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Abstract— Motivated by the use of robots for pest control
in agriculture, this work introduces the Multi-Robot Dynamic
Swarm Disablement problem, in which a team of robots is re-
quired to disable a swarm of agents (for example, locust agents)
passing through an area while minimizing the cumulative time
of the swarm members (equivalent to the cumulative damage
they cause) in the area. Showing that the problem is hard
even in naive settings, we turn to examine algorithms seeking
to optimize the robots’ performance against the swarm by
exploiting the known movement pattern of the swarm agents.
Motivated by the poor performance when a weak group of
robots attempts to catch a large swarm of agents, whether it is
a significant numerical minority or poor speed gaps, we suggest
the use of blocking lines: the robots form lines that block the
agents along their movement in the environment. We show by
both theoretical analysis and rigorous empirical evaluation in
different settings that these algorithms outperform common
task-assignment-based algorithms, especially for limited robots
versus a large swarm.

I. INTRODUCTION

Teams of robots can be used for various purposes, among
them cleaning [24], delivery [14] and security [20]. Recently,
the use of robots has become more common in agriculture
applications, for harvesting, packing and pest control [10].
Motivated by the use of robots to prevent a locust swarm
from causing severe damage to crops, we introduce in this
paper the Dynamic Swarm Disablement (DSD) problem.

In the DSD problem, a team of robots, each equipped
with a disabling tool, is faced against a swarm of agents
(such as individual locusts) in an attempt to disable them
while minimizing the accumulated damage they cause as
they pass through an area (feeding on crops). Once a locust
agent is placed within the sensing/disablement range of
some robot, it is disabled and removed from the system.
While the robots act as a coordinated, knowledgeable team,
the agents follow a swarm-model, having very simple local
behavior (specifically, they follow a fixed course) and limited
knowledge of the world. Although having the advantage of
knowledge, coordination and computation, the robots are
extremely outnumbered by the agents, raising the interesting
question of determining their optimal behavior facing this
mass of agents. Hence, our goal is to define paths for
the robots such that they jointly minimize the accumulated
damage caused by the agents before they are disabled (or
leave the area), equivalent to minimizing the sum of times
all agents are active in the area.
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The problem draws similarities to several canonical robotic
and optimization problems, such as multi-robot patrolling
[2], [7], [26], coverage [4], [16], task-assignment [19] and
TSP [1], [13], yet it raises complex and innovative challenges
due to the mixture of the various fields it touches.

We prove that if we treat the DSD problem as an assign-
ment problem, in which we allow robots to move anywhere
in the area and intercept agents individually, the problem
is NP-hard. Because of this, and inspired by the poor
performance of current task-assignment approaches [8] when
it comes to a limited group of robots facing a large swarm
(that is, many tasks), whether there are large numerical gaps
or low capabilities of the robots, we consider a new approach
in which we construct blocking lines based on the agents’
known direction of progress. We suggest several algorithms
for placing those lines under different settings, and theoret-
ically prove their optimality within their context in terms
of yielding minimal accumulated damage caused by the
agents. We then perform an extensive empirical evaluation,
comparing the performance of the blocking-line algorithms
to benchmark assignment-based algorithms, and show their
effectiveness especially when the robots are inferior in terms
of numbers or velocity compared to the agents.

II. RELATED WORK

The Dynamic Swarm Disablement (DSD) problem shares
common characteristics with some canonical problems from
the worlds of robotics and optimization.

Recent work with close motivation to ours is the Multi-
robot Containment and Disablement (CAD) problem by
Maymon et al. [22]. In the CAD problem, a team of robots
attempts to contain a swarm of agents preventing any single
agent from expanding and then reduces the size of the
contained area while preserving an enclosure. The motivation
for both problems is very similar, as we try to disable the
swarm and stop their progress in order to avoid extensive
damage, but still there are significant differences between
the problems. In the CAD problem, the agents’ movement
model is a random walk, so the robots enclose the agents
from all directions before moving inside and disabling them.
In contrast, in the DSD problem the movement model is in a
known direction, and thus the solution concept utilizes those
to perform blocking only on one side.

A possible approach to deal with the problem of swarm
disablement is to place the robots on a closed polygon
that surrounds the agents in their current locations or in
the direction of their movement, and then apply methods
from multi-robot perimeter patrol in order to disable agents
that try to pass through the perimeter [6], [30]. Indeed, our



problem seems related to the patrol problem, although there
are differences that need to be addressed. Regarding the
optimization criteria, while patrolling attempts to maximize
the (expected) number of blocked agents, in our case we try
to minimize the amount of damage that the swarm causes. In
addition, unlike patrolling a fence, we want to allow robots
to move in the space to prevent more damage.

An additional task that draws similarities with the DSD
is the multi-robot pursuit-evasion problem. Pursuit-evasion
is a game between (one or more) pursuers that attempt to
capture (one or more) evaders, where those wish to evade
being captured for as long as possible. The pursuit-evasion
problem is examined vastly in the literature, discussing,
among others, efficient pursuing strategies for the pursuers,
seeking the evaders (e.g., [18], [25]). However, in addition to
the difference in the optimization criteria, these works differ
from ours in the fact that they do not deal with swarms of
weak robots and do not utilize any knowledge regarding the
movement model of the agents.

One of the most challenging problems of multi-robot
systems is how to optimally assign a set of tasks in such
a way that optimizes the overall system performance. This
problem is known as multi-robot task allocation (MRTA)
problem. There are few deterministic and nondeterministic
optimization methods that have been used in order to solve
task allocation problems [3], [23], in addition to market-
based methods that gained considerable attention within the
robotics research community [17], [29] because of their effi-
ciency, robustness and scalability. While our problem seems
at first glance as a case of the MRTA problem, there are
difficulties that prevent us from using the common solutions
to the problem. The costs of the tasks in the DSD problem
are accumulated, since the goal is to minimize the cumulative
damage. Furthermore, the costs are also dependent, as the
cost of some robot to perform an agent disablement varies
if it is moving and disabling another agent meanwhile. This
dependency makes our problem more difficult.

III. THE DSD PROBLEM

In this section we present the Multi-robot Dynamic Swarm
Disablement problem and discuss its hardness.

A. Problem Definition

We are given an 2D-environment W , a team of k homo-
geneous robots R = {r1, . . . , rk} and a group of n agents
A = {a1, . . . , an}. Robot ri ∈ R is located at time t in
the Cartesian coordinates pti := (xt

i, y
t
i), and the set of R-

robots’ positions at time t is denoted by Pt = {pt1, . . . , ptn}.
Similarly, an agent ai is located at time t in p̃ti, and the
set of all A-agents’ locations at time t is denoted by P̃t =
{p̃t1, . . . , p̃tk}. Following these notations, the initial positions
of the robots and the agents are P0 = {p01, . . . , p0n} and
P̃0 = {p̃01, . . . , p̃0n}, respectively. Denote also the function
dist(a, b) as the euclidean distance between two points, a
and b,g and distw(a, b) = dist((a, b) ∩W ) as the distance
within the environment W .

The robots are homogeneous, equipped with disablement
tool of range d, s.t. robot ri disables an agent aj at time
t if and only if dist(pti, p̃

t
j) ≤ d. In addition, there is

a central planner that plans the paths of the robots given
the initial world state so that each robot knows to track
its planned movement. However, the swarm agent model
assumes limited capabilities of sensing and communication
of the agents. Therefore, agents make their decisions with
limited knowledge of the world.

In the current version of the problem, we assume the
agents’ behavior model to be a straight movement with
constant velocity v and movement direction which is, without
loss of generality, always upwards (similar to a locust-swarm
movement). The robots instead can move in any direction and
they are faster than the agents by a factor of f > 1.

The damage caused by an agent ai up to time t is formally
defined as:

dti :=

∫ t−1

j=0

distw(p̃
j
i , p̃

j+1
i ) dt

Similarly, the damage caused by the entire swarm agents
up to time t is defined by:

Cw(t) :=

n∑
i=1

dti =

n∑
i=1

∫ t−1

j=0

distw(p̃
j
i , p̃

j+1
i ) dt

Since the swarm moves up a vertical line, the damage
caused by an agent ai can also be written as:

dti := ỹti − ỹ0i

Similarly, again, the damage caused by the entire swarm
can be written as:

Cw(t) :=

n∑
i=1

dti =

n∑
i=1

(ỹti − ỹ0i ) =

n∑
i=1

ỹti −
n∑

i=1

ỹ0i

The damage model assumes independence in the damage
amount for different visits by agents at the same location.

Therefore, the DSD problem is defined as follows:

Given an area of interest W , a team of k robots R =
{r1, . . . , rk} with their initial locations P0, and a swarm of
n agents {a1, . . . , an} with initial locations P̃0 and a specific
movement model, find a path for each robot in R such that the
accumulated damage caused by A in W is minimized, that is,
min limt→∞ Cw(t).

B. Problem Hardness

The most general form of the optimization problem, i.e.
sending the k robots to disable the n moving agents with
minimum total delay, requires solving a kinematic version
of the well-known Traveling Repairman Problem (TRP) [1].
In the TRP we are given a finite set of points and the travel
times between any two of them, and we wish to find the route
through the points which minimizes the sum of the delays
for reaching each point. This problem is closely related to
the canonical Traveling Salesman Problem, and it is not
surprising that the TRP is also NP-complete [28].



Many variants of TSP have been well studied, discussing
their hardness and the possibility to approximate them,
including kinetic variants. For example, [12] study the ap-
proximation complexity of kinetic TSP with a fixed constant
speed in a fixed direction and prove some bounds on the
approximation factor of them. In particular, they prove that
the kinetic TSP or the moving-targets TSP is hard. We use a
similar reduction as seen in [5] to prove that general kinetic-
TRP and fixed-velocity and fixed-direction kinetic-TRP are
NP-Hard. This important result is summarized below1.

Theorem III.1. The general kinetic-TRP and the fixed-
velocity and fixed-direction kinetic-TRP are both NP-hard.

Following the hardness of the problem, we suggest ar-
ranging the robots as a blocking structure in the swarm’s
movement direction instead of sending them to conduct
chases separately. When we come to block the swarm, we
make a distinction between two types of scenario, the full-
blockage case and the partial-blockage case. In the full
blockage scenario, the number of the robots k and their range
of disablement d are sufficient to fully cover the world in the
horizontal axis. This condition occurs when 2dk is greater
than or equal to the greatest distance between agents on the
horizontal axis. In the partial blockage scenario, on the other
hand, the promise of the possibility of a complete blockage
on the horizontal axis is not fulfilled. As a result, such a
scenario must be considered separately and other methods
need to be developed for it.

IV. THE FULL-BLOCKAGE CASE

In this section we consider the DSD problem for the
scenario in which the dispersion of the agents and the number
of robots are enough to cover the relevant range on the
horizontal axis. We want to perform the optimal assignment
of the robots that creates the blocking line, and then find
the optimal movement of the robots to their positions and
possibly their later movement with the line.

Denote by M := {m1, . . . ,mk} the set of movements
(paths) for each robot, such that mi is a set of locations and
times: < pi1 , ti1 >,< pi2 , ti2 >, . . . dictating the path for
robot ri. Correspondingly, the optimization of DSD can be
described as argminM limt→∞ Cw(t).

A. Static Line

The most basic configuration for a blocking line is a static
line that covers the entire range of agents’ positions on
the horizontal axis in the direction of their movement, and
once the robots reach their positions on the line they remain
stationary. In this case, we determine the optimal movement
M of the robots to the optimal line.

We assume that the agents are initially placed above the
robots, that is, max(y01 , . . . , y

0
k) ≤ min(ỹ01 , . . . , ỹ

0
n). This is

reasonable since in many cases the robots start their mission
when they are off the field, and it is important to ensure the
optimality of the assignment as discussed later. Denote b as

1Full Proofs are omitted due to space constraints; can be found in [9]

Fig. 1: A DSD instance with a full blocking line, and the locations
of the robots along the blocking line.

the height of the northern border of the world W . Figure 1
illustrates a possible instance of a static line solution.

Denote the x value of the leftmost and rightmost agents
by x̃min = min(x̃0

1, . . . , x̃
0
n) and x̃max = max(x̃0

1, . . . , x̃
0
n).

These values represent the relevant range to consider on
the x-axis. We also define ỹmin as the agents’ minimal y
value and ymax as the robots’ maximal y value. To ensure
complete blockage, the blocking line should be between
x̃min and x̃max. For simplicity we neglect fractions and say
that the length of the blocking line is x̃max − x̃min and the
needed number of robots to construct the blocking line is
x̃max−x̃min

2d . In this section, as stated above, we refer only
to the case where the number of robots is sufficient for the
construction of a full blocking line (k ≥ x̃max−x̃min

2d ).

Algorithm 1: StaticLine(P0, P̃0, b)
Result: movement M

// minimal makespan assignment on bottom line

loci := (x̃min + d+ 2d · i, ỹmin), 0 ≤ i <
x̃max−x̃min

2d

Distances := {dist(loci, p0j ) : 0 ≤ i <
x̃max−x̃min

2d
, j ∈ [k]}

Costs := {2index of dist in Sorted(Distances) : dist ∈ Distances}
(pl1, . . . , p

l
k)← HungarianMethod(P0, {loci}, Costs)

// farthest robot from its position
m := argmaxi∈[k] dist(p

0
i , p

l
i)

// lines’ heights to consider

H := {
f2ỹ0

i −y0
m+

√
(fỹ0

i −fy0
m)2+(xl

m−x0
m)2(f2−1)

f2−1
: i ∈ [n]}

// disabled agents for a given line

Adisabled(h) := {i : ỹ0
i ≤ h −

√
(xl

m−x0
m)2+(h−y0

m)2

f , i ∈ [n]}

// minimizing damage score
D(h) :=

∑
i∈[n] (b− ỹ0i )− |Adisabled(h)|(b− h)

h∗ ← argminh∈H D(h)

M ← ((xl
1, h

∗), . . . , (xl
k, h

∗))

StaticLine algorithm gets the initial positions of the robots
and the agents, P0 and P̃0, in addition to a boundary line b
that limits the area, and determines the movement M , that
is, the movement of the robots to their optimal assignment
on the optimal blocking line h∗.



The steps of the algorithm are as follows. First, the
algorithm determines the optimal assignment of the robots,
up to the height of the line, according to some line above
the robots (e.g., h = ỹmin). The optimal assignment is the
one that minimizes the organization time, a.k.a. makespan,
which is the maximal time it takes for a robot to reach its
place. This can be done by solving an augmentation of the
assignment problem (explained below). After the assignment
we know the identity of the farthest robot that determines the
makespan time. The algorithm accordingly defines a set of
relevant lines H that include the optimal solution, selects the
line h∗ that minimizes the damage function D(h) and returns
the movement of the robots to that line with the optimal x
values that were previously calculated.

Below we mention lemmas that prove the algorithm’s cor-
rectness (some details are omitted due to space constraints).

The claim that the optimal assignment is the same for any
line above the robots is justified by the following lemma.

Lemma IV.1. The optimal assignment of the robots on a line
is preserved for all lines that are higher than the robots.

Proof: (sketch) As long as all the lines are on one side
of the robots (up or down), the order between the distances
between the robots and the locations on the lines is main-
tained, and therefore the optimal assignment is maintained.

The assignment task itself is a fundamental combinatorial
optimization problem, with a well-known polynomial-time
algorithm to solve it, the HungarianMethod [19]. The time
complexity of the original algorithm is O(n4), but was
later reduced to O(n3) by a few modifications [15]. The
assignment costs are the distances between the robots and the
target locations on the given line, however, we do not want
to minimize the sum of the distances but only the maximal
distance, as it determines the construction time. This gap is
bridged, similar to the solution concept presented in [7], by
a mapping between the sorted distances and rising exponents
of 2, exploiting the useful property of 2n+1 > 2n+1 − 1 =∑n

i=0 2
i which causes the order of the sums to be determined

by the greatest element in them.
Once we have determined the optimal assignment, it

remains to analytically find the finite set H , which contains
the lowest possible line to catch the agent a for each a ∈ A.
The lines are examined by D(h), a function that measures
the damage for a given line h by the damage of the blocked
agents and the damage of the escaping agents. An optimal
line is guaranteed to be in H as the following lemma proves.

Lemma IV.2. H contains the globally-optimal static hori-
zontal line that minimizes the agents’ accumulated damage.

Proof: (sketch) Suppose that h∗ is an optimal solu-
tion that captures agents Adisabled(h

∗). There is a minimal
line h′ ∈ H that captures the same group of agents
Adisabled(h

∗), and since h′ ≤ h∗, as h′ is the lowest line to
catch Adisabled(h

∗), we have that |Adisabled(h
′)|(b − h′) ≥

|Adisabled(h
∗)|(b− h∗) and thus D(h′) ≤ D(h∗).

The correctness of StaticLine algorithm follows directly
from the lemmas.

Theorem IV.3. StaticLine algorithm returns the movement
(assignment) of the robots on a static horizontal line, mini-
mizing the accumulated damage caused by the agents.

The complexity of StaticLine algorithm is derived from
the complexity of HungarianMethod on the k robots and
their target locations, which is O(k3) (or less, using other
implementations for the assignment problem), assuming that
the number of the robots on the blocking line is also O(k)
and the O(n) complexity of referring to the agents for each
of the n lines in H . In total, O(k3 + n2).

B. Traveling Line

Now we consider horizontal lines with the possibility of
vertical movements. Because the robots move faster than the
agents by a factor of f and they are not limited to stay in
static positions, the robots can possibly reach all the agents.

Under these settings, we can calculate a non-trivial move-
ment M that is optimal based on a variant of the LineTRP
[1]. The LineTRP is a case of TRP in which the points are
positioned on a straight line, and in [1] the authors present
a polynomial dynamic programming solution for it. In our
case, the blocking line turns the robots’ movements to be
only in one (vertical) dimension, similar to the LineTRP.

Algorithm 2: TravelingLine(P0, P̃0)
Result: movement M
(xl

1, . . . , x
l
k),m and H are calculated as in algorithm StaticLine

// makespan time

makespan(h) :=

√
(xl

m−x0
m)2+(h−y0

m)2

fv

// minimizing damage score
D(h) := LineTRPv(P̃makespan(h), h) + n ·makespan(h) · v
h∗ ← argminh∈H D(h)

M ←
((xl

1, h
∗), . . . , (xl

k, h
∗))⊕ LineTRPv(P̃makespan(h∗), h

∗)

The algorithm calculates the optimal assignment in terms
of the x values, the farthest robot m and the set of relevant
lines H exactly as StaticLine. The only change is the score
function D(h), which is calculated by the modified LineTRP
solution, in addition to the damage that is caused during the
reorganization before the moving line begins to operate.

The modified LineTRP, named LineTRPv, receives the
updated positions of the agents P̃makespan(h), the line h and
returns the optimal path and its damage. The points of the
agents are sorted vertically and separated to the agents that
below or on a given line h, denoted by Adown = (d0, d1 . . .)
(descending), and the agents that above h, denoted by
Aup = (u0, u1, . . .) (ascending). The state of the problem
is uniquely represented by [di, uj ] ([uj , di]), which means
that the repairman or the line is currently at di (uj) and the
range that was already visited is between di and uj . The
speed of the repairman is increased by an additional v when
traveling against the velocity of the agent, and the opposite
when traveling in the same direction. A table D containing



the optimal values of the paths for each end-state can be
calculated by the following equations:

D[d1, u0] = n ·
h− d1

fv + v
, D[u1, d0] = n ·

h− u1

fv − v
,

D[di, u0] = D[di−1, u0] + la ·
di−1 − di

fv + v
,

D[uj , d0] = D[uj−1, d0] + la ·
uj − uj−1

fv − v
,

D[di, uj ] = min(D[di−1, uj ]+la·
di−1 − di

fv + v
,D[uj , di−1]+la·

uj − di

fv + v
),

D[ui, dj ] = min(D[ui−1, dj ]+la·
ui − ui−1

fv − v
,D[dj , ui−1]+la·

ui − dj

fv − v
)

The indexes i, j are the frontier indexes of Adown, Aup

respectively, and la is the number of living agents,
which is n + 1 − i − j. The optimal solution is
max(D[dlast, ulast], D[ulast, dlast]) since the end state of
the optimal path is [dlast, ulast] or [ulast, dlast]. The com-
plexity of filling the table is O(n2) as its size.

An optimal line is guaranteed to be in H (proof omitted
here), and the correctness of TravelingLine follows directly.

Theorem IV.4. TravelingLine algorithm returns a movement
of the robots as a horizontal line with a vertical movement
minimizing the accumulated damage caused by the agents.

The complexity of TravelingLine is O(n3 + k3) due to
HungarianMethod, as before, and due to the calls of n to
LineTRPv when implemented in time of O(n2).

C. Separate Traveling

Instead of forcing robots to move together in a naive
horizontal line structure, it may sometimes be beneficial to
treat different areas of the environment differently. For ex-
ample, it might be useful to divide the space into consecutive
vertical “buckets” so that in each of them a single robot is
a full blocking line of its own and behaves optimally with
respect to its own section. Separation can only yield a better
outcome, since it examines the options that are examined
without separation, and in addition it adds the ability to
perform different movements in different buckets.

The following procedure partitions the range of the x-
values of the agents into consecutive buckets of width 2d,
determines the behavior of a single robot in each bucket and
chooses the robot-to-bucket assignment.

Algorithm 3 consists of the following steps. The proce-
dure first divides the horizontal range of the agents into
consecutive buckets of width 2d, assuming no remainder for
simplicity, and runs TravelingLine for each robot for each
bucket, that is k · x̃max−x̃min

2d runs. Each run of Traveling-
Line computes the movement and the damage cost for the
specific robot handling the specific bucket. By doing so we
get the costs for each robot-to-bucket assignment, and the
optimal combination can be found by running the original
HungarianMethod on these costs.

The complexity of SeparateTraveling is O(k2n3 + k3)
because the O(k3) of HungarianMethod for k robots and
k buckets, and the use of TravelingLine for the assignment

Algorithm 3: SeparateTraveling(P0, P̃0)
Result: movement M

// partition of the agents into 2d-buckets
Bi := {aj : x̃0

j ∈ [x̃min + 2di, x̃min + 2d(i+ 1)]},
0 ≤ i <

x̃max−x̃min
2d

// optimal robot-to-bucket assignment
Tasks := {Bi}
Costs := {cost of TravelingLine(p0i , Bj)

: i ∈ [k], 0 ≤ j <
x̃max−x̃min

2d
}

L← HungarianMethod(P0, Tasks, Costs)

M ← movements of TravelingLine corresponding to L

scores that happens k2 times (suppose that the buckets’
number is within the order of the robots’ number), multiplied
by the complexity of TravelingLine itself, that is O(n3)
since there are at most O(n) agents in a bucket. Indeed,
by sharing the internal lineTRPv optimal path information
between the TravelingLine runs for the different robots on the
same bucket, the complexity can be reduced to O(kn3+k3).

V. THE PARTIAL-BLOCKAGE CASE

In this section we consider the DSD problem for the
scenario in which the dispersion of the agents and the number
of the robots are not suitable for a full coverage of the agents’
range on the horizontal axis, that is, k <

x̃max−x̃min

2d .

A. Static Line Lack

In the current scenario it is not possible to find a full
blocking line, and thus we consider static lines that are static
only in vertical movements, while the robots can move on
them horizontally in order to perform as many blocks as
possible (which is equivalent to minimizing the damage since
any penetration causes the same amount of damage).

Similar to the multi-robot perimeter patrol technique of
reachability graph [6], we construct a graph that encapsulates
all the possible blocking options and run a min-cost-max-
flow algorithm to obtain the movement of the robots (valid
flow) that optimizes the number of caught agents (min-cost).
We had to make some adjustments in the graph because in
our case the robots are not initially placed on the perimeter
where the perceptions happen. Figure 2 shows an example
of a modified reachability graph and how to build it.

We call this modified version FlowMoves, and it returns
the optimal horizontal movement of the robots for a given
line, as well as additional information such as the identity
of the blocked agents. The modifications are trivial.

In contrast to the full blockage case where the optional
lines are derived by the arrival time of the farthest robot
which is the same robot rmax for all the lines, in our case the
robots can have different initial allocations for different lines
and thus the identity of the farthest robot is not necessarily
preserved. The way we overcome this is by adding more line
candidates, which are the minimal height lines that block
each single agent for each possibility of choosing a robot to
disable this particular agent. This chosen robot determines



Fig. 2: Reachability graph example (using networkx [11] package).
The robots r0 and r1 need to block the agents a0, .., a3 on the blue
line h. There is an edge between robot ri and agent aj if ri can
block aj on h, and there is an edge between agents if a robot that
blocks the first can later move and block the second. The agents
are divided into in and out vertices to simulate a vertex cost.

uniquely the height of the minimal line to catch the particular
agent, instead of the farthest robot in the full blocking lines.
Therefore, the number of lines in H is O(kn), and optimality
is still achieved from some line within it.

Algorithm 4: StaticLineLack(P0, P̃0, b)
Result: movement M

// heights for each agent and robot
H :=

{
f2ỹ0

i −y0
j+

√
(fỹ0

i −fy0
j )

2+(xl
j−x0

j )
2(f2−1)

f2−1
: i ∈ [n], j ∈ [k]}

// disabled agents for a given line
Adisabled(h) :=
{i : ai agent is caught by FlowMoves(P0, P̃0, h), i ∈ [n]}

// minimizing damage score
D(h) :=

∑
i∈[n] (b− ỹ0i )− |Adisabled(h)| · (b− h)

h∗ ← argminh∈H D(h)

M ← paths of FlowMoves(P0, P̃0, h∗)

Algorithm 4 works as follows. StaticLineLack first calcu-
lates the relevant lines to consider H , that is, the minimum
height lines that disable an agent ai for each choice of robot
to reach this agent. Then the FlowMoves procedure is run
on each line to check which agents are caught and which
are not for the best blocking that the line is capable of. The
best line h∗ is then selected taking into account the damage
derived from the disabled and the escaping agents. Finally,
once we find the optimal line, we can retrieve the optimal
movements by the (cached) answer of FlowMoves on h∗.

An optimal line is guaranteed to be in H since it includes
all the relevant options (proof omitted here), and the correct-
ness of StaticLineLack algorithm follows directly.

Theorem V.1. StaticLineLack algorithm returns a movement
of the robots on a horizontal line that minimizes the accu-
mulated damage caused by the agents.

Algorithm StaticLineLack uses a run of FlowMoves

method to determine the score of each line among the O(kn)
lines in H , which is the runtime complexity of O(knV E2) =
O(kn(k + n)(kn+ n2)2) assuming the runtime complexity
of O(V E2) of the min-cost-max-flow method.

B. Separate and Additive Line Lack

Two other heuristic versions that we briefly mention
are the SeparateStaticLineLack and AdditiveLineLack algo-
rithms. In both versions the computation time is reduced by
limiting the time expensive procedures to only a relatively
small groups of agents instead of the whole group.

In SeparateStaticLineLack we divide the space into k
vertical buckets, where in each bucket one robot is assigned
and performs a horizontal patrol using a reachability graph
(using a linear time longest-path query on DAG instead of
flow). The assignment is done in the same way as Separate-
Traveling, examining any robot and bucket combination and
choosing the best assignment of robots to buckets.

In the second solution, AdditiveLackLine, we perform a
horizontal division such that each time StaticLineLack is
applied on a group with a fixed number of agents in the order
of the agents from the highest to the lowest. The reason that
the blocking starts in a top-down way is to take advantage
of the agents’ movement by coming towards the blocking
line and not moving away from it. Unlike StaticLineLack,
the robots are not necessary staying on one single horizontal
line, but choosing a new line for each group of agents.

VI. EMPIRICAL ANALYSIS

We have implemented the algorithms for the full coverage
scenario and the partial coverage and tested their results2.
In addition, we also implemented baseline algorithms that
represent the simple approach to the task-allocation problem
based on [8], referred to as assignment-based benchmark, in
order to emphasize the performance of the blocking lines3.

In the first assignment-based algorithm, named Iterative-
Assignment, we perform an iterative assignment by reapply-
ing HungarianMethod. After each assignment of k robots
and agents, the states of the remaining robots and agents are
updated before assignment in the next iteration. Clearly, the
optimal assignment in each iteration is a greedy choice that
can differ from the global optimal solution. For example, the
optimal solution can assign all agents to a single close robot,
which is not the case when iterative assignment is used.

Another assignment-based algorithm we have examined,
KmeansAssignment, divides the agents into k clusters by
the well-known kmeans clustering algorithm [21], with the
movement within each cluster being greedily done to the
nearest agent. The assignment of the robots to the clusters
is done by the HungarianMethod. Unlike the IterativeAs-
signment procedure, this method tries to delegate separate
responsibilities to each robot, which in some cases can be
an advantage and in other cases a disadvantage depends on
the distribution of the agents, outliers and more.

2On i3-4170 CPU, by Python3 without further interpreter optimizations.
3The implementations can be found at https://github.com/Elilgo324/dsd.
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Fig. 3: Full blockage as a function of the number of the agents.

A. Full Blockage Evaluation

The basic configuration of the experiment is a rectangular
field with a height that is 3 times the width. The positions
of the agents are evenly drawn in the lowest third square in
the field and their direction of movement is upwards. The
locations of the robots are sampled below the borders of the
world. Unless otherwise stated, the number of the agents n
is 300 and the speed ratio f is 2. In a full-blockage scenario,
the number of the robots is the minimum number of robots
sufficient for horizontal coverage, which is the x-range of
the agents divided by the disablement range d, rounded.

We have compared the blocking algorithms in the full-
blockage scenario, along with the assignment-based algo-
rithms. Interesting stats for comparison include the damage
amount, the task completion time (the elapsed time until
the last disablement happens), the computation times of the
planners and the number of the disabled agents.

1) Agent Number Analysis: We have tested different sizes
of swarms. The results are summarized in figure 3.

Figure 3a shows that the damage caused by the
assignment-based algorithms, IterativeAssigment and
KmeansAssignment, is close to the damage caused by the
other algorithms when the number of agents in relatively
small. The more agents that are added to the environment,
the gaps between the blocking-based and the assignment-
based algorithms become more and more significant.
The completion times of the blocking algorithms remain
almost the same, as figure 3b shows, while they increase
consistently for the assignment algorithms because of
the chases that the robots conduct. Among the blocking
algorithms, the SeparateTraveling algorithm manages to
avoid damage the best. The TravelingLine shows relatively
close performance, but its runtime exceeded the experiment
threshold at some point. As seen in figure 3c, the runtime of
SeparateTraveling also grows significantly with the number
of agents, but remains relatively reasonable.

The StaticLine algorithm performs worse than the assign-
ment algorithms for a small number of agents but outper-

(a) Accumulated damage (b) Task completion time

Fig. 4: Full blockage as a function of the speed ratio.
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(c) Planner runtime in seconds (d) Number of disabled agents

Fig. 5: Partial blockage as a function of the number of the agents.

forms them as the number of agents increases. Figure 3d
shows that indeed all the algorithms eventually capture all
the agents, except the StaticLine which gives up on some.
This fact can disprove a possible misconception that the more
agents you disable the more damage you prevent. The fact
that StaticLine performs well even though it disables fewer
agents, can be an advantage if minimizing the number of
disablement actions is an objective.

2) Speed Ratio Analysis: We have tested different velocity
ratio of the robots compared to the velocity of the agents.
The results are summarized in figure 4.

From figures 4a and 4b it can be understood that the
velocity of the robots is more critical for the assignment
algorithms than the blocking methods. When the robots try to
chase the agents instead of passing and blocking them, they
have a longer way to travel that requires higher speed. This
is another advantage of blocking algorithms, which provide
a good solution even for relatively slow robots. Even the
StaticLine algorithm on a relatively limited number of agents
outperforms the baseline algorithms in the damage manner
for a low robot-agent speed ratio.

B. Partial Blockage Evaluation

We also empirically tested the algorithms for the case
where we cannot fully cover the horizontal range of agents.
To complete the picture about the effectiveness of the block-
ing lines, we present the performance of the algorithms for
different sizes of swarms and for different numbers of robots.
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Fig. 6: Partial blockage as a function of the number of robots.

1) Agent Number Analysis: As for the case of full block-
age lines, figure 5a shows that the blocking lines outperform
the assignment algorithms regarding the damage avoidance
starting from a certain size of swarm. In addition, mission
completion times are shorter and stable, despite the superior
performance in terms of avoiding damage. As seen in figure
5d, the blocking algorithms give up on more agents, rela-
tively, as the swarm grows, and yet the performance versus
the assignment algorithms gets better.

Among the blocking lines, StaticLineLack and Separat-
eStaticLack perform very well, and the AdditiveLineLack
versions (which differ in the number of agents in each
vertical cell) are slightly behind. However, the runtime of
StaticLineLack is relatively high, and the runtime of Separat-
eStaticLack is also significant as figure 3c shows. In contrast,
the runtime of the AdditiveLineLack versions is almost
negligible. The task completion times of AdditiveLineLack
are higher than those of other blocking algorithms but do
not increase as those of the assignment algorithms.

2) Robot Number Analysis: Figure 6 illustrates well the
dependence of assignment-based approaches on the number
of robots available for assignment, compared to the blocking-
line methods that perform well even for a relatively small
number of robots. For the assignment methods, the accumu-
lated damage decreases and the completion time increases
significantly as more robots are added to the system, while
the gaps are much more limited for the blocking methods.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have introduced the Multi-robot Dynamic
Swarm Disablement problem and showed its hardness. We
have presented a variety of blocking-line solutions, based
on analytical calculations, classic optimization problems and
flow networks, and showed their optimality relative to other
options of blocking lines. Empirical comparisons with other
current approaches substantiate the effectiveness of the so-
lutions, especially for limited robots versus a large swarm.

We would like to continue the research to find better
solutions with proven optimality, especially for the case
where the number of robots is not enough for a full blockage.
In particular, we would like to generalize the use of solving
the TRP problem in one dimension for two dimensions as
well, with the additional dimension divided into buckets,
by adjusting the TSP problem solution for parallel lines
[27]. Reinforcement-learning methods are another direction
of progress, as well. In addition, we would like to examine

the suitability of the solutions or the development of addi-
tional solutions for more complex agents’ movement models
involving additional noise and uncertainty.
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