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Abstract— In this paper we examine the problem of persistent
task performance by a team of multiple drones, where the
drones suffer from energy limitations. The drones are required
to occupy a set of m locations in order to perform a task,
for example surveillance, indefinitely. Since the drones have
a limited battery supply, they must be replaced in order to
refuel, recharge or change their battery at a fixed set of
refueling stations called homes. Therefore, in order to enable the
persistent task performance, it is essential to add spare drones
to the system that will replace the drones in their task. We
examine two problems in this context: determining the minimal
number of spare drones that will guarantee that the task will be
carried out persistently and indefinitely, and finding a schedule
for drone-replacements. The novelty of this work is twofold: (i)
Proving that a simple drone replacement schedule is enough
with respect to minimizing the number of spare drones, thus
reducing the need to cope with O(m2) pairwise travel costs
of the given m locations to only O(m) travel costs between
the m locations and the homes; and (ii) The introduction
of an innovative approximation approach for the minimum
number of spare drones required, and providing a replacement
scheduling strategy by combining a Voronoi tessellation with
a Bin-Packing variant (Bin Maximum Item Double Packing-
BMIDP) for the Multi-homes problem, which is much harder
than the single home problem and is NP-Hard even for a single
spare drone.

I. INTRODUCTION

The growing interest in drone technology has brought
about the development of new fields of application for
it. With the growing technology, many new sensors and
actuators are being deployed on drones so that their operation
can be highly optimized and they can be used for dedicated
applications with high performance. Drones can be used
to efficiently monitor and survey areas, and for continuous
surveillance of a disaster scene such as flooding and forest
fires [1], civil security operations, traffic monitoring [2] and
event photography [3]. The main problem in using drones for
such applications is their limited flight time. To overcome
this severe limitation in persistent task execution, spare
drones should be available to replace drones that are running
low on battery. The replaced drones could fly to a location
where their batteries can be charged or replaced, enabling
them to continue in their task [4].

This paper discusses an innovative approach to the prob-
lem of persistent task performance in a continuous non-stop
manner, for example monitoring by a fleet of drones with
several battery replacements or recharging stations called
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Fig. 1: Several locations requiring persistent monitoring, 4 charg-
ing/refueling stations (h1,... ,h4) and 3 spare drones (orange).

homes. Our previous work [5] introduced the problem of
persistent monitoring with one home. In this paper we define
the problem of Multiple hOmes miNimal Spare drOnes for
persistent mOnitoriNg (MONSOON), in [6] we introduced an
extened abstract of a perliminary version. The drones are
given a set of locations for persistent task performance, and
it is necessary to guarantee that each of these locations is
occupied by some drone at any given time. As the drones
suffer from energy limitations and are thus required to fly
to some home before their battery drains, it is necessary to
add spare drones to the system that will replace the drones
and maintain the continuous task performance. To face the
drones’ energy limitations efficiently and enable drones to
replace/recharge batteries at the replacement stations, it is
important to identify the minimum number of spare drones
necessary to accomplish the persistent monitoring tasks.
Therefore our goal is to determine the minimal number of
spare drones, as well as finding a schedule of drone replace-
ments that guarantees both that the persistent monitoring
tasks are fulfilled indefinitely and that no drone battery is
drained. The drones are homogeneous. See an illustration
of our simulated environment in Figure 1. We consider two
variations of the MONSOON problem: (i) An offline version,
where the set of locations is given in advance; and (ii) An
online version, where the set of locations is given one by
one over time. When a location is given, it must be assigned
immediately to one of the spare drones, which are added as
needed.

While the paper describes the MONSOON in the context of
persistent monitoring by drones, it is valid for any robot type
which has energy constraints, performing any persistent task,
as long as the travel cost of the robots in the environment
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satisfies the triangle inequality.
We consider the problem of deciding whether one spare

drone is enough, and prove that in contrast to the single
home MSDPM, the multiple home case MONSOON is NP-
Hard even for one spare drone, which means that the
multiple homes problem is much harder than the single home
problem. Moreover, giving an exact solution (intractable) for
the multiple homes problem is also much harder since it
incorporates the generalized traveling salesman problem, also
known as the ”traveling politician problem” [7], with Bin
Packing [8]. They are interconnected by influencing each
other’s optimization.

To cope with this harder problem, we introduce a twofold
innovative approach: (i) Proving that a simple drone replace-
ment in which the replaced drone always returns directly to
one of the homes is not worse than any other replacement
procedure with respect to minimizing the number of spare
drones. This result is most important since it allows better
optimization methods by reducing the need to cope with
O(m2) pairwise travel costs of the given m locations to
only O(m) travel costs between the m locations and the
homes; and (ii) The latter result also enables us to give a
novel approach for both minimizing the number of spare
drones and scheduling them by using a Voronoi tessellation
that breaks the MONSOON problem into MSDPM sub-problems
corresponding to the Voronoi cells. Each sub-problem has
an exact (intractable) solution using the Bin Maximum Item
Double Packing (BMIDP), which is a bin packing variant
where items are packed in each bin as done by regular bin
packing with the only exception being that the maximum
item of each bin is double packed [5]. A first fit variant
greedy approximation algorithm, in which the maximum
item of each bin is double packed, is used to solve the BMIDP
problem. We show, experimentally, approximation factors of
1.7 and 1.6 for the online and offline cases, respectively.

Another outcome of the simple drone replacement result
(i) is the ability to efficiently optimize the home placement
by using facility location analysis approximation [9], [10].

II. RELATED WORK

There are many works on task performance that take
energy restriction into consideration [11], varying from the-
oretical analysis related to the vehicle-routing problem [12]
to practical deployment of multi-robot teams in continu-
ous missions with energy-aware solutions, e.g., [13], [14],
[15]. Recently [5] were the first to consider minimizing
the number of drones required when providing a persistent
continuous (non-stop) service, but with only one recharging
station (home). They were followed by [16] who consider
minimizing the number of drones with multiple recharging
stations. Our approach is completely different and signif-
icantly outperforms the work of [16] as discussed in the
experimental results section.

The feasibility of swapping a group of small multi-rotor
unmanned aerial systems during flight for persistent perime-
ter surveillance was studied in [17]. The thesis presented
a system prototype that consisted of multiple quad-copters

that were programmed to fly in different predefined patterns
over a specified area. The number of quad-copters that fly
simultaneously is determined by the need to monitor the
area within the perimeter. Once an airborne quad-copter has
depleted its battery life to the predetermined level, one of
the standby quad-copters is activated as a replacement. The
number of stand-by quad-copters at the launch site (home) is
determined by the duration of the recharging. Although [17]
treats a persistent task performed by several drones in the
air, they all monitor near each other and use one home. It
does not examine the question of several distant locations
for monitoring, nor do they consider multiple homes as
examined in this paper.

A Coverage Path Planning (CPP) problem is the task of
determining a path that passes over all points of an area or
volume of interest while avoiding obstacles [18]. Such mis-
sions consist of five phases: takeoff, cruise, hovering, turning
and landing. Taking energy consumption into consideration
is necessary for their success. In order to correctly estimate
the energy requirement in the five phases, a new route-based
optimization model with column generation that can trace the
amount of energy required for all different mission phases is
presented in [19]. It uses numerical simulations to study the
effectiveness of the proposed method for both a single UAV
and multiple UAV scenarios for CPP problems.

An important persistent task is carried out by a group of
UAVs that serve as the mobile Base Stations (BSs) [20], [21].
In order to fulfill such a task, there is a need to design a con-
trol solution for the UAV’s navigation to fly around a target
area in order to provide long-term communication coverage
for the ground mobile users, taking energy limitations into
consideration. Liu et. al [20] proposed a decentralized deep
reinforcement learning (DRL)-based framework to control
each UAV in a distributed manner. Their approach is to
maximize the temporal average coverage score achieved by
all UAVs in a task, maximize the geographical fairness of all
considered points-of-interest (PoIs), and minimize the total
energy consumption while keeping the UAVs connected and
not flying out of the area’s borders.

The Vehicle Routing Problem (VRP) [22], [23], [24] seeks
to generate routes for a team of agents leaving a starting
location referred to as the depot, which visit a number of
goal locations and return back to the depot. Many works have
presented algorithms for the VRP, also aiming to minimize
energy consumption. For example, in [25], in addition to
the attempt to minimize cost by minimizing overall traveling
distance, the model also incorporates energy minimization.
However, their goal is to satisfy the latest requirements of
green logistics and not, as in our case, facing strong energy
constraints that are needed for fulfilling the tasks.

While in our work the drones are required to occupy a set
of m locations in order to perform a persistent task, Troudi et
al. [26] examine a different problem: managing a large fleet
of drones which are ready to deliver parcels to costumers.
They present a VRP model to solve the sizing of a fleet of
drones for urban parcel delivery logistics, taking into account
the issues of autonomy and energy consumption related to the
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drone’s technical specification. One of the proposed policies
tries to make a compromise between the distance the drones
will fly and the number of drones involved. They focus on
policies in which the battery of a drone should be charged
to 100% of its capacity for every mission.

Another related problem is the Continuous Monitoring
Problem with the goal of maximizing the visiting frequency
of targets, taking fuel constraints into consideration. Papers
that consider this problem such as [14], [27], [28], [4] do
not examine the question of minimal necessary UAVs, nor
do they consider multiple (static) targets for monitoring, as
examined in this paper.

Burdakov et al. [29] consider the problem of replacing
security UAVs performing the task of surveillance along a
perimeter and focus on the optimal replacement problem.
They also do not examine the question of minimal necessary
UAVs, rather they assume that the number of UAVs is given.

III. THE MONSOON PROBLEM DEFINITION

In this section we formally define the Multiple hOmes
miNimal Spare drOnes for persistent mOnitoriNg prob-
lem, MONSOON. Given a set L of m locations, L =
{l1, l2, . . . , lm}, at least one drone should be present at each
location at all times. Drones must be replaced and return,
before their battery drains, to one of the homes in the set
H of n homes, H = {h1, h2, . . . , hn}, for recharging or
battery exchange. Therefore, the required number of drones
necessary to ensure persistent monitoring is greater than m.
We refer to the p extra drones, that is, the drones used for
replacing the drones in the monitoring task, as spare drones.
All drones are assumed to be homogeneous, have the same
velocity v, and each one of them is initially fully charged q,
and located in one of the n homes. A drone must be at one
of the homes to exchange its battery. We assume that battery
exchange/refuel time is negligible in order to simplify the
calculations, although our results are also valid when it is not
negligible. Following standard assumptions [29], a drone’s
batteries’ charge decreases linearly with time. c denotes the
rate of discharge per time unit.

Definition 1: Multiple hOmes miNimal Spare drOnes per-
sistent mOnitoriNg-MONSOON problem. Given a set L of m
locations that require persistent monitoring, a set of m+p
homogeneous drones, p>0, with velocity v, maximal battery
capacity q, discharge rate c, and a set H of n home locations
in which the drones replace batteries. Determine whether a
schedule of drone replacements using p spare drones exists
and find one, such that each location is monitored indefinitely
by at least one drone, and no drone’s battery will drain unless
it is in one of the homes.
The goal is to find a schedule of drone replacements with a
minimal number of spare drones (minimal number p) satisfy-
ing the persistent monitoring task, that is, guaranteeing both
that the persistent monitoring tasks are fulfilled indefinitely
and that no drone battery is drained. While referring to a
drone that is located at li, we use di or just i (1≤ i≤m)
interchangeably, and sdi (1≤ i≤p) will be used for denoting
a spare drone. We use dist(a, b) to denote the distance of

Fig. 2: Aoo′: (a) sd1 travels from home ho o=1 to
location l2. (b) When it arrives at l2, drones d2 and sd1
exchange roles and names. (c) The former drone d2 (which
is now sd1) travels from l2 directly to home ho′ , where
o′=1 or o′=2.

a path between two points, a and b. In our analysis the
paths between points are not necessarily straight lines, as
long as the travel cost satisfies the triangle inequality. A
drone’s travel cost (number of charge units) between location

li and location lj is c · dist(li, lj)
v

, and between home hj

and location li is c · dist(li, hj)
v

. The travel cost between a
location li and its nearest home plays an important role in
the analysis (sections VI, VII) and is denoted c · ti, where

ti =
dist(li, nearest home)

v
.

Each drone i must remain at location li until it is replaced
by one of the spare drones sdj . When the replaced drone
leaves li, it exchanges names with the spare drone that has
just arrived: the spare drone becomes di and the replaced
drone becomes sdj (figures 2-5). Thus, we do not refer to a
specific drone by its identity, rather by the task it performs.
That is, the location in which it performs its monitoring task.
This approach enables us to use a formalism (”replacement
schemes”), presented in the next section, to mathematically
denote all drone replacement patterns.

A drone replacement pattern is a series of drone replace-
ments. We will also use the term switch for a single drone
replacement which is an exchange of two drones. Thus a
drone replacement pattern is a series of switches. In order
to maintain persistent task performance, all of the switches
must be made by a spare drone replacing a task drone, thus
in each location there is a task drone at all times and the
task is persistently executed. The following observation is
the basis of the formalism: any switch (two drones which
perform an exchange) must be one of exactly 4 types, which
describe all possible drone actions regarding persistent task
performance energetic optimal replacements at location li.
We denote these 4 switch types by: Aoo′ ,Bo,C,Do′ . The
subscripts o, o′ of switch types A,B,D encode the recharging
homes. Figures 2-5 illustrate an example for each switch type
with three locations l1, l2, l3, one spare drone sd1 and two
homes h1, h2. In the following section (Theorem 4.1) we
prove that, in order to minimize the number of spare drones,
it is enough to focus only on switches of type Aoo′ , where
each drone that is replaced by a spare drone sdj that arrived
from some home ho should return directly to some home ho′
in order to replace (or recharge/refuel) its battery (o may or
may not be equal to o′).

391



Fig. 3: Bo: (a) sd1 travels from ho, where o=1 to l2. (b)
When it arrives at l2, drones d2 and sd1 exchange roles
and names. (c) The former drone d2 (which is now sd1)
travels to location l1.

Fig. 4: C: (a) sd1 travels from l2 to l1. (b) When it arrives
at l1, drones d1 and sd1 exchange roles and names. (c) The
former drone d1 (which is now sd1) travels to location l3.

IV. REPLACEMENT SCHEMES

In order to encompass all possibilities of drone replace-
ment patterns, we define the mathematical notation of a
replacement scheme for multi-homes.

Definition 2: Replacement scheme R = (i1, i2, . . . , ir1)
is a series of time consecutive drone switches until all of
the batteries of all m drones are replaced at the homes in
H . A drone exchange over location lij of switch type sj
at time tj is denoted by ij ∈ {1, 2, . . . ,m} for 1 ≤ j ≤
r1, r1 ≥ m. The series of replacement timings, denoted
by RT = (t1, t2, . . . , tr1), is non-decreasing. The series of
replacement switch types is: RS = (s1, s2, . . . , sr1), with
switch types sj ∈ {Aoo′ ,Bo,C,Do′} 1≤o, o′≤n.
R=(2, 1, 3, 4, 5, 2, 1, 3, 4, 5, 5) is the

replacement scheme illustrated in Figure 6, and
RS=(B1, C, C,C,D2, B1, D1, A12, B1, D2, A22) is the
corresponding series of replacement switch types. RT=(10,
20, 30, 40, 50, 60, 70, 80, 90, 100, 110) can be the
corresponding series of replacement timings, if all travel
times equal 10 time units.

Definition 3: Proper replacement scheme R =
(i1, i2, . . . , im) is a replacement scheme in which drones
only go back and forth to homes (switch type Aoo′).
R = (2, 1, 3, 4, 5), RS=(A12, A11, A11, A12, A22) is the

proper replacement scheme illustrated in Figure 7. The length
of a proper replacement scheme is m, and it is a permutation
of (1, 2, . . . ,m).

A cycle is a sub-series of a replacement scheme that starts
with a spare drone which leaves some home ho in order to
replace a drone which, in turn, may replace another drone and
so on until the last replaced drone in the sub-series returns
to a home h′o.

Definition 4: Drone replacement cycle (cycle in short) is a
sub-series of a replacement scheme R = (i1, i2, . . . , ir1) and
can be either a simple cycle, which is a drone replacement
of switch type Aoo′ , or a compound cycle, which has drone
replacements starting with switch type Bo followed by at

Fig. 5: Do′: (a) sd1 travels from l1 to l3. (b) When it
arrives at l3, drones d3 and sd1 exchange roles and names.
(c) The former drone d3 (which is now sd1) travels from l3
to home ho′ , where o′=1 or o′=2.

Fig. 6: An illustration of a replacement scheme.

least one switch type C followed by an ending switch type
Do′ .

A simple cycle over location lx is denoted by Cxx, and
a compound cycle over a set of locations lv, lw, lx, ly, lz is
denoted by Cvwxyz .

Note that any replacement scheme, R = (i1, i2, . . . , ir1),
has a corresponding series of drone replacement cycles:
RC = (C1, C2, . . . , Ca), where m≤a≤r1. When a = m
there is no redundancy, i.e., there are exactly m (number
of locations) battery replacements at the homes in H during
R. If we have several spare drones, the concatenation of
all cycles gives R up to order of elements due to the
simultaneous independent performance of cycles by several
spare drones. With one spare drone, the elements of a cycle
are consecutive in R, the concatenation of all cycles gives
exactly R.

If the minimum number of spare drones p is achieved
by some series of drone replacements which solves the
MONSOON problem, then it can be done with a proper
replacement scheme which uses the same minimum number
of spare drones p. The following theorem proves that.

Theorem 4.1: If p spare drones are needed in order to
maintain persistent monitoring on location set L, using
the set of homes H and the set of m + p drones with
battery charge capacity q, and performing any series of drone
replacements, then it can also be achieved by a concatenation
of proper replacement schemes.

Fig. 7: An illustration of a proper replacement scheme.
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Proof: Given any series of drone replacements, we
notice that it is a concatenation of replacement schemes: R1=
(i1, i2, . . . , ir1), R2 = (ir1+1, ir1+2, . . . , ir1+r2), R3, R4 . . .
etc. R1 has a corresponding series of drone replacement
cycles (def 4): RC1 =(C1, C2, . . . , Cm). The total number
of cycles is m (no redundancies). R1 ends with drone
replacement ir1 , i.e. at time tr1 the last drone that has not yet
replaced its battery arrives at one of the homes ho′∈h after
leaving location lir1 . This last drone was replaced at lir1 by
a spare drone which came during the last cycle. If it is a
simple cycle of switch type Aoo′ then the spare drone came
directly from one of the homes ho∈H . If it is not simple,
i.e. it consists of switch types Bo, C,Do′ , then the spare
drone came from some location lz if the cycle is Cxyzir1 , for
example. We now carefully examine the situation at the end
of R1. If we sort the locations according to the time of entry
from the homes in h of the replacement spare drones, we get:
lj1 , lj2 , . . . , ljm (a permutation of the locations l1, . . . , lm).
Over lj1 is the drone with the earliest entry time: it entered
from some home (w.l.o.g) h1∈h during the first cycle, but
not necessarily to its final location lj1 . Similarly, during the
second cycle, the drone entered which eventually arrived at
lj2 during R1, and so on. The drone over lj1 had to travel
along a path from h1 to lj1 , for example: Ph1xyzj1 with edges
{(h1, x), (x, y), (y, z), (z, j1)} that are scattered among the
cycles of R1. Although different cycles can be performed
in parallel, those edges of Ph1xyzj1 cannot be performed in
parallel because it is the same drone performing them. After
performing Ph1xyzj1 alternately, this same drone has to wait
the sequential performance of the suffix of the cycle contain-
ing the last edge path (z, j1) of Ph1xyzj1 . This suffix starts
with the replaced drone leaving lj1 and ends with some drone
arriving w.l.o.g. at h2∈h, denoted Pj1uvwh2

. Combining these
two paths, Ph1xyzj1 and Pj1uvwh2

, we get a cycle C̃xyzj1uvw,
therefore, by the triangle inequality and by applying the
same arguments to drones over locations lj2 , . . . , ljm , we
know that battery charge q, which is sufficient for R1, is
also sufficient for the proper replacement scheme defined as
follows: R

′

1 = (j1, j2, . . . , jm). Repeating the above process
on all other replacement schemes R2, R3, . . . completes the
proof by transforming the given series of drone replacements
into a concatenation of proper replacement schemes with the
same number p of spare drones.

An immediate consequence of Theorem 4.1 is that solving
the MONSOON problem requires using only the O(m) travel
costs between the m locations and the homes instead of all
pairwise O(m2) travel costs. Another consequence is that we
can optimize the locations of homes to minimize travel costs
by using facility location methods. Although in this paper
the homes are part of the input, we prove this theorem and
leave the usage of it for optimizing home placement to future
work. The usage of this theorem is important for example
in dynamic scenarios where locations to be monitored are
changing or when the drones are not homogeneous and the
travel cost varies between different types of drones.

Theorem 4.2: Based on Theorem 4.1 we can use the
Multi-Source Weber problem [10] to find optimal places for

the homes of the MONSOON problem.
Proof: An immediate consequence of Theorem 4.1 is

that solving the MONSOON problem depends only on the
travel costs between the m locations and the homes because
the minimal number of spare drones can be achieved by
a proper replacement scheme in which drones only follow
paths between homes and locations but not between locations
or between homes. Minimizing the travel cost between
homes and locations therefore yields better minimization of
spare drones. The multi-source Weber problem in the plane
requires finding locations for facilities in the plane to provide
service to a set of m given demand points, each with an
associated weight wi > 0. Each demand point gets its service
from the facility closest to it. The objective is to minimize
the total sum of weighted minimum distances to the facilities.
Let di(Xj) be the Euclidean distance between demand point
i and facility j located at Xj = (xj , yj). The vector of
unknown locations is X = (X1, . . . , Xn), thus the objective
function to be minimized is:

F (X) =

m∑
i=1

wi min
1≤j≤n

di(Xj)

Let the facility vector X represent the n homes, the demand
points represent the m locations requiring persistent monitor-
ing, wi = c

v for all m locations (drones are homogeneous),
and di(Xj) = dist(li, hj) , thus widi(Xj) is the drone travel
cost between hj and li. Optimizing F (X) yields the required
optimal homes placement for the MONSOON problem.

V. MONSOON IS NP-HARD

Theorem 5.1: MONSOON is NP-Hard even for a one spare
drone problem.

Proof: We shall show a reduction from the Traveling
Salesman Problem (TSP) to MONSOON.

TSP instance [30]: given a finite set C = {c1, c2, . . . , cm}
of cities, a distance dist(ci, cj) ∈ Z+ between each pair
of cities ci, cj ∈ C, and a bound B ∈ Z+ (Z+ denotes
the positive integers). Determine whether there is a tour of
all the cities in C having a total length of no more than
B. Given an instance of TSP, the corresponding instance
of MONSOON has a set of homes h = {h1, h2, . . . , hm}
that represents the set of cities C. For any two homes
hi, hj ∈ h the inter-home distance is defined to be the
same as the inter-city distance dist(hi, hj)=dist(ci, cj). The
set of locations l = {l1, l2, . . . , lm} (one location for each
home) such that for all i = 1, 2, . . . ,m: dist(li, hi) :=
ε · 1

2m · min
1≤i,j≤m

dist(hi, hj), where ε < 1
1000 (each location

li is very close to its attached home hi and very far from
other homes and locations). The battery capacity q equals B.
c=1, v=1, therefore dist(li, hi) is the number of charge units
it takes a drone to get from hi to li (or vice versa). After
creating the (obviously polynomial) MONSOON instance as
above, let MONSOON determine whether a schedule of drone
replacements using one spare drone exists and find one, such
that each location is monitored indefinitely by at least one
drone, and that no drone’s battery will drain unless it is in
one of the homes. According to Theorem 4.1, if q is enough
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to maintain persistent monitoring with one spare drone for
the given MONSOON instance, then it can also be achieved
by a series of drone replacements which has only switch
type Axy . Thus an optimal tour of drone replacements goes
through a permutation of the homes hπ(1), hπ(2), . . . , hπ(m)

with the replacement scheme: R = (π(1), π(2), . . . , π(m))
RS = (Aπ(1)π(2), Aπ(2)π(3), . . . , Aπ(m)π(1)) and continues
indefinitely by repeatedly performing R. L̃ denotes the total
number of charge units needed to complete one tour of R.

L̃ =

m−1∑
i=1

[
dist(hπ(i), lπ(i)) + dist(lπ(i), hπ(i+1)

]
+

+dist(hπ(m), lπ(m)) + dist(lπ(m), hπ(1)) =

= m·ε· 1
2m
· min
1≤i,j≤m

dist(hi, hj)+

m−1∑
i=1

[
dist(lπ(i), hπ(i+1))

]
+

+dist(lπ(m), hπ(1)) ≤
ε

2
· min

1≤i,j≤m
dist(hi, hj)+

+m · ε · 1

2m
· min

1≤i,j≤m
dist(hi, hj)+

m−1∑
i=1

[
dist(hπ(i), hπ(i+1))

]
+ dist(hπ(m), hπ(1))

lim
ε→0

L̃ =

m−1∑
i=1

dist(hπ(i), hπ(i+1)) + dist(hπ(m), hπ(1)) =

=

m−1∑
i=1

dist(cπ(i), cπ(i+1)) + dist(cπ(m), cπ(1))

Therefore q is enough for the MONSOON to be true with one
spare drone (and find a schedule) ⇐⇒ there is a tour (and
find one) of all the cities in C having a total length of no
more than B.

VI. APPROXIMATION ALGORITHM

As discussed in Theorem 4.2, an immediate consequence
of Theorem 4.1 is that solving the MONSOON problem
depends only on the travel costs between the m locations
and the homes but not between locations or between homes.
Therefore minimizing the travel cost between homes and
locations yields better minimization of spare drones. This
is the motivation to suggest that spare drones would arrive
from the home closest to each location. Therefore, given a
MONSOON instance, we apply Voronoi tessellation in order to
break the MONSOON problem into MSDPM sub-problems with
one home. For each home hj a Voronoi cell is defined to be
the set h

′

j of all locations li which are closer to hj than to any
other home. Each Voronoi cell corresponds to a sub-problem.
Each sub-problem has an exact (intractable) solution by
applying BMIDP (Bin Maximum Item Double Packing which
is a Bin Packing variant). The items to be packed are the
travel costs between locations and the single home of the
Voronoi cell sub-problem (double packing of maximum item
to accommodate the need of the first replacement drone to
wait for all others and replace again). The resulting solution

is equivalent to finding the minimal number of spare drones
p (the number of bins) and a scheduling of replacements
(the packing). A First Fit (FF) variant greedy approximation
algorithm (MIDFF), in which the maximum item of each bin
is double packed, is used to approximate the solution. To
each Voronoi cell we apply the MIDFF algorithm in order
to efficiently approximate the BMIDP solution. The sum of
the approximated number of spare drones over all Voronoi
cells approximates the minimal total number of spare drones
needed to solve the given MONSOON instance with several
homes, as shown in Algorithm 1. The same arguments and

Algorithm 1: Solve MONSOON using MIDFF.

1: Initialize: SpareDrones← 0
2: for Each home of MONSOON hi = h1, h2,..., hn do
3: create INSTANCE of MSDPM with one home hi
4: INSTANCE locations:{lj |lj ∈ Voronoi cell of hi}
5: SpareDrones=SpareDrones+MIDFF(INSTANCE)
6: end for

algorithm also apply to the offline MONSOON using MIDFFD
instead of MIDFF. MIDFFD is the corresponding First Fit
Decreasing (FFD) variant greedy approximation algorithm
in which the maximum item of each bin is double packed;
it is used to efficiently approximate the BMIDP solution for
the offline MONSOON.

VII. EXPERIMENTAL RESULTS

We conducted extensive experiments with various param-
eter settings in order to find an estimation of the approxi-
mation factor of both online MIDFF and offline MIDFFD.
Note that battery units are used for distance measurement.
While searching for the estimation for MIDFF and MIDFFD
approximation factors, we also checked the influence of
the parameters on it and on the number of spare drones.
We wanted to compare the algorithm’s estimation results
with the actual optimal solution, OPT. However, in order
to avoid intractable computation of the bin packing variant
(BMIDP), we used the minimal number of spare drones =∑

∀i
2c·ti

q−min
∀i
{2c·ti}

< OPT , instead of OPT (2c·ti is the number of

charge units it takes a drone to travel back and forth between
li and its nearest home).
Therefore, the experimental approximation factor is a strict
upper bound of the real approximation factor. Thus dividing
by a value lower than OPT gives a higher approximation
factor, which means that 1.6 (offline) and 1.7 (online) are
upper bounds, so our algorithm gives approximation factors
that are not worse than 1.6 and 1.7 but may be much
better. Moreover we show asymptotic convergence of the
approximation factors and we report the asymptotic worst
case values of 1.6 and 1.7 (while we get better values
in Figures 8 and 10 of 1.4 and 1.5 respectively). In all
cases shown in Figures 8 - 10, we iterate 1000 times and
report the MEAN values with error-bars of ±1 STD. In
each iteration we generate uniformly random samples of m
location distances in the range (min dist, max dist). For both
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versions of the BMIDP problem, those are the item sizes
to be packed in bins that represents spare drones. For the
online version, the item ordering is kept random as in the
random sample, simulating locations that are given one by
one over time with no constraint on the order as in the
MONSOON online version problem. For the offline version,
items are sorted by decreasing order, simulating a set of
locations given in advance as in the MONSOON offline version
problem. We compute the number of spare drones needed
and the approximation factor, and report the average over the
1000 iterations. Each of the figures presents a unique setup
of three parameters as constants, and presents the influence
of the fourth parameter as it changes on the approximation
factor and on the number of spare drones. In all of the graphs,

Fig. 8: Influence of increasing battery capacity q.

the upper line is the MIDFF results and the lower (better) one
is the MIDFFD. Figure 8 describes the influence of battery
capacity q on the approximation factor and the number of
spare drones. The parameters setup: (i) m - 50 locations
× 5 homes; (ii) Maximum distance - 100; (iii) Minimum
distance - 0 (iv) q - varies between 200 and 300. As q grows
we need fewer spare drones, because more locations can
be allocated to each spare drone. The approximation factor
also gets better with increased capacity because packing gets
easier as more efficient packing opportunities are available,
thus less penalty of greedy sub-optimal decisions. Figure 9

Fig. 9: Influence of increasing m, the number of locations.

reports the influence of m, the size of the location set L
on the approximation factor and the number of spare drones.
Parameters setup: (i) m - varies from 10 locations × 5 homes
to 200 locations × 5 homes; (ii) Maximum distance - 100;
(iii) Minimum distance - 0; (iv) q - 200. As m grows we
need more spare drones because we must visit more loca-
tions with the same energy capacity q. The approximation
factor gets better as m increases, because of the degrading
influence of spare drone free residual space which is left after
packing in each Voronoi cell and is not exploited to pack
in other Voronoi cells. There is an asymptotic limit which
evolves from the real approximation factor of the one home
MIDFF and MIDFFD. Figure 10 describes the influence of
the minimum distance on the approximation factor and the
number of spare drones. Parameters setup: (i) m - 50 × 5
homes; (ii) Maximum distance - 100; (iii) Minimum distance
- varies from 0 to 50; (iv) q - 200. As the minimum distance
grows, the random samples of m locations’ distances in
the range (min dist, max dist) have higher distance values,
therefore the items to pack are bigger. We need more spare
drones, since each drone can visit fewer locations that are
more distant. The approximation factor gets better with an
increased minimum distance, because the items become more
homogeneous as the samples are from a smaller range and
we get more uniform item sizes.
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Fig. 10: Influence of increasing the minimum distance from
hi.

Finally, as mentioned in the related work section, we
emphasize that our approach significantly outperforms the
completely different approach reported in [16]. They can
only deal with small-sized problems, as they report that
when the problem size becomes large, large variations occur.
Therefore they gave numerical results of up to 40 locations to
be monitored, while we can deal with thousands of locations
to be monitored (with stable results) as seen in Figures 8-
10. Moreover, their solution yields much more than twice
the spare drones compared to our solution, for example with
40 locations and 12 charging stations (4 central stations + 8
refueling stations), 53 spare drones are needed, while in our
solution with 50 locations and 5 refueling stations (much
fewer refueling stations, which makes the spare drones’
optimization harder), only 24 spare drones are needed.

VIII. CONCLUSIONS

In this paper we have examined the problem of determin-
ing the minimal number of drones necessary for performing
continuous tasks in m locations, considering the energy
limitations of the drones and finding the associated schedule
for drone replacements. We have proven (Theorem 5.1) that
if there are multiple possible recharging stations, the problem
is NP-Hard even in its simplest version: determining whether
a schedule of drone replacements using one spare drone

exists and find one, guaranteeing that all tasks are carried
out indefinitely. We show (Theorem 4.1) that a simple back-
and-forth replacement pattern of the drones (between the task
locations and the recharging stations) is optimal with respect
to finding the minimal number of spare drones. Combining
this with a variant of the Bin Packing problem, we suggest a
heuristic algorithm that is shown empirically to result in an
approximation ratio of 1.6 and 1.7 for the offline and online
versions of the problem, respectively. Directions to pursue
in the future are: (i) Heterogeneous drones; (ii) Dynamic
scenarios where both monitored locations and recharging
stations are added and deleted over time; (iii) Devising an
exact solution (intractable) in order to find theoretical bounds
on the approximation factor; and (iv) Using Theorem 4.2
to find optimal placement for charging stations in all above
mentioned future directions.
Main contributions of this paper:

• Proving Theorem 4.1 is the base of paper (simple
replacement pattern is optimal).

• Providing an approximation algorithm to minimize the
number of spare drones and schedule drones’ replace-
ments, both online and offline.

• Proving Theorem 4.2 to find optimal home (recharging
station) locations.

• Our algorithm significantly outperforms published re-
search results for the same problem [16] (see section
VII).
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