
Rule-Based Programming of Molecular Robot Swarms
for Biomedical Applications

Inbal Wiesel-Kapah1, Gal A. Kaminka1, Guy Hachmon2, Noa Agmon1, Ido Bachelet3
1Computer Science Department, Bar Ilan University, Israel

2XLX Technologies, Israel
3Augmanity, Ltd., Israel

wieseli@biu.ac.il, {galk,agmon}@cs.biu.ac.il, guy.hachmon@gmail.com, dogbach@gmail.com

Abstract

Molecular robots (nanobots) are being devel-
oped for biomedical applications, e.g., to de-
liver medications without worrying about side-
effects. Future treatments will require swarms
of heterogeneous nanobots We present a novel
approach to generating such swarms from a
treatment program. A compiler translates
medications, written in a rule-based language,
into specifications of a swarm built by special-
izing generic nanobot platforms to specific pay-
loads and action-triggering behavior. The mix-
ture of nanobots, when deployed, carries out
the treatment program. We describe the med-
ication programming language, and the asso-
ciated compiler. We prove the validity of the
compiler output, and report on in-vitro exper-
iments using generated nanobot swarms.

1 Introduction
Nanometer-scale molecular robotics has emerged as a
promising approach for targeted drug delivery. Molec-
ular robots (nanobots) can operate inside a living body
[Dong and Nelson, 2007; Amir et al., 2014], carrying out
simple molecular actions, such as releasing a molecular
payload only under some environmental conditions or
shielding the body from toxic payloads [Douglas et al.,
2012]. If used as a platform for drug delivery, a nanobot
can, in principle, overcome many of the safety issues, as
drugs are released only in the presence of their targets.

Currently, every nanobot must be designed by an
expert, for the specific task: medical expertise must
meet nanobot design expertise. As procedures grow
in complexity, the challenge is further exacerbated:
nanobot developers mix different types of nanobots—
each type specifically tailored to its role—in heteroge-
neous swarms, such that the medical outcome emerges
out of the interactions of the nanobots in the swarm [Ru-
oslahti et al., 2010; Park et al., 2010a; 2010b].

We present a novel approach to developing nanobot
swarms. Inspired by modern software development envi-
ronments, which separates high-level programming lan-
guages from specific CPU details, we aim to allow med-

ical professionals to directly program treatments in a
Athelas, a rule-based medication programming language,
modeled after rule-based languages for knowledge-based
systems [Hayes-Roth, 1985; Hopgood, 2001; Ligêza,
2006]. A compiler (Bilbo) translates Athelas programs
to nanobot specifications, guaranteed to implement the
written program. The compiler relies on a library of
generic nanobot arch-types, and specializes them to cre-
ate the specific roles needed for the swarm.

We believe this separation between medical expertise
and nanobot design expertise can significantly acceler-
ate the development of new medical treatments relying
on nanobot technology: Medical experts will program
treatments. Molecular roboticists will develop generic
nanobots. And compilers will synthesize swarms of
nanobots that carry out the programs, with performance
and safety guarantees.

In this paper, we will introduce the Athelas language
and the compilation algorithms used in Bilbo. We prove
the soundness and completeness of the compilation pro-
cess, and present results of the compiler in-vitro experi-
ments, with actual nanobots.

2 Background and Motivation

Nanobots are nanometer-scale devices that can operate
inside of a living body [Cavalcanti et al., 2009; Dong and
Nelson, 2007; Banerjee et al., 2013; Amir et al., 2014],
and have the potential to revolutionize medicine [Freitas,
2005], in a variety of ways. Specifically for drug delivery,
heterogeneous nanobot swarms can deliver chemicals di-
rectly to molecular targets, with little or no secondary
damages due to side effects [Ruoslahti et al., 2010;
von Maltzahn et al., 2011]. However, all nanobot and
their interactions are currently manually planned.

Recent advances have begun to explore generic
nanobot arch-types, which can be “programmed” (spe-
cialized) in specific ways. [Banerjee et al., 2013] reports
DNA ”cages” which can hold small payloads. Both
the openning triggers and the payloads can be varied.
Recently developed nano-particles [Tonga et al., 2015]
serve as an additional example. These nanobots are
built from a nanometer-scale gold bead, to which various
DNA strands can be attached, e.g., to bind with specific
biomarkers. These particle nanobots cannot shield their

payload—it is always exposed. However, as the DNA
strands hybridize with the target bio-markers, the expo-
sure will take place at the target.

We use the DNA-based clamshell nanobot [Douglas et
al., 2012] in the experiments. It resembles a hexagonal
clamshell, open at both ends (Figure 1). On one side,
a gate consisting of two dsDNA (double-stranded DNA)
arms controls the nanobot state. When the arms are
in dsDNA configuration, the two halves of the clamshell
are held locked. However, when these duplexes unzip,
the nanobot can entropically open, exposing its internal
side. We can program the nanobot by specializing its
parameters: choosing the appropriate components such
that the clamshell opens when it encounters the pre-
defined signature of molecules and biological conditions.
The internal side can be programmed by loading it with
a variety of payloads, including small molecules, drugs,
and proteins. When more complex actions are required,
a heterogeneous swarm is needed. The clamshell robots
essentially respond as a two-input AND gate. If the tar-
get is identifiable by three or more markers in combina-
tion, no single clamshell nanobot type can correctly open
only in the target location. Instead, a heterogeneous
combination of clamshells (one responding to markers A
and B by releasing an compound T, and one responding
to T and C) is needed.

Figure 1: A clamshell DNA nanobot. Up: a schematic view
of the two states: closed (left) and open (right). Down: TEM
images (scale bar, 25nm).

To date, all such single and swarm nanobot program-
ming (specializations) were manually planned. But the
emergence of nanobot arch-type as described opens the
door for automated generation of specialization pro-
cedures, based on parameterizable template prepara-
tion protocols. Motivated by the (sometimes forgot-
ten) success of rule-based systems at capturing ex-
pert knowledge [Hayes-Roth, 1985; Gupta et al., 1986;
Hopgood, 2001; Ligêza, 2006] we propose a rule-based
approach to nanobot programming. The rule based lan-
guage, Athelas, allows specification of biomedical appli-
cations, without considering individual swarm members
or the swarm composition. It differs from other swarm
programming languages, such as Buzz [Pinciroli et al.,
2015], and Proto [Bachrach et al., 2010] which focus on
spatial swarm behaviors, computation, and synchronized
knowledge.

3 Compiling Medications into Swarms
The Tolkien development environment for nanobot-
based biomedical applications includes a high level lan-
guage for programming medications (Section 3.1) which
are compiled into swarm specifications (Section 3.2).

3.1 The Athelas Language
Medications work by moving compounds between loca-
tions in the body: picking compounds (by molecular
binding) or exposing (and sometimes releasing) them in
diseased areas. We consider these to be nanobot swarm
tasks, to be programmed by a user.

As activities will be carried out by a swarm of mil-
lions of nanobots, we adopt a rule-based programming
paradigm, in which programs are specified by sets of
rules that are continuously considered in parallel, against
changing conditions [Gupta et al., 1986]).

Each rule has four clauses, discussed below (Figure 2
shows an example). As a matter of notation, Athe-
las code uses $ to denote payloads, and @ for loca-
tion expressions denoting biological markers (e.g., CD
Antigens), which can be aliased for convenience using
#define macros. Locations can be specified using logi-
cal operators (AND, OR, NOT).

The Initialize clause specifies the set of payloads to
be built into the drug when it is injected (i.e., before any
action is taken). For example, a nanobot carrying insulin
for a diabetes patient would be assumed to have an initial
insulin payload, differently from a nanobot which begins
empty, and is tasked to locate some specified matter and
pick it. In Figure 2, the rule states that the drug contains
compounds Z and X when it begins.

The When and Until clauses are each composed of a
set of tests, e.g., pH level or concentration of a specific
chemical in specific location. The When tests must hold
in order for the drug to become activated (here, when the
concentration of Y in the vicinity of T is above 5mol/m3).
The Until terminates the activity of the drug (here,
when the concentration drops below 2mol/m3). Note
that the When conditions do not need to hold through
the activation of the drug; they only trigger it.

The Actions clause contains the actions
to be executed when the drug is active.
pick($payload @location) instructions cause the
nanobots to be built with appropriate compounds to
bind $payloads (if encountered near @location) so
that is carried by the nanobot. Similar actions are de-
fined for releasing the payload, allowing it to float freely
(drop), and for protecting it from, or exposing it to, the
environment (protect, expose, e.g., via a mechanism
such as a protective outer shell, as in the clamshell
nanobot). Other actions include disable, enable
which operate on rules (and are given rule names). This
type of reflection to address inter-drug interactions, e.g.,
to set drug action priorities.

In Figure 2, there are two drop actions. One to
drop the compound $Z which the drug initially con-
tains, at location @T. The other drops $Y at the location
@(A AND B AND C), i.e., a location marked by the pres-
ence of all biomarkers A, B, C (#define#’d elsewhere).

Rule : ToxicDrugClean
{

In i t i a l i z e : Z , X;
When: conc ($Y @T) > 5 ;
Actions :

drop ($Z @T)
expose ($X @(A AND B AND C)) ;

Until : conc ($Y @T) < 2 ;
}

Figure 2: An example rule with all components.

We are not aware of any nanobot design capable of
implementing this rule in a singe nanobot. For instance,
the clamshell nanobot previously discussed is capable
of dropping a payload in a location marked by at most
two markers (e.g., A AND B), and it cannot selectively
drop only Z or expose only X in a location. Thus in
order to have nanobots execute this rule, a mixture of
different nanobots (a heterogeneous nanobot swarm) is
needed. The role of the compiler is to synthesize this
swarm, choosing between multiple options if possible to
optimize cost, yield, and reliability.

3.2 The Bilbo Compiler
The Bilbo compiler takes two inputs: an Athelas pro-
gram, and a library of generic robot types (with defined
ways of parameterizing them, including parameterizable
preparation protocols). It then synthesizes a specifica-
tion for a heterogeneous swarm of specialized nanobots,
which would carry out the program, once deployed. The
output specification for each specialized robot includes
a specialized preparation protocols.

The compilation process is done in two phases. A
front-end phase consists of the lexical and syntax ana-
lyzers, generates finite state machines (FSMs) represent-
ing the rules. The back-end phase then transforms such
FSMs into a final nanobot swarm specification (recipe).
We discuss both in detail below.The Front-End.

The Back-End. The input to the Back-End phase in-
cludes a set of FSMs, which is the output of the Front-
End phase (see example in Figure 2) and a library of
generic nanobot arch-types, which the compiler uses
in the recipes recipes. The back-end transforms each
FSM to an AND/OR graph (see below) which repre-
sents alternative swarm specifications (nanobot mixes).
It then uses AO* [Nilsson, 1980] to determine an optimal
AND/OR path in the graph, which corresponds to a spe-
cific heterogeneous swarm, made of specialized nanobot
arch-types and their preparation protocols.

Algorithm 1 (ConstructTree), which transforms FSMs
into and/or graphs, is the heart of the back-end phase.
It uses a graph rewriting approach to carry out the trans-
formation, working with four graph-rewriting operators:
SUBSTITUTE, MERGE, REJECT and DECOMPOSE.

We illustrate the operation of Algorithm 1 by trans-
forming the Expose FSM in Figure 3 (right). For this
demonstration, we assume the two nanobot arch-types
previously described (Section 2): the clamshell [Douglas
et al., 2012], and the nano-particle [Tonga et al., 2015].

Algorithm 1 ConstructTree (input: FSM , Nanobot-
library)

1: // We denote a non-ε-transition t by αt
2: AOGraph ← FSM
3: while ∃αt or non-terminal robot-state do
4: for all transitions αt connecting states A, B do
5: SUBSTITUTE(t, A, B, AOGraph)

6: for all compatible, ε-connected states A,B do
7: MERGE (A, B, AOGraph)

8: for all incompatible, ε-connected states A,B do
9: REJECT(A, B, AOGraph)

10: for all non-terminal robot-state t do
11: DECOMPOSE(t, AOGraph)

12: return AOGraph

The SUBSTITUTE operator replaces all non-ε transi-
tions with subgraphs of abstract robot-states, a robot-
state for each generic nanobot in the nanobot library
with the ability of executing the transition action (and
ignoring location and payload on the transition action).
In case the transition cannot be replaced, it is removed.
The transition Expose($X @(A AND B AND C)) in Fig-
ure 3 is substituted in Figure 4 by a clamshell and nano-
particle. In addition, the transition Initialize $X is sub-
stituted also by clamshell and nano-particle since they
both can be initialized with $X. The robot-states are
connected to the incoming vertex of the original transi-
tion with an OR and ε-transitions.

Next, Algorithm ConstructTree MERGES each pair
of compatible robot-states connected by a path of ε-
transitions. A pair of robot-states is compatible if their
parameters are either identical or complementary. The
MERGE operation removes the ε-transitions between a
given pair of robot-states and merges the states to a one
robot-state representing both of them. The new state
is connected to the first robot-state’s incoming vertex
and to the second robot-state’s outgoing vertex with ε-
transitions. Applying MERGE to Figure 4 (left) results
in Figure 4 (right).

The REJECT operator removes all pairs of incompat-
ible robot-states, connected by ε-transitions, i.e., states
whose parameters are not identical, and conflict (i.e.,
cannot be merged). For example, this would apply to
a robot-state representing a clamshell and a robot-state
representing a gold nano-particle. The REJECT opera-
tion removes the pair of states from the tree, and thereby
rejects their path from the back-end’s output.

Algorithm 1 uses DECOMPOSE on all non-terminal
robot-states. A robot-state is terminal if and only if all
of its parameters can be produced together in exactly
one robot of its kind. In other words, if it describes a
fully specified, producible robot. The DECOMPOSE op-
eration replaces a given non-terminal robot-state with
a terminal one and an action transition, representing
two actions that together complete the original robot-
state action. In case the non-terminal robot-state cannot
be decomposed, it is removed. In Figure 5, the robot-

Figure 3: The front-end’s output, the back-end’s input. Two FSMs generated for the rule in Figure 2.

Figure 4: Illustration of SUBSTITUTE (up) and MERGE (down) operations on input shown in Figure 3.

state representing Expose($X @(A AND B AND C)) by
a clamshell is replaced by a transition of Expose($T @(A
and B)) and a terminal robot-state representing the orig-
inal expose action, but this time in locations T and C:
Expose($X @(T AND C)). Logically, together they com-
plete the original Expose action. Note that these two
states are connected to the incoming (original) state by
two ε-transitions marked by an AND, i.e., both have to
be taken if this option is selected.

Finally, ConstructTree iterates back to apply the graph
rewriting operators on the rewritten graph. The process
repeats until no ε-transitions and non-terminal robot
states are left. Then the final graph is returned.

The AO* algorithm [Nilsson, 1980] then selects an op-
timal path from the initial state to the end, where tran-
sitions have weights denoting costs (or based on number
of steps, otherwise). The final recipe is consist of all the
protocols belong to the robots in the selected path, such
that each protocol describes in details the way of pro-
ducing its robot according to the robot’s specification in
its state from the graph.

4 Proofs
The generated nanobot swarms are intended to one day
serve in biomedical applications, thus safety and perfor-
mance guarantees are crucial. In this section we prove
that Algorithm ConstructTree is complete, is sound, and
halts. For the sake of the analysis we distinguish be-
tween the robot who implements the transitions given
as an input and those who implement transitions cre-
ated by DECOMPOSE. We refer the first as the main
robot and the others as the assistant robots.

Lemma 1. Algorithm ConstructTree is complete, i.e., if
a solution to the input exists, the algorithm will return it

(and if more than one solution exists, the algorithm will
return at least one solution).

Proof. Assume that there exists a solution to the prob-
lem, yet Algorithm ConstructTree failed to return it (the
AND/OR graph is empty). Following the algorithm’s
steps, this could happen in one of the following cases: (i)
In the SUBSTITUTE step not all transitions were substi-
tuted to abstract robots. However, if a solution exists,
there must be a main robot of some type X that imple-
ments the FSM’s transitions. Therefore SUBSTITUTE
must offer it as an option to all the transitions. (ii)
REJECT removed all the possible paths from the tree
because no robotic option could have been merged. How-
ever, since robot type X was offered to all the transitions,
MERGE merges all those robots, and specifically REJECT
does not reject them. (iii) DECOMPOSE could not de-
compose the solution’s abstract robot and canceled its
path. However, if the main robot X should be assisted by
other robots, then DECOMPOSE must offer their help,
thus does not cancel the path. (iv) Dependency-check re-
moved it because of incompatibility of its robots. By the
assumption that there exists a solution to the problem,
necessarily it does not have dependencies problems, thus
the dependency-check cannot remove it. Thus, given
that the input is correct, the algorithm will not remove
a valid solution along its way.

Lemma 2. Algorithm ConstructTree is sound, i.e., the
output is a correct implementation of the given FSMs.

Proof. (Sketch) Given a nanobot cocktail recipe R that
was returned as an output by the back-end algorithm for
a given FSM f , then R can be incorrect (i.e. it is not
a valid implementation of f) due to one of the following

Figure 5: DECOMPOSE operation on the results of previous steps. The arc marks AND transitions in the AND/OR graph.

reasons:
a) R does not contain all the needed robots, thus is miss-
ing either the main robot or assistant robot(s). Based
on the fact that no sub-process removes the main robot
(thus it cannot be missing), and DECOMPOSE adds all
assistant-robots and then loops thus they cannot be re-
moved later, it follows that no robot can be left out of
ConstructTree.
b) R contains unnecessary robots, and specifically harm-
ful ones. However, we show that it is impossible to offer
unnecessary robots, since only ones that implement a
transition (that are necessary for the recipe) are offered
by the algorithm.
c) The interaction between the different robots is prob-
lematic due to dependencies they share. However, the
dependency-check goes over all possible combinations of
robots that may depend on one another (directly or in-
directly), thus this case is also impossible.

Theorem 3. Algorithm ConstructTree halts, and is com-
plete and sound.

Proof. Completeness and soundness of the algorithm are
proven by Lemmas 1 and 2. In order to show that
ConstructTree halts, note that the number of the FSMs
in the FSM list which Algorithm ConstructTree works on
is finite. Due to the fact that in each iteration at least
one robot is created, the recursion’s depth of construct-
tree algorithm for each FSM is limited by the number
of the robots in the longest recipe (which is bounded by
the number of robots, which is finite). Therefore, the
algorithm will necessarily halt.

5 Experimental Results
The Bilbo compiler has been implemented. To evaluate
its use, we conducted several compilation experiments,
and followed these with in-vitro experiments, to con-
firm the compilation results. In these experiments, Bilbo
compiled Athelas programs, none of which could be im-
plemented using a single robot type. In all, the compiler
generated nanobot swarm recipes, sometimes proposing
several options. We implemented these by carefully mix-
ing robots according to the compiler-generated recipes,
and show their effectiveness in in-vitro experiments.

5.1 AND decomposition

In our first experiment we want a dummy molecular pay-
load denoted by $., and normally protected from the en-
vironment, to be exposed, when in the vicinity of beads
marked by three different DNA strands, denoted A, B,
and C (as in the expose() instruction used in the rule
in Figure 2). We limited the compiler to using only
clamshell nanobots. Each of these has two gates only
and as a consequence can recognize only two markers.
Thus a single clamshell nanobot cannot be specialized
to correctly recognize the target location.

The Bilbo compiler’s output is given in Figure 6 (we
omit here the preparation protocols). It solved the prob-
lem by splitting the strands detection into two steps,
each to be executed by one specialized type of clamshell
such that together they complete the task. The first
responds to A and B by releasing an intermediate com-
pound T. The second responds to T and C by exposing
$.. This cascade causes $. to be exposed only in the
presence of A and B and C, as specified.

1: Clamshell: <$T, true , @A, @B>
2: Clamshell: <$., true , @T, @C>

Figure 6: Bilbo compiler output for AND decomposition
experiement.

We conducted in-vitro experiments to evaluate the
compiler output. In a first experiment, we mixed a
first type of nanobot, to demonstrate that it can de-
tect strands A and B. We then added a second type
of nanobot, detecting C. To measure the results, we
use fluorescent materials to mark the activity of the
robots. Figure 7(a) presents the flow cytometry re-
sults from this experiment. The histogram plots the
fluoresceine-isothiocyanate intensity (horizontal axis, log
scale) against the number of events detected (vertical
axis). The figure shows lower or no responses when only
the first nanobot is interacting with the beads (black
line, left peak). But when the second nanobot is added,
we see high response (red line, right peak), evidence of
the two robots interacting together to cause exposure of
the dummy payload.

5.2 AND/OR, Multiple Options

In a second experiment we demonstrate the compiler’s
capability to generate different implementation alter-

(a) Exp. 1. Beads and one
nanobot type (left peak) vs.
beads and the two nanobot
types (right peak)

(b) Exp. 2. Beads only (left
peak) vs. beads and nanobot
(right peak)

Figure 7: Flow cytometry histograms of both experiments.

natives for the same program. To do this, we ex-
tended the nanobot library to also include the gold nano-
particles [Tonga et al., 2015] previously described. We
forced the compiler to generate all alternatives, by dis-
abling the path selection stage. Thus all implementation
alternatives are produced.

We compiled the Athelas program shown in Figure 8.
The task is to expose the dummy molecular payload $.
when in the vicinity of beads marked by DNA strands
A, B, and C, or by D and E. The more complex tar-
get specification gives rise to different implementation
alternatives.

Rule:ExposeDrugAtComplicatedLoc
{

Actions: Expose ($. @((A AND B AND C)
OR (D AND E));

}

Figure 8: Rule used in the second experiment.

The compiler offers three different implementations.
The first uses a nano-particle nanobot (marked au in
Figure 9). The second, uses a combination of clamshell
and nano-particles (Figure 10), and the third combines
three types of clamshell nanobots (Figure 11).

As the first implementation, the compiler used a single
type of particle nanobot, with two types of strands of
DNA are attached to the gold core, either of which (or
both) may bind to targets (thus forming an OR). One
DNA strand binds to A, B, and C (concatenated). The
other to D and E, concatenated (Figure 9). Multiple
copies of both these types uniformly cover the surface of
the core, so they should have equal probability of binding
to locations thus marked. However, here the compiler is
also displaying its limits: in practice, this solution will
work only as long as the different biomarkers (e.g., D
and E) are in the same order on the same strand, but
not if they are spatially separated, which is the more
general case. This is a limitation of the current nanobot
modeling language used in the nanobot library, which
we hope to address in future work.

As a second alternative implementation, the compiler

1: au: <$.,true ,@A AND B AND C,@E AND D>

Figure 9: nanoparticle implementation for rule in Fig. 8.

proposes a swarm composed of a single clamshell and a
particle nanobot (Figure 10). The particle nanobot is
almost the same as above, so the clamshell may seem
redundant. However, it is not. The particle nanobot
will bind in the same location. But it carries a payload
$T, rather than the dummy payload $.. The clamshell
responds to the payload $T, by attaching itself to the
particle and releasing $. This has the nuanced differ-
ence from the first implementation in that the payload
$. is shielded from the environment throughout until
activation of the nanobots (useful, e.g., when the tar-
get payload is toxic). Had a protect() instruction been
used, this implementation would have been preferred.

1: au: <$T,true ,@A AND B AND C, @E AND D>
2: Clamshell: <$., true , @T, @T>

Figure 10: Gold particle and clamshell nanobot swarm for
rule in Fig. 8.

Finally, a clamshell-only solution decomposes the
OR condition to its constituent parts. The
(A AND B AND C) part is identical to above, and the
compiler issues the same implementation (lines 2–3, Fig-
ure 9). The (D AND E) implementation uses a single
clamshell, reacting to presence of both D and E (line 1).

1: Clamshell: <$., true , @D, @E>

2: Clamshell: <$T, true , @A, @B>
3: Clamshell: <$., true , @T, @C>

Figure 11: Clamshell-only implementation of rule in Fig-
ure 8.

We unfortunately do not have the facilities to conduct
in-vitro experiments involving gold particle nanobots.
However, we are able to test the final compilation re-
sult in-vitro. The @(A AND B AND C) results are iden-
tical to those previously presented (Figure 7(a)). Fig-
ure 7(b) measures the success of the second component
(D AND E). We see a significant boost in fluorescence
when the D AND E clamshell binds itself to the beads.

6 Conclusions and future work
This paper presents a novel approach to programming
nanobots for biomedical applications. Inspired by mod-
ern compilation paradigms, we advocate separation of
expertise: medical experts to use Athelas, a high-
level rule-based language to program medications, and
nanobot builders will develop nanobots which can be
used by the Bilbo compiler to compile Athelas programs
into heterogeneous nanobot swarm specifications. Con-
cerns with safety, we prove the soundness and complete-
ness of the Bilbo back-end, which is at the heart of the
compilation process. We demonstrated that the compiler
was able to generate novel swarm specifications, utilizing
its knowledge of generic nanobots types. These swarms
were shown in-vitro to carry out tasks not possible with
a single nanobot type of the same underlying design.

We believe this paper opens the door for exciting new
opportunities for AI research, reusing and innovating
technologies (e.g., rule-based languages, robot swarm
programming) in service of a revolutionary approach to
development of medical treatments.

References
[Amir et al., 2014] Y. Amir, E. Ben-Ishay, D. Levner,

S. Ittah, A. Abu-Horowitz, and I. Bachelet. Universal
computing by DNA origami robots in a living animal.
Nature Nanotechnology, 9(5):353–357, May 2014.

[Bachrach et al., 2010] Jonathan Bachrach, Jacob Beal,
and James McLurkin. Composable continuous-space
programs for robotic swarms. Neural Computing and
Applications, 19:825–847, 2010.

[Banerjee et al., 2013] Anusuya Banerjee, Dhiraj Bha-
tia, Anand Saminathan, Saikat Chakraborty, Shau-
nak Kar, and Yamuna Krishnan. Controlled release
of encapsulated cargo from a DNA icosahedron using
a chemical trigger. Angewandte Chemie International
Edition, 52(27):6854–6857, 2013.

[Cavalcanti et al., 2009] Adriano Cavalcanti, Bijan Shir-
inzadeh, Toshio Fukuda, and Seiichi Ikeda. Nanorobot
for brain aneurysm. International Journal of Robotics
Research, 28(4):558–570, 2009.

[Dong and Nelson, 2007] Lixin Dong and B.J. Nelson.
Tutorial - robotics in the small part ii: Nanorobotics.
Robotics Automation Magazine, IEEE, 14(3):111–121,
Sept 2007.

[Douglas et al., 2012] S. M. Douglas, I. Bachelet, and
G. M. Church. A logic-gated nanorobot for tar-
geted transport of molecular payloads. Science,
335(6070):831–834, Feb 2012.

[Freitas, 2005] Robert A. Freitas. Current status of
nanomedicine and medical nanorobotics. Journal of
Computational and Theoretical Nanoscience, 2(1):1–
25, 2005.

[Gupta et al., 1986] A. Gupta, C. Forgy, A. Newell, and
R. Wedig. Parallel algorithms and architectures for
rule-based systems. SIGARCH Computer Architecture
News, 14(2):28–37, May 1986.

[Hayes-Roth, 1985] Frederick Hayes-Roth. Rule-based
systems. Communications of the ACM, 28(9):921–932,
Sep 1985.

[Hopgood, 2001] Adrian A. Hopgood. Intelligent Sys-
tems for Engineers and Scientists. CRC Press, 2001.

[Ligêza, 2006] Antoni Ligêza. Logical Foundations for
Rule-Based Systems, volume 11 of Studies in Compu-
tational Intelligence. Springer, 2006.

[Nilsson, 1980] N.J. Nilsson. Principles of Artificial In-
telligence. Tioga Publishing, Palo Alto, CA, 1980.

[Park et al., 2010a] J. H. Park, G. von Maltzahn, M. J.
Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N.
Bhatia, and M. J. Sailor. Cooperative nanomaterial

system to sensitize, target, and treat tumors. Pro-
ceedings of the National Academy of Science, USA,
107(3):981–986, 2010.

[Park et al., 2010b] J. H. Park, G. von Maltzahn, L. L.
Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N.
Bhatia, and M. J. Sailor. Cooperative nanoparti-
cles for tumor detection and photothermally triggered
drug delivery. Advanced Materials, 22:880–885, 2010.

[Pinciroli et al., 2015] Carlo Pinciroli, Adam Lee-
Brown, and Giovanni Beltrame. Buzz: An extensible
programming language for self-organizing het-
erogeneous robot swarms. Available online at
http://arxiv.org/abs/1507.05946, 2015.

[Ruoslahti et al., 2010] Eric Ruoslahti, Sangeeta N.
Bhatia, and Michael J. Sailor. Targeting of drugs
and nanoparticles to tumors. Journal of Cell Biology,
188(6):759–768, 2010.

[Tonga et al., 2015] Gulen Yesilbag Tonga, Youngdo
Jeong, Bradley Duncan, Tsukasa Mizuhara, Rubul
Mout, Riddha Das, Sung Tae Kim, Yi-Cheun Yeh,
Bo Yan, Singyuk Hou, et al. Supramolecular
regulation of bioorthogonal catalysis in cells us-
ing nanoparticle-embedded transition metal catalysts.
Nature chemistry, 7(7):597–603, 2015.

[von Maltzahn et al., 2011] G. von Maltzahn, J. H.
Park, K. Y. Lin, N. Singh, C. Schwöppe, R. Mesters,
W. E. Berdel, E. Ruoslahti, M. J. Sailor, and S. N.
Bhatia. Nanoparticles that communicate in vivo to
amplify tumour targeting. Nature Materials, 10:545–
552, 2011.

