t)
C ) ≥ H(P̂

(t)
C , P

(t)
C ).

For an easier reading, the following proof does not specify all solution steps.
The full proof can be found in Section 10 (appendix).

Proof As stated in Section 6.2, if
∑

v∈Vvisible(vt
R) P̃

(t)
C [v] = 0 then P̂

(t)
C = P̃

(t)
C .

Hence, H(P̃
(t)
C , P

(t)
C ) = H(P̂

(t)
C , P

(t)
C ).

Now, assume
∑

v∈Vvisible(vt
R) P̃

(t)
C [v] > 0 (a sum of probabilities is either 0 or

positive). If C has been observed (vtC ∈ Vvisible(vtR)), then P̂
(t)
C = P

(t)
C .

Otherwise, vtC /∈ Vvisible(vtR). Let us compute the Hellinger distance between
the actual distribution over C’s location to R’ estimated distribution prior being

updated, H
(
P̃

(t)
C , P

(t)
C

)
:

H
(
P̃

(t)
C , P

(t)
C

)
=

∑
v∈Vvisible(vt

R)

(√
P̃

(t)
C [v]−

√
P

(t)
C [v]

)2

+

(√
P̃

(t)
C [vtC]−

√
P

(t)
C [vtC]

)2


1/2

C resides at vtC, hence ∀v ∈ V \ {vtC}, P t
C[v] = 0, P t

C[vtC] = 1. Therefore:
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H
(
P̃

(t)
C , P

(t)
C

)
= ∑

v∈V \(Vvisible(vt
R)∪{vt

C})

P̃
(t)
C [v] +

∑
v∈Vvisible(vt

R)

P̃
(t)
C [v] + P̃

(t)
C − 2

√
P̃

(t)
C [vtC] + 1

)1/2

Now, we shall compute the Hellinger distance between the actual distribution

over C’s location to R’ estimated distribution after being updated, H
(
P̂

(t)
C , P

(t)
C

)
:

H
(
P̂

(t)
C , P

(t)
C

)
= ∑

v∈V \(Vvisible(vt
R)∪{vt

C})

P̂
(t)
C [v] +

∑
v∈Vvisible(vt

R)

P̂
(t)
C [v] +

(√
P̂

(t)
C [vtC]− 1

)2
)1/2

C resides at vtC and vtC /∈ Vvisible(vtR), hence:

∀v ∈ Vvisible(vtR) : P̂
(t)
C [v] = 0

∀v ∈ V \ Vvisible(vtR) : P̂
(t)
C [v] = P̃

(t)
C [v] +

P̃
(t)
C [v] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̂

(t)
C [v]

Therefore, we obtain:

H
(
P̂

(t)
C , P

(t)
C

)
= ∑

v∈V \(Vvisible(vt
R)∪{vt

C})

P̃
(t)
C [v] +

∑
v∈Vvisible(vt

R)

P̃
(t)
C [v] + P̃

(t)
C [vtC]

−2

√√√√√P̃
(t)
C [vtC] +

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

+ 1


1/2

If P̃
(t)
C [vtC] = 0 then P̂

(t)
C [vtC] = P̃

(t)
C [vtC] and H(P̃

(t)
C , P

(t)
C ) = H(P̂

(t)
C , P

(t)
C ).

Otherwise:

P̃
(t)
C [vtC] > 0⇒

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

> 0

⇒

√√√√√P̃
(t)
C [vtC] +

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

>

√
P̃

(t)
C [vtC]

⇒ H(P̃
(t)
C , P

(t)
C ) > H(P̂

(t)
C , P

(t)
C )

In conclusion, we obtain that H(P̃
(t)
C , P

(t)
C ) ≥ H(P̂

(t)
C , P

(t)
C ), hence R’s estimated

probability distribution over C’s location is closer to P
(t)
C after incorporating the

information gained from the visibility edges.
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Proving Theorem 4 for C is similar.
Now, we prove that if the agents apply risk averse as configuration and node

utility functions, the game converges into a Markov perfect equilibrium [34]. This is
proven in the following steps: the probability distribution over the adversary’s loca-
tion converges (Lemma 4), thus the expected node utility values converge (Lemma
5). As a consequence, R’s transition probabilities converge, as well (Lemma 6).
These claims can be proven symmetrically for C, so we obtain that if omitting the
strategy update at the current time step, the motion strategies of both agents (SR,
SC) converge into time-independent strategies. Therefore, applying risk averse at-
titude yields a Nash Equilibrium at each time step (Lemma 7). If the agents seek
to view their opponent, it follows that the game converges into a Markov perfect
equilibrium (Theorem 5).

Lemma 4 For all ε>0, there exists a time step t∗>0, such that for each t>t∗:

H
(
P̂

(t)
C , P̂

(t∗)
C

)
<ε.

Proof Figure 5 relates to the simulated models when R runs online (it would be
symmetrical for the online model of C). When R runs online, R simulates C’s strat-
egy, denoted as C′. C′ is an offline stochastic model, based on C’s expected utility
values (i.e., C’s strategy in Section 5.3). In such strategy, an agent computes its
expected utilities based on a time-independent (i.e., basic) model of its opponent.
That is, C′ simulates a time-independent offline stochastic model of R, denoted as
R′′.

Fig. 5: R’s online model simulates C – an offline stochastic model based on C’s expected utility
values – denoted as C′. C′ simulates R – an offline stochastic model based on time-independent
utility values – denoted as R′′.

R′′, which is used for updating P̂
(t)
C , can be represented as a Markov chain,

MR, where each map node is a world state. Hence, MR’s state space is finite. The
undirected map graph is assumed to be connected, making MR irreducible. An
irreducible Markov chain with a finite state space has a stationary distribution [24].

Let P̂
(t)
R′′ be the probability distribution over the location of R′′ at time t. Let t̃

be a time step where H(P̂
(t̃)
R′′ ,P̂

(t̃)
R′′ ·MR) is small enough, i.e., at time t̃, MR is close

enough to convergence. It follows that for t>t̃, the expected node utility values of
C′ at time t are close enough to those at t̃, thus the transition probabilities of C′

converge. Therefore, as for R′′, P̂C becomes stationary. Namely, there exists t∗≥t̃
such that for each t>t∗: H

(
P̂

(t)
C , P̂

(t∗)
C

)
< ε.

Lemma 5 For all ε>0, there exists a time step t∗>0, such that for each t>t∗: ∀v∈V ,

|EU (t)(v)−EU (t∗)(v)|<ε.
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Proof At time t, for each node v∈V , R’s expected utility value is obtained as in
Equation 7. Following Lemma 4, let t̃>0 denote the time step where P̂C’s change
over time is negligible. Since a configuration utility is time-independent, there
exists t∗≥t̃ such that for each t>t∗: ∀v∈V , |EU (t)(v)− EU (t∗)(v)|<ε.

Lemma 6 At time t, let v denote R’s location and let S(t)
R,v[vi] denote R’s transition

probability from v to vi, (v, vi) ∈E. For all ε>0, there exists a time step t∗>0, such

that for each t>t∗: |S(t)
R,v[vi]−S

(t∗)
R,v [vi]|<ε.

Proof At time t, for each node vi ((v, vi)∈E), recall from Equation 6 R’s transition
probability from v to vi. Following Lemma 5, let t̃>0 denote the time step where
EU ’s change over time is negligible. Therefore, there exists t∗≥t̃ such that for each

t>t∗: ∀v∈V , |S(t)
R,v[vi]−S

(t∗)
R,v [vi]|<ε.

Lemma 7 If the players apply risk averse as configuration and map nodes utility func-

tion when computing utility values and follow their stochastic strategies SR and SC,

then at each time step, their choices are in Nash Equilibrium.

Proof At time t, let vR,vC∈V be the locations of R,C, respectively. R’s expected
payoff for this sub-game at time t is as in Equation 8. The expected payoff for
C is obtained symmetrically. R is biased towards nodes with greater expected
node utility. Therefore, if R applies risk averse as a configuration and node utility
function, then at each time step R favors neighboring nodes whose worst game
state is better than the other neighbors’ worst state. That is, R follows a maxmin
strategy, and symmetrically, C follows a minmax strategy. Given that our game is
a zero-sum game with two players, it follows from the Minimax Theorem [40] that
the strategies of R,C are in equilibrium at time t.

The following Theorem establishes that in a fully-visible map graph, under
certain conditions the game converges to a stochastic game with a Markov perfect
equilibrium. As shown in [34], in a stochastic game where the actions are observable
to each player and the players’ strategies depend on the game state only (i.e.,
Markovian), then if an equilibrium is reached in each sub-game, then the stochastic
game is in Markov perfect equilibrium.

Theorem 5 Assume a fully-visible map graph (i.e., a visibility edge between each pair

of nodes) and that R,C’s utility values were obtained by applying risk averse as config-

uration and map nodes utility function. Then, if R,C follow their stochastic strategies

SR, SC at each time step, the game converges to a stochastic game with a Markov

perfect equilibrium.

Proof Due to the full visibility assumption, R,C move simultaneously and know
the current game state (i.e., current configuration). The next game state is de-
termined stochastically, according to the probabilistic transitions played by R,C.
Therefore, the game becomes a stochastic game. According to Lemma 6, there
exists a time step t∗R, such that for each t>t∗R, R’s stochastic strategy SR becomes
time-independent5. Lemma 6 can be applied symmetrically for C, yielding the

5 While an agent follows the strategy associated with its current node, it would be the same
strategy in recurrent visits after time t∗.
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existence of a time step t∗C for which C’s stochastic strategy SC becomes time-
independent. Define t∗=max {t∗R, t∗C}. Therefore, for each time step t>t∗, both
R,C follow time-independent stochastic strategies. Namely, the strategies depend
only on the game state. According to Lemma 7, each sub-game is in equilibrium.
Therefore, our game converges to a stochastic game which is in Markov perfect
equilibrium.

Re-weighting transition probabilities based on risk seeking information utility
means being biased towards neighboring nodes which provide visibility information
regarding a larger portion of the map graph. That is, approximating full visibil-
ity for the next time step. As followed from Theorem 5, full visibility (with risk
averse configuration/node utility functions) enables convergence towards a Markov
perfect equilibrium. The following corollary summarizes this conclusion:

Corollary 3 Assume Evisible ⊂ V × V and that R,C’s utility values were obtained

by applying risk averse as configuration and map nodes utility function. Then, re-

weighting transition probabilities SR, SC based on risk seeking information utility, helps

converging towards a Markov perfect equilibrium.

7 Additional Results for SANE

In this section we examine further aspects of the SANE problem. Sections 7.1
and 7.2 provide more aspects to the analysis of the problem variants which were
discussed above, while Section 7.3 addresses a new variant.

7.1 Game Termination

All of the experiments we have conducted – for both offline and online models –
have reached a terminal state, i.e., either R or C have won within a finite number
of moves (the empirical analysis is detailed in Section 8). In this section we present
a theoretical analysis of whether the game is guaranteed to terminate.

Theorem 6 Any instance of the offline strategies scenarios (Sections 5.1-5.4) is a

game with a finite expected duration.

Proof If R plans a deterministic path (Section 5.1, 5.2), the game terminates either
after R has completed its finite path or if C has succeeded capturing R on its way.
Hence, the game is over after a finite number of time steps.
If R follows a stochastic strategy based on the expected utility values, R’s strategy
is time-dependent (Section 5.3, 5.4). However, as stated in Lemma 6, there exists
a time step t∗R, such that for each t>t∗R, R’s stochastic strategy SR becomes time-
independent. In that case, R follows a fixed stochastic strategy, namely, R’s strategy
converges to a Markov chain in a finite number of time steps. In a finite Markov
chain, the expected hitting time between any pair of nodes is finite [14]. Therefore,
the expected hitting time between R’s initial location and some goal node vg ∈ VG
is also finite. Hence, the expected number of time steps until R wins is finite.
Moreover, the game might terminate earlier in case C captures R.
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In the on-the-fly strategy updates model (Section 6), game termination analysis
becomes much more difficult. The motion strategy can change constantly, based
on the information gained at the viewpoints. Incorporating Lemma 6 yields that at
each time step, the expected number of time steps until R wins is finite. However,
as the strategy keeps changing at each turn, this number of time steps is associated
with each time step separately. Namely, denote Tt as the expected number of time
steps until R wins at time step t. At time t + 1, the expected number of time
steps until R wins would be Tt+1, but there is no guarantee that Tt+1 = Tt − 1.
Hence, at each time step, the expected number of time steps required until R wins
does not necessarily decrease monotonically. However, so far we did not manage to
formulate an example for a game which does not end. Therefore, proving whether
the game in the online model is guaranteed to terminate or not, is left as an open
research question.

7.2 Hyperactive Property

The strategies proposed in the various problem modelings choose the next move
from the neighboring nodes only (Sections 5,6). We refer to such strategies as hy-

peractive, since they do not allow an agent to stay in its place at the next time step.
Hyperactive strategies are preferred, because otherwise, the game could remain in
the same configuration for an unbounded number of time steps, making the game
degenerated.

Suppose the configuration graph Gconf would had been constructed as in Sec-
tion 4, with the addition of a self loop for each node. As a consequence, the game
is allowed to stay in the same configuration at the next time step. Algorithm
CalcConfigsUtil computes the utility value for each configuration V ∈ Vconfig,
based on the values of the visited neighbors of V. If assuming self loops in Gconf ,
V is considered one of its neighbors. However, when Algorithm CalcConfigsUtil

computes the utility value of V, this configuration obviously does not have a
utility value yet. Therefore, V’s self loop is omitted when computing V’s util-
ity value. Hence, the outcome is computing the same utility values that Algorithm
CalcConfigsUtil yields for Gconf without the self loops – which is the configura-
tion graph that our framework uses. This way our framework for computing utility
values retains its generality: the framework computes utility values for the most
general case (where agents are allowed to stay in their place), while the motion
strategies can be hyperactive or not.

7.3 Zero-Knowledge Agents

The major part of our discussion relates to agents with symmetric computational
capabilities and have prior knowledge about the starting location or motion strat-
egy of their opponent. Nonetheless, a comprehensive study of the SANE problem
would include also zero knowledge agents. In this modeling, the agents are not
aware of their opponent’s starting location and do not use information gained at
viewpoints. Two scenarios are addressed: one where C follows a deterministic mo-
tion pattern and another where C follows a probabilistic motion pattern. Namely,
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C is a non-strategic agent. In both scenarios, R does not know C’s actual motion
pattern nor its type (deterministic or probabilistic).

As explained in section 5.1 (Theorem 1), R maximizes its winning probabil-
ity if follows the path to a goal node with maximum path utility (Equation 3).
However, the current model features a different adversary: while Section 5.1 as-
sumes an adversary who is capable of computing node utility values and plan a
path accordingly, we now face an adversary that does not maximize its probability
of intercepting R, rather merely follows some unknowledgeable motion strategy.
Thus, R might be able to follow the shortest path towards its closest goal node. In
this section, we compare two behaviors for R when playing against the unknowl-
edgeable C: a strategic and an opportunistic behavior.

Figure 6a compares R’s winning rate if follows the path with maximal path
utility or the shortest path, when C follows a random walk. Figure 6b compares
the same strategies for R, when C follows a deterministic patrol strategy: a cyclic
tour along the graph, generated by a depth-first traversal. If C is a zero-knowledge
agent, i.e., follows either a random walk or a deterministic patrol strategy (Figures
6a,6b), T-Test does not show any significant advantage for maximizing the utility
along R’s path (p-value was 0.0533).

The following theorem provides a theoretical interpretation of the empirical
results of Figures 6a,6b.

Theorem 7 If C follows a random walk, R maximizes its probability to win by following

the shortest path to some goal node.

Proof The random walk of C can be viewed as a Markov chain, such that each node
of the map graph is a state and the transition probabilities are given as follows:

M(vi, vj) =

{ 1
deg(vi)

(vi, vj) ∈ E
0 otherwise

(19)

Where M is the transition matrix and deg(v) is the degree of v ∈ V . Because
the map graph is connected, this Markov chain is irreducible. Due to the finite
number of nodes, the state space is finite. Therefore, M is recurrent [13]. In a
recurrent Markov chain, if starting from state v ∈ V , the probability of returning
to v after some finite number of moves is 1 [28]. Due to the Markov property,
when a state v is visited, it is as if the Markov chain starts again from v. Hence,
the probability to return to v once again remains 1. Thus, each state v ∈ V will
be visited an infinite number of times regardless of the initial state. Namely, if C

follows a random walk, the number of C’s visits in each node increases with time,
no matter where it has started. Thus, if R minimizes the number of nodes it visits
(i.e., follows the shortest path), R minimizes the probability to encounter C. Hence,
R maximizes its probability to win.

Note, though, that Theorem 7 applies only when C follows a random walk. In
case C is strategic, R should also behave strategically, as stated in Theorem 1.

7.4 Non-Uniform Edge Costs

The various motion strategies of the agents choose the next move based on the
utility values of the neighboring nodes. This could be generalized for non-uniform
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(a) R’s winning rate when R follows either the path with maximal utility or the
shortest path. C follows a random walk

(b) R’s winning rate when R follows either the path with maximal utility or the
shortest path. C a deterministic depth-first traversal along the graph

Fig. 6: R’s winning rate when R,C are zero-knowledge agents

edge costs by having the motion strategies prioritize the neighboring nodes de-
pending on the node where the agent currently resides. Namely, if an agent resides
at u ∈ V at time t, the cost f of some neighboring node v ∈ V would be given as
follows (without loss of generality, we demonstrate for R):

f(u, v) = c · UR(v) + (1− c) · w(u, v) (20)

Where UR(v) is v’s utility value independently of R’s current node, as computed in
Section 4.2. w(u, v) denotes the cost of the edge (u, v). That is, v’s cost is composed
of two factors: safety (UR(v)) and the travel cost. These factors are weighted by
the constant c ∈ [0, 1], such that if c = 1 it is the same as uniform edge costs, and
if c = 0 then the problem becomes an instance of the shortest path problem. Note,
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however, that since the node utilities are values between 0 to 1, the travel costs
should be normalized, as well.

8 Empirical Evaluation

In this section we evaluate our navigation strategies, as constructed by our utility-
computation framework, using different risk attitudes for computing the utility
values, and examine the effect of online strategies update. A collection of graphs
with 30 to 100 (with jumps of 5) nodes was randomly generated. For each num-
ber of nodes, 10 graphs were generated with each of the following probabilities to
create an edge: 0.05,0.1,0.15,0.2, making a total of 40 graphs per number of nodes
(self loops were not allowed). For each number of nodes, 10% of the nodes were
randomly set as goal nodes (i.e., safehouses). For each graph, a directed visibil-
ity edge (v, u) (v,u∈V ) was created with probability 1

2·d(v,u) , d(v, u) is distance

(in hops) between v,u. That is, the probability of a visibility edge decreases the
further the nodes are away from each other. This corresponds with most real-life
environments, where closer locations are more visible. For the offline model, an
experiment was executed for each combination of node and configuration utility
functions for R,C: risk averse, risk neutral (Section 4.2). Another risk attitude
which had been examined was risk seeking: for a configuration V ∈ Vconf , takes
the maximum value among V’s neighbors, and for a map node v ∈ V takes the
maximum value of a configuration where R resides at v. For the online model,
various utility functions were also used to evaluate the information obtained at a
node visited by an agent (Equations 11-13).

Each experiment was repeated 20 times for each graph within the graphs col-
lection. Each time new starting locations for both agents were randomly chosen
(not among the safehouses). This makes, for each settings of node, configuration
and information utilities, a total of 40 · 20 experiments for each graph size, result-
ing in a total of 40 · 20 · 9 = 7200 runs for each offline model scenario (Section
5) and 7200 · 5 = 36000 runs where agents update their strategies on-the-fly. For
each graph size, combination of node, configuration and information utilities, the
average winning rate of R was calculated and will be referred to as R’s winning

rate.

8.1 Evaluating the Utility-Based Strategies

This section presents the experiments conducted for evaluating the framework for
utility values computation and the generated navigation strategies for the various
scenarios of the offline (Section 5) and online (Section 6) models. Figure 7 shows
R’s winning rate for the offline model (Section 5). Each curve matches a different
setting of knowing the opponent’s initial location (utility functions are indicated).
Applying risk seeking (maximal utility among neighbors), for either configurations
or nodes, decreased R’s winning rate.

Figure 8a shows R’s winning rate when both agents run offline but only C

knows R’s initial location, with risk averse for configurations. Risk neutral for map
nodes was compared to risk seeking for map nodes. T-Test has confirmed that R’s
winning rate is significantly greater with risk neutral for map nodes (p-value <<
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Fig. 7: R’s winning rate when both R,C compute their strategies offline. Different setting of know-
ing the opponent’s initial location are presented

0.001). Figure 8b compares these settings of utility function when initial locations
are mutually known, there was no statistically significant difference (T-Test gave a
p-value of 0.2). This shows that information influences more than the risk attitude.

Figure 9a shows R’s winning rate for the following settings: both agents perform
on-the-fly strategy updates (i.e., run online), only C runs online and only R runs
online. When C ran online, C’s information utility (IU) was risk seeking, at a view-
point updated strategies by increasing capture probability and at a non-viewpoint
node, updated by IU of its neighbors (Section 6.2). When R ran online, R’s IU was
risk neutral and updated by decreasing capture probability at a viewpoint. In all
experiments, R and C were set with risk averse utility for configurations and risk
neutral for map nodes. In order to specifically examine the influence of on-the-fly
updates on R’s winning rate, when R ran online, executions where R did not ob-
serve C towards the last quarter of the game were discarded. Same for C when R

ran offline. ANOVA Single-Factor test has confirmed that these differences of the
winning rates are indeed statistically significant (p-value << 0.001), verified with
Tukey’s HSD post-hoc test.

The conclusion from Figure 9a is that on-the-fly strategy updates are the best
response, as each agent benefits from using the information obtained at runtime.

We have repeated these experiments where C updated by IU of neighboring
nodes also at a viewpoint. This time, however, the curve for an offline strategy
for C is omitted, since it would not change when modifying C’s strategy update
policy. R’s winning rate is shown in Figure 9b. R’s winning rate has increased,
which points out the importance of using information when having it: C should
use the information it receives at a viewpoint (update by capture probability)
instead of looking for new information (update by IU).
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(a) R’s winning rate when both R,C compute their strategies offline applying risk
averse utility for the configurations. C knows R’s start. Risk neutral for map nodes
is significantly better than applying risk seeking for the map nodes

(b) R’s winning rate when both R,C compute their strategies offline applying risk
averse utility for the configurations. Each agent knows its opponent’s start. No
significant difference among risk attitudes for map nodes, implying information
influences more than the risk attitude

Fig. 8: Significance of knowing the opponent’s initial location over the risk attitude

8.2 Utility-Based Strategies Compared to State-of-the-Art Strategies

The online model is indeed the most realistic and interesting world modeling,
especially due to the visibility edges. Therefore, we have taken this model and
compared our utility-based strategies (allowing on-the-fly updates) to other motion
strategies which are not based on our framework for computing utility values. For
clarity, in this section we refer to the stochastic strategy based on our utility values
with on-the-fly updates (as in Section 6) as online-utility-based strategy. Since our
stochastic strategy imposes bias when choosing the next move among the available
neighbors at a time step, R was tested with random walk (i.e., next neighbor is
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(a) R’s winning rate when C performs on-the-fly strategy updates. C’s information
utility is risk seeking, at a viewpoint C updates by capture probability. R’s perfor-
mance when R runs offline is compared to performing on-the-fly updates

(b) R’s winning rate when C performs on-the-fly strategy updates. C’s information
utility is risk seeking, C updates by information utility at all nodes. Comparing to
C updating by capture probability at a viewpoint, R’s winning rate has increased
and there is no significant difference between online and offline runs for R

Fig. 9: R’s winning rate when runs offline or online, C runs online

chosen in uniform distribution). In response, C was tested with random walk and
with our online-utility-based strategy.

Figure 10 shows R’s winning rate for the following settings of stochastic strate-
gies: R follows our online-utility-based strategy and C follows random walk; both
agents follow online-utility-based ; R follows random walk and C follows online-
utility-based. We should note that the node, configuration and information utility
assigned for each agent are those reported in Section 8.1: C’s information utility
(IU) was risk seeking, at a viewpoint updated strategies by increasing capture
probability and at a non-viewpoint node, updated by IU of its neighbors (Section
6.2). R’s IU was risk neutral and updated by decreasing capture probability at
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a viewpoint. In both experiments, R and C were set with risk averse utility for
configurations and risk neutral for map nodes. As shown in Figure 10, when C

follows online-utility-based, R’s winning rate increases if R responds with online-
utility-based. Symmetrically, when R follows online-utility-based, C’s winning rate
increases when responds with our online-utility-based strategy (being a zero-sum
game, C’s winning rate is opposed to R’s, thus a lower curve means greater suc-
cess for C). ANOVA Single-Factor test has confirmed that these differences of the
winning rates are indeed statistically significant (p-value << 0.001), verified with
Tukey’s HSD post-hoc test. Hence, when comparing to stochastic strategies which
are not based on our framework for computing utility values, our online-utility-
based strategy is the best response for both agents.

Fig. 10: R’s winning rate for several settings of stochastic strategies: online-utility-based (Section
6) and random walk (RW). Our online-utility-based strategy is each agent’s best response

In addition, R was tested with alternative deterministic strategies:

1. Shortest path: R follows the shortest path (in terms of hops) towards a goal
node vg ∈ VG.

2. Covert path: the map graph is converted into a directed graph, where the
weight of the directed edge (v, u) is u’s in-degree in terms of visibility edges.
R follows the shortest path (in terms of these edge weights) to a goal node
vg ∈ VG. Hence, R follows a path that obscures the most the nodes along it.

Since C is assumed to be able to perform the same computation as R, in case C

observes R when R follows a deterministic strategy (i.e., shortest or covert path),
C can infer R’s destination and plan a path for intercepting R. Thus, taking ad-
vantage of R’s deterministic movement, in case R follows a deterministic strategy,
the strategy for C would be as follows:

1. If R is observed, plan an intercepting path and follow it.
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2. Otherwise, follow a path to a goal node such that the sum of out-degree of
visibility edges of the nodes along this path is maximized.

Namely, C moves along the graph in a manner that increases its chances to
detect R. Once R is observed, C intercepts it (if possible).

Figure 11 shows R’s winning rate when R follows the deterministic strategies of
covert path and shortest path. Since C is able to perform the same computations as
R, for each deterministic strategy R follows, C follows the above scheme: searches
for R and intercepts it once observed. The curve matching the experiment where
both agents follow online-utility-based (as shown first in Figure 10) is also shown
in Figure 11. These results are not surprising, because as explained in Section 5.3,
once C knows R’s location and strategy, C can easily intercept R. As the curve of
online-utility-based shows, interception becomes harder if R moves stochastically.
ANOVA Single-Factor test has confirmed that these differences of the winning rates
are indeed statistically significant (p-value << 0.001), verified with Tukey’s HSD
post-hoc test. As obtained from Figure 11, online-utility-based for both agents is
the best response for each of them, in case of deterministic strategies.

Fig. 11: R’s winning rate when R follows deterministic strategies and C follows its best response
(i.e., searches for R and then intercepts R if observes it). Comparison to R’s winning rate when
both agents follow online-utility-based (best response when both agents follow a stochastic strategy)
shows that R’s is greater

9 Conclusions and Future Work

In this paper we address the problem of path planning in adversarial environ-
ments, where another adversary agent tries to intercept our agent along its way to
its destination. A multi-purpose framework for computing a utility value for the
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map graph nodes was presented, and was used for solving various problem mod-
elings. Each model differed in what the agents know about their opponent and
the type of their motion pattern. Theoretic and empiric analysis addressed the
influence of various risk attitudes on the constructed strategies. For the first time,
to our knowledge, updates are allowed during the execution in a pursuit-evasion
problem variant. The updates where conducted in two aspects: one was using the
information known so far (updating by capture probability at a viewpoint), while
the other related to the information available in the environment (updating by in-
formation utility). Analytic analysis showed the contribution of on-the-fly updates,
such that R’s probability to reach a goal node safely is increased. This analysis
was affirmed by experiments.

Much work is left for the future. Additional aspects of the SANE to be re-
searched are, for example, other knowledge models and their influence on path
safety, featuring observation errors to the visibility edges, deceiving the adversary
by being observed deliberately, and playing against an adversary with more limited
computational abilities than ours. Although we prioritize the safehouses uniformly,
incorporating preference among the safehouses into the framework for computing
node utility values might also be considered. Intuitively, these priorities could be
expressed via the utility values. However, some challenges arise, e.g., a trade-off
between following a risky path towards a high-priority safehouse or following a
safe path towards a low-priority safehouse, and ensuring that any low-priority
safehouse is still more preferable than a non-goal node which is a neighbor of some
high-priority safehouses.
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10 Appendix

We shall now introduce the full proof of Theorem 4:

Theorem 4 Denote the actual probability distribution over C’s location at time t as

P
(t)
C (i.e., P

(t)
C is 1 for C’s location and 0 for any other node). P̃

(t)
C denotes R’s estima-

tion for P
(t)
C before updating it with the information received from Vvisible(vtR), while

P̂
(t)
C denotes P̃

(t)
C after being updated. Incorporating the information received from the

visibility edges for updating P̂
(t)
C , improves the accuracy of this estimation. Namely,

H(P̃
(t)
C , P

(t)
C ) ≥ H(P̂

(t)
C , P

(t)
C ).

Proof As stated in Section 6.2, if
∑

v∈Vvisible(vt
R) P̃

(t)
C [v] = 0 then P̂

(t)
C = P̃

(t)
C .

Hence, H(P̃
(t)
C , P

(t)
C ) = H(P̂

(t)
C , P

(t)
C ).

Now, assume
∑

v∈Vvisible(vt
R) P̃

(t)
C [v] > 0 (a sum of probabilities is either 0 or

positive). If C has been observed (vtC ∈ Vvisible(vtR)), then P̂
(t)
C = P

(t)
C .

Otherwise, vtC /∈ Vvisible(vtR). Let us compute the Hellinger distance between
the actual distribution over C’s location to R’ estimated distribution prior being

updated, H
(
P̃

(t)
C , P

(t)
C

)
:

H
(
P̃

(t)
C , P

(t)
C

)
=

√√√√∑
v∈V

(√
P̃

(t)
C [v]−

√
P

(t)
C [v]

)2

=

 ∑
v∈V \(Vvisible(vt

R)∪{vt
C})

(√
P̃

(t)
C [v]−

√
P

(t)
C [v]

)2

+

∑
v∈Vvisible(vt

R)

(√
P̃

(t)
C [v]−

√
P

(t)
C [v]

)2

+

(√
P̃

(t)
C [vtC]−

√
P

(t)
C [vtC]

)2


1/2

C resides at vtC, hence ∀v ∈ V \ {vtC}, P t
C[v] = 0, P t

C[vtC] = 1. Therefore:

H
(
P̃

(t)
C , P

(t)
C

)
=

 ∑
v∈V \(Vvisible(vt

R)∪{vt
C})

(√
P̃

(t)
C [v]

)2

+

∑
v∈Vvisible(vt

R)

(√
P̃

(t)
C [v]

)2

+

(√
P̃

(t)
C [vtC]− 1

)2


1/2

=

 ∑
v∈V \(Vvisible(vt

R)∪{vt
C})

P̃
(t)
C [v] +

∑
v∈Vvisible(vt

R)

P̃
(t)
C [v] +

(√
P̃

(t)
C [vtC]− 1

)2
)1/2

=

 ∑
v∈V \(Vvisible(vt

R)∪{vt
C})

P̃
(t)
C [v] +

∑
v∈Vvisible(vt

R)

P̃
(t)
C [v] + P̃

(t)
C − 2

√
P̃

(t)
C [vtC] + 1

)1/2

Now, we shall compute the Hellinger distance between the actual distribution

over C’s location to R’ estimated distribution after being updated, H
(
P̂

(t)
C , P

(t)
C

)
:
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H
(
P̂

(t)
C , P

(t)
C

)
=

 ∑
v∈V \(Vvisible(vt

R)∪{vt
C})

(√
P̂

(t)
C [v]−

√
P

(t)
C [v]

)2

+

∑
v∈Vvisible(vt

R)

(√
P̂

(t)
C [v]−

√
P

(t)
C [v]

)2

+

(√
P̂

(t)
C [vtC]−

√
P

(t)
C [vtC]

)2


1/2

=

 ∑
v∈V \(Vvisible(vt

R)∪{vt
C})

P̂
(t)
C [v] +

∑
v∈Vvisible(vt

R)

P̂
(t)
C [v] +

(√
P̂

(t)
C [vtC]− 1

)2
)1/2

C resides at vtC and vtC /∈ Vvisible(vtR), hence:

∀v ∈ Vvisible(vtR) : P̂
(t)
C [v] = 0

∀v ∈ V \ Vvisible(vtR) : P̂
(t)
C [v] = P̃

(t)
C [v] +

P̃
(t)
C [v] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̂

(t)
C [v]

Therefore, we obtain:

H
(
P̂

(t)
C , P

(t)
C

)
= ∑

v∈V \(Vvisible(vt
R)∪{vt

C})

P̂
(t)
C [v] +

(√
P̂

(t)
C [vtC]− 1

)2


1/2

=

 ∑
v∈V \(Vvisible(vt

R)∪{vt
C})

P̃
(t)
C [v] +

P̃
(t)
C [v] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

 +


√√√√√P̃

(t)
C [vtC] +

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

− 1


2


1/2

=

 ∑
v∈V \(Vvisible(vt

R)∪{vt
C})

P̃
(t)
C [v] +

P̃
(t)
C [v] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

 +

P̃
(t)
C [vtC] +

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

− 2

√√√√√P̃
(t)
C [vtC] +

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

+ 1


1/2

=

 ∑
v∈V \(Vvisible(vt

R)∪{vt
C})

P̃
(t)
C [v] +

∑
v∈V \(Vvisible(vt

R)∪{vt
C})

P̃
(t)
C [v] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

+

P̃
(t)
C [vtC] +

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

− 2

√√√√√P̃
(t)
C [vtC] +

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

+ 1


1/2

=

 ∑
v∈V \(Vvisible(vt

R)∪{vt
C})

P̃
(t)
C [v] +

∑
v∈Vvisible(vt

R)

P̃
(t)
C [v] + P̃

(t)
C [vtC]

−2

√√√√√P̃
(t)
C [vtC] +

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

+ 1


1/2
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If P̃
(t)
C [vtC] = 0 then P̂

(t)
C [vtC] = P̃

(t)
C [vtC] and H(P̃

(t)
C , P

(t)
C ) = H(P̂

(t)
C , P

(t)
C ). Other-

wise:

P̃
(t)
C [vtC] > 0⇒

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

> 0

⇒

√√√√√P̃
(t)
C [vtC] +

P̃
(t)
C [vtC] ·

∑
v∈Vvisible(vt

R) P̃
(t)
C [v]∑

v∈V \Vvisible(vt
R) P̃

(t)
C [v]

>

√
P̃

(t)
C [vtC]

⇒ H(P̃
(t)
C , P

(t)
C ) > H(P̂

(t)
C , P

(t)
C )

In conclusion, we obtain that H(P̃
(t)
C , P

(t)
C ) ≥ H(P̂

(t)
C , P

(t)
C ), hence R’s estimated

probability distribution over C’s location is closer to P
(t)
C after incorporating the

information gained from the visibility edges.

Proving Theorem 4 for C is similar.


