
Multi-Robot Area Patrol under Frequency

Constraints

Yehuda Elmaliach, Noa Agmon and Gal A. Kaminka∗

The MAVERICK Group, Computer Science Dept.

Bar Ilan University, Israel

{elmaley,segaln,galk}@cs.biu.ac.il

Abstract— This paper discusses the problem of generating
patrol paths for a team of mobile robots inside a designated target
area. Patrolling requires an area to be visited repeatedly by the
robot(s) in order to monitor its current state. First, we present
frequency optimization criteria used for evaluation of patrol
algorithms. We then present a patrol algorithm that guarantees
maximal uniform frequency, i.e., each point in the target area
is covered at the same optimal frequency. This solution is based
on finding a circular path that visits all points in the area, while
taking into account terrain directionality and velocity constraints.
Robots are positioned uniformly along this path, using a second
algorithm. Moreover, the solution is guaranteed to be robust in
the sense that uniform frequency of the patrol is achieved as long
as at least one robot works properly.

I. INTRODUCTION

Robots can save human lives and costs by replacing humans

in mundane, or dangerous tasks. For instance, robots may be

used for cleaning [6], and hazardous waste removal [14]. One

specific application of interest is surveillance and patrolling

along perimeters [18] or in sensitive areas [4].

This paper discusses the problem of patrolling a target area.

Patrolling involves repeatedly visiting a target location in order

to assess environmental state by deploying sensors in those

locations. If the entire terrain cannot be monitored at all times,

each location in the target area is monitored once every f time

cycles. The frequency is, then, 1/f . Increased availability of

multiple robots raises new opportunities for patrol missions.

First and foremost, patrolling can be made more time-efficient

in the sense that the frequency is potentially higher, i.e., f is

smaller. In addition, robustness can be attained in the sense

that if at least one robot is active, the patrol mission can still

be accomplished.

Previous work has offered several approaches to surveil-

lance of areas [10], [15], [17], [2]. However key challenges in

surveillance have been left open. First, patrolling has mostly

been done in ad-hoc fashion, without a formal analysis of the

quality of the task in light of its principal goal. Second, the

opportunity for increased robustness has not been investigated

theoretically. Third, handling non-uniform terrains in terms of

velocity and directional constraints was not addressed.

Hence, this paper deals with constructing patrol paths for

a group of mobile robots that are required to patrol in a

non-uniform continuous target area (divided into a grid). We

base our solution on recent work in multi-robot coverage [1],

∗This work was supported in part by Israel’s Ministry of Science.

[13], in which the authors suggest a family of algorithm for

generating cyclic paths for covering the terrain once. We rely

on their basic idea introduced by Gabriely and Rimon [8],

in which spanning trees are used in order to generate the

cyclic paths in uniform grid based terrains. In our solution,

we guarantee that every point will be attended at the same

frequency by creating one cyclic patrol path visiting all points

in the target area (a Hamiltonian cycle in the grid), and

instructing all robots to walk along this cycle in equidistant

relative positions.

Robots have velocity limitations, which depends on both

the terrain and direction in which they travel. For example,

climbing a hill can typically be done in a lower velocity

compared to climbing down the same hill. Therefore a cost

should be associated with each point (and direction) of the

terrain, making the terrain grid directionally non-uniform.

We consider directionally non-uniform terrains. We first

provide an algorithm that finds the minimal cyclic path (mini-

mal Hamiltonian cycle) given the terrain. We then find points

along the path from which the patrol will start, and find an

optimal assignment of robots to those locations in the sense

that they will arrive at their starting points in minimal time.

Finally, we evaluate our derived patrol algorithm using the

frequency optimization criteria described in Section III. By

basing our solution on the choice of minimal Hamiltonian

cycle, we guarantee maximal uniform frequency in the cycle.

Similar to the robustness of the multi-robot coverage de-

scribed in [13], our solution is robust, therefore guarantees

maximal uniform frequency for any number of non-faulty

robots greater or equal to one.

II. BACKGROUND

The patrol task, also known as sweeping or repetitive

coverage, was investigated previously in various approaches.

Most approaches concerning multi-robot patrol partitions the

area into sub-areas divided between the robots. Inside such

sub-area, each robot patrols using some single-robot patrol

algorithm. Ahmadi and Stone [2] describe a negotiation-based

approach for dividing the area between the robots, dealing

with events such as addition and removal of robots from the

system. Guo et. al ([11], [12]) also divide the area between

the robots while focusing on their localization and sensorial

capabilities. Jung and Sukhatme describe in [15] a region

based approach for tracking targets in a system with multiple

robots and stationary sensors.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeB1.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 385

However, key challenges in surveillance have been left open.

First and foremost, patrolling has mostly been done without a

formal analysis of the quality of the task in light of its principal

goal, i.e., frequency of visits to each target point. Second, the

opportunity for examining patrolling in groups of robots for

robustness has not been analyzed and theoretically proven.

Related work by Chevaleyre [5] offer the first theoretical

analysis of the patrol problem. The author provides an analysis

of partition-based versus cyclic patrol paths. He introduces

the notion of idleness, which is the duration each point in

the patrolled area is not visited. He provides an algorithm

based on the Traveling Salesman Problem (TSP) to create

a cyclic path for the robots and proves its optimality in the

sense that the idleness is minimized. Finding the optimal path

in the TSP problem is NP-Hard, therefore the solution is

an approximation to the optimal solution. The authors use

the ST based approximation for creating the cycle, which

assumes that the original graph is complete. Our approach,

on the other hand, provides an optimal solution in the same

sense, and moreover - provides uniform optimal solution

for grid based graphs (under Gabrieli and Rimon’s initial

assumptions in [9]). A survey by Almeida et. al. [3] brings a

discussion concerning different approaches towards patrolling

with regards to the idleness criteria. They compare paths based

on machine learning, agents using negotiation mechanisms,

heuristic agents and ones going along one cycle (described in

[5]). Their empirical results show great advantage to the cycle

based approach in average idleness, therefore it strengthens

our choice of choosing one cyclic path for the patrol.

The patrol problem resembles the coverage problem, a

canonical problem in robotics, in the sense that both require

the robot or group of robots to visit all points in the given ter-

rain. However, while coverage seeks to minimize the number

of visits to each point (ideally, visiting it only once), patrolling

seeks to maximize it (while still visiting all points). Therefore

solutions that are used for the coverage problem can be used

as basis for patrolling.

Specifically, we chose to use the Spanning Tree Coverage

(STC) method as base for our work. In this method, introduced

by Gabriely and Rimon [8] the authors assume that a single

robot is equipped with a square shaped tool of size D, hence

the area was divided into cells of size D placed on grid.

The grid was then coarsen such that each new cell is of size

2D X 2D, and a spanning tree was built over this new coarse

grid. After such a tree was built, the robot follows the tree

around, creating a Hamiltonian cycle visiting all cells of the

original grid (see example in Figure 1).

The idea was first broadened for a multi-robot system by

Hazon and Kaminka in [13] in the family of Multi Robot

Spanning Tree Coverage (MSTC) algorithms. Their solution,

along with decreasing the total coverage time, achieved robust-

ness in the sense that as long as one robot works properly, the

coverage of the terrain is guaranteed.

In most cases the spanning tree is built upon uniform grids.

However, in [9] the authors considered a special case of non-

uniform terrains, for a single-robot coverage case. In that work,

each edge in the coarse grid was given a different weight in

order to favor movement in certain directions, and a minimal

spanning tree (MST) was found. However, the authors did

not show the correspondence of the weights of the coarse grid

edges to the fine grid edges, and minimality of the Hamiltonian

cycle was not proven.

tree
Hamiltonian cycle

2D

D

spanning

Fig. 1. An example for spanning tree based coverage. Coarse grid is in bold,
and the spanning tree connects all coarse grid cells. The Hamiltonian cycle
over the fine grid is the dotted line along the spanning tree.

III. FREQUENCY OPTIMIZATION CRITERIA IN AREA

PATROL

Continuously monitoring a target location by a group of

mobile robots can be done using various methods. Given a

team of k robots and N target areas, each of size smaller or

equal to the sensorial range of a robot. If k ≥ N , then all

target areas can be monitored at all times by the team simply

by assigning a robot to each target area. Formally, f = 1 since

each target area is monitored at each time cycle by at least one

robot. In the more common case, k ≪ N , each target area ai,

1 ≤ i ≤ N , is visited by a mobile robot at some frequency fi.

Note that the frequency in which each target area is visited is

not necessarily uniform.

There are several possible target visit frequency criteria

according to which patrol algorithms can be evaluated, and

are described as follows:

Uniform frequency: The goal is to decrease the variance

between the frequencies in which each target is visited, i.e.,

all targets should ideally be visited with uniform frequency f .

Average frequency: In the case where uniformity cannot be

guaranteed, the goal is to increase the average frequency f in

which targets are visited.

Under-bounded frequency: The goal is to increase the min-

imal frequency in which any target is visited, such that every

target is visited with frequency of at least 1/f . In other words,

all targets should be monitored at least once every f cycles.

In our work, we guarantee optimal uniform, under-bounded

average frequency through all cells in the target area. We do

this by generating a cyclic path visiting all target areas (a

Hamiltonian cycle) and then place the robots uniformly along

the cyclic path. If all robots move at the same direction—

either clockwise or counterclockwise along the cyclic path—

then clearly each cell is visited at the same frequency (uniform

frequency). Moreover, in uniform terrains each cell is visited at

least once every ⌈ cycle length
num robots ⌉ number of cycles, where cycle

length is simply the number of nodes plus one.

We address a more realistic case of directional terrain, in

which we have a grid over a continuous area, with velocity

WeB1.2

386

constraints, depending on the position and direction of move-

ment. In this case we have to find a minimal Hamiltonian cycle

(Section IV), and then find an assignment of robots to their

starting points along the path while considering the weighted

directional terrain (Section V).

IV. GENERATING A MINIMAL CYCLIC PATH

In this section we find a minimal circular path based on the

spanning tree solution for coverage [8]. Previous work based

on spanning tree for coverage dealt with uniform grids, i.e., the

cost of going to either four directions from a cell is uniform

along the entire grid (hence each spanning tree is minimal). We

introduce a domain in which a cost is attached to a movement

between any two adjacent cells in the fine grid. In order to

use the known results using spanning trees, we must convert

the directed edges of the fine grid to undirected edges in the

coarse grid while preserving the properties of the edges such

that a minimal spanning tree on the coarse grid will yield a

minimal Hamiltonian cycle on the fine grid.

Since the patrol tour can be conducted in either clockwise

(CW) or counterclockwise (CCW) directions along the span-

ning tree path, we divide our world to CW and CCW. In

general, there are four directed edges entering and four leaving

each cell in the fine grid. Since we follow some spanning

tree path, the options decrease and each cell have up to two

incoming and two outgoing edges in each world (CW and

CCW), as described in Figure 2. We find a minimal spanning

tree in each of the worlds separately, and choose the minimal

between both as base for the patrol path.

b.a.

Fig. 2. Division of the area to clockwise (a.) and counterclockwise (b.)
directions. The graphs are built such that the movement is suitable for traveling
along a spanning tree. Union of the two graphs provide all possible movement
options from each cell: up, down, right and left.

Note that Figure 2 clearly illustrates that the CW and CCW

worlds are complementary in the following sense. First,the

intersection between the worlds is empty, i.e., ∀e ∈ E,

e ∈ CW(G) or e ∈ CCW(G). Second, together they pro-

vide all connections between adjacent edges in four possible

directions: up, down, right and left.

Following, we describe an assignment of weights (Assign-

ment Assign Opt) to the undirected edges of the coarse

grid based on the weights of the directed edges of the fine

grid. We then argue that using this assignment, we indeed

guarantee that finding a minimal spanning tree on the coarse

grid representation yields an minimal Hamiltonian cycle on the

fine grid. In order to do that, we first prove that in our scenario,

a Hamiltonian cycle is created by each spanning tree and vice

versa, i.e., each Hamiltonian cycle in the fine grid is translated

to a spanning tree in the coarse grid. Based on that, we then

prove, in Lemma 3, that Assignment Assign Opt yields the

minimality property we seek.

Assignment Assign Opt: The cost assigned to the undi-

rected edge (u, v) in the coarse grid (see figure 3) is the sum

of the directed edges in the fine grid, parallel to (u, v) from its

two sides minus the sum of the directed edges perpendicular

to (u, v) and intersecting it, or: (a+b)−(c+d). Note that this

can generate edges with negative cost. In this case we shift

the cost of all edges by the minimal negative value, and use

Kruskal’s algorithm ([7]) for finding an MST.

(a
+

b
)

−
 (

c
+

d
)

i

h

g

f

e

cb

a

j

d

v

u

v

u

Fig. 3. The assignment of weights to the undirected edges of the coarse grid
based on the directed edges of the fine grid (here in the CW direction).

Lemma 1: Every spanning tree on the coarse grid can be

translated to a Hamiltonian cycle on the fine grid and vice

versa, i.e., every Hamiltonian cycle on the fine grid can be

translated to a spanning tree on the coarse grid.

Proof: The first part of the Lemma is shown in the

initial algorithm of Gabriely and Rimon [8]. According to

their algorithm, a Hamiltonian cycle is generated simply by

walking along the spanning tree path in the fine grid.

In order to prove the second direction, we will first show that

the existence of Hamiltonian cycle in the fine grid guarantees

that only full edges are picked in the coarse grid. We choose,

without loss of generality, the CW case. Figure 4 illustrates

two adjacent vertices in the coarse grid, u and v, and their

corresponding vertices in the fine grid. Denote the edge

(u2, v1) by a, (v3, v4) by b, (u2, u4) by d and (v3, v1) by

c. We must show that choosing edge a guarantees choosing

also b and excludes c, d, and vice versa, i.e., choosing c forces

choosing d and excludes a, b. Assume, towards contradiction,

that a Hamiltonian cycle exists in the grid, but it uses only edge

a and not b. Therefore in order to visit vertex u4 d is chosen,

contradicting the fact that they are all part in a Hamiltonian

cycle, as u2 cannot have two outgoing edges. The fact that c
and d cannot be chosen along with a and b is proven similarly.

It is left to show that the Hamiltonian cycle on the fine grid

creates a spanning tree on the coarse grid. Assume, towards

contradiction, that there exists a Hamiltonian cycle that does

not translate into a spanning tree on the coarse grid. This

means that there exists a vertex in the coarse grid that is not

covered by the spanning tree. This can happen only if not all

fine vertices are visited, contradicting the fact that we have a

Hamiltonian cycle.

Corollary 2: A Hamiltonian cycle on the fine grid can

include edges from either the CW world or the CCW world,

but not from both.

WeB1.2

387

v1 v2

v3 v4b

c

a

d

u1 u2

u3 u4

vu

Fig. 4. Illustration of Lemma 1.

Figure 5 shows an example illustrating the corollary. A

closed path is a Hamiltonian cycle if it covers all vertices of

the graph once, meaning that the in-degree and out-degree of

vertices in this path is 1. In Figure 5, all edges in the path are

from the CCW world except for edge (v1, v2) (dashed), which

is from the CW world. The resulting path is not a Hamiltonian

cycle, as v1 has in-degree 2 and v2 has out-degree 2.

v2

v1

Fig. 5. Illustration of Corollary 2, demonstrating the problem of combining
edges from the CW and the CCW world.

Lemma 3: Using Assignment Assign Opt, an MST on the

coarse grid representation yields a minimal Hamiltonian cycle

(HC Min) on the fine grid.

Proof: Assume again, toward contradiction, that there

exists a Hamiltonian cycle, HC
′

with total weight smaller than

HC Min. This can happen in one of two scenarios.

a. Its corresponding spanning tree has lower cost than the

MST. This contradicts the minimality of the MST, hence this

case is impossible.

b. Its corresponding spanning tree (ST
′
) has higher total

weight than the MST’s weight and still HC
′ < HC Min.

Consider the case in which the trees differ by one edge,

e ∈ MST, e /∈ ST
′

and e′ ∈ ST
′, e′ /∈ MST. Denote the

directed edges forming e by a, b, c, d and the directed edges

forming e′ by a′, b′, c′, d′ (as described in Assign Opt). Since

ST
′ > MST and based on Lemma 1, it follows that that

weight(e′) > weight(e). Therefore, according to Assign Opt,

a′ + b′ − (c′ + d′) > a + b − (c + d) ⇒ a′ + b′ − (a + b) >
c′+d′−(c+d). Since we assume that HC

′ < HC Min and they

differ only by e and e′, if follows by the inclusion of e in HC

and exclusion in HC Min that a′ + b′ + c+d < a+ b+ c′ +d′

⇒ a′+b′−(a+b) < c′+d′−(c+d), leading to a contradiction.

It can be shown similarly for every spanning tree greater than

the MST that this case is impossible.

As a corollary of Lemmas 1 and 3, the following algorithm

finds the minimal Hamiltonian cycle over the given terrain.

Note that the construction of minimal Hamiltonian cycle

in our domain applies to the coverage problem as well as

for the patrol problem. Meaning, the minimal cycle as found

here for non-uniform terrains can be used also for single-robot

coverage, achieving minimal coverage path with respect to the

constraints on the terrain as long as the robot moves in either

CCW or in CW direction (as implied by the output).

Procedure Generate Cycle

1) Divide the area into two CW and CCW scenarios.
2) For each scenario, create a graph on the coarse grid by

assigning weights to edges as described in Translation A.
3) Find a minimal spanning tree in the coarse grid using

Kruskal’s algorithm.
4) Calculate the total length of the Hamiltonian cycle gener-

ated by the minimal spanning tree.
5) Report scenario (CW or CCW) and cycle with shorter total

length.

V. ASSIGNING INITIAL LOCATIONS TO ROBOTS

After establishing the minimal cyclic path for the patrol

mission by the group of mobile robots, it is left to determine

the position of the robots along the cycle from which they

begin their patrol. Clearly, in order to achieve uniform fre-

quency it is sufficient to spread the robots uniformly along

the cyclic path. The distance between every two robots along

the cyclic path should be the total weight of the cycle divided

by the number of robots, yielding an equal distance between

every two consecutive robots along the patrol path. Since there

is more than one possible assignment of the robots to such

positions, we want to find the assignment that requires minimal

change from current positions of the robots. Therefore we

describe herein the algorithm Initialization, which finds the

locations from which the robots should start patrolling, while

minimizing the maximal distance a robot should travel in order

to arrive at its location. As the robots move simultaneously

from their initial positions to their positions along the cycle,

this corresponds to minimizing the time it takes all robots to

be positioned and ready for the patrol mission.

We define the Minimal Path Matching (Min Path Match)

problem as follows.

Min Path Match: Given a weighted graph G = (V,E,W),
a Hamiltonian cycle visiting all vertices in the graph, and a

set of initial positions of k robots on vertices of G. Find an

assignment of each robot to a position in the graph such that

the following are fulfilled.

1) The distance between every two consecutive robots

along the Hamiltonian cycle is equal.

2) The maximal distance traveled by a robot from its initial

position to the assigned location is minimized.

We suggest the initialization algorithm Initialization for

solving the Min Path Match problem. The input to the

algorithm is: G - graph, HC - minimal HC found by

Generate Cycle, RI - set of initial locations of the robots

on the graph and BW - basic weight of edge (generally

equals 1 unless scale involves fractions, in which BW will

be scaled accordingly). Define the length of a Hamiltonian

cycle by len(HC). The algorithm works as follows. First, it

generates HC
′

by separating the edges of the cyclic path into

sub-edges, each of size BW (see Figure 6. Each vertex in HC ′

represents an optional starting point. It then sets the initial

positions of the robots along the path such that the distance

between them is
len(HC

′

)
k , and finds the assignment of robots

WeB1.2

388

to these locations such that the maximal distance traveled by

a robot from its initial position to the assigned location is

minimized. It does that by using procedure PMPM. Then, it

checks the minimal maximal distance of all rotations of the

positions along the cycle, and reports the positions yielding

minimal maximal distance.

Algorithm Initialization(G,HC,RI ,BW)

1) L← ∅ {output optimal match}
2) min = ∞ {minimal match weight}
3) HC′ ← separation of HC by BW .

4) V L ← k vertices from HC′ with distance of
len(HC′

)
k

between consecutive vertices along HC′
.

5) Compute Dijkstra (shortest path) for each robot from its
current location to all vertices in the graph (HC)

a) For i = 0 to
len(HC′

)
k

b) V L = V L+1 {progress each of the V L vertices
one optional starting point forward in HC′}

c) Let BG be a full bipartite graph of the two sets RI
and V L {the weights will be based on the above
Dijkstra calculation}

d) ML = ∅ {ML be the current match list}
e) MatchValue← PMPM(BG, ML)
f) If MatchValue < min then

i) L = ML
ii) min = MatchValue

6) return L

5

4

1

3

2

5

4

1

3

2

Fig. 6. On the left: The basic Hamiltonian cycle. On the right: The separated
Hamiltonian cycle (in this example BW = 1)

In step 3 we create optional starting points along the

spanning tree path. In step 4 we choose a specific set of starting

points with equal weights from one to the next. In step 5b. we

update the set of starting points by progressing each point to

its following neighbor. Step 5 of the algorithm Initialization

will be repeated for each possible set of starting points. In

step 5e. we use Procedure PMPM, where it receives BG - a

full weighted bipartite graph and an empty list ML. Procedure

PMPM fills ML with the optimal possible match considering

BG. An optimal match is one in which the minimal maximal

weight of an edge in the bipartite graph over all possible

permutations maximal edges. It also returns the value of this

maximal edge named here MatchValue.

Procedure PMPM uses the Hungarian algorithm [16] which

finds a match in bipartite graphs with minimal sum of edges.

As illustrated in Figure 7, the Hungarian algorithm finds a

match between r1 and d1 and between r2 and d2 since this

is the minimal match sum. But in our application we would

like to find the minimal biggest edge from all the possible

permutations, i.e., we want to match here r1 to d2 and r2
to d1. In this match the maximal edge weight is 9 while in

the previous it is 10. Step 3 in the PMPM algorithm construct

Procedure PMPM(BG,ML)
1) Let V be BG vertices
2) Sort the edges in BG
3) Construct BG′ from BG with edge weights start from

1 and by the increased sorted order multiple by
|V |
2

(see
Figure 7).

4) Run the Hungarian-Algorithm(BG′,ML)
5) Return biggest edge weight from the match ML in the

corresponding BG edges.

BG′ from BG. The BG′ graph, by its construction, causes the

Hungarian algorithm call (in step 4) to prefer the permutation

in which the maximal edge is minimal.

Robot location

r1 d1

d2r2r2 d2

d1r1 8

4

2

1

10

9

8

3

DestinationRobot locationDestination

Fig. 7. Basic bipartite graph, and bipartite graph after conversion.

Lemma 4: The construction of BG′ in step 3 of PMPM

assures that the Hungarian algorithm returns a match with

minimal maximal edge in BG.

Proof: First, we prove that the construction assures the

selection of a match with minimal maximal edge in BG′.

For that, assume, towards contradiction, that the Hungarian

algorithm returns a minimal match with sum of edges M and

maximal edge m but there exists another match with sum of

edges M ′ that has a maximal edge m′ such that m > m′. By

the construction of BG′ in step 3 of PMPM it follows that

any edge in BG′ is greater than the sum of all edges smaller

than it. Specifically, by our assumption that m > m′ it follows

that m > M ′ ⇒ M > M ′ contradicting the minimality of M
returned by the Hungarian algorithm.

It is left to show that the match found on BG′ yields a match

on BG with minimal maximal edge as well. This follows

directly from the fact that the order of edges remains through

construction, hence minimal maximal edge in BG transforms

to the minimal maximal edge in BG′, and back.

The time complexity of Procedure PMPM is as the Hun-

garian algorithm [16] k3 and Algorithm Initialization runs it
|V |
k times. It also run Dijkstra (shortest path) k times. Then

this algorithm complexity is O(KV (K + lgV)

VI. EVALUATION OF THE DERIVED PATROL ALGORITHM

In this section we evaluate the patrol algorithm that is based

on procedure Generate Cycle and Initialization according to

the frequency optimization criteria described in Section III.

Theorem 5: The patrol algorithm which is derived by the

combination of Procedures Generate Cycle and Initialization

guarantees: a. Uniform frequency b. Maximal average fre-

quency c. Optimal under-bounded frequency.

Proof: a. The first part of the Min Path Match problem

requires the robots to be placed initially, i.e., before they

begin their patrol, in uniform distance along the cyclic path.

This requirement is clearly fulfilled by step 4 in Procedure

WeB1.2

389

Initialization, where the only positions considered are the

ones where all robots are placed with equal distance from

their neighbors along the cyclic path. Since the robots are

homogeneous and all target areas are covered by the cyclic

path, their movement along the cyclic path yields a uniform

frequency of 1

len(HC)/k
, where k is the number of robots

and len(HC) is the total length of the minimal HC found

by Generate Cycle and the standard deviation is 0.

b. + c. The cyclic path found by Generate Cycle was proven

by Lemma 3 to be minimal. Therefore one robot traveling

along this cycle has maximal frequency of 1

len(HC)
, hence the

maximal possible frequency by k robots is k× 1

len(HC)
, which

is exactly the frequency guaranteed by our algorithm. All

targets are monitored, then, exactly once every
len(HC)

k cycles,

and by that optimal under-bounded frequency is guaranteed.

Since we have proven uniform and under-bounded frequency,

maximal average frequency is straightforward.

VII. GUARANTEEING ROBUSTNESS

In [13], Hazon and Kaminka have demonstrated the benefit

of using spanning trees as base for multi-robot spanning tree

coverage. In their work they used the circular path generated

by the spanning tree as base for robust multi robot coverage.

Therefore in our work we use the circular path not only for

assuring uniform frequency while patrolling, but for robustness

as well. In our case, we refer to robustness in the sense that

as long as at least one robot remains intact, the patrol mission

is guaranteed to be performed successfully.

Robustness is clearly guaranteed, as if one robot fails the

other robots simply divide the circular path again between

them by re-running Procedure Initialization. Theorem 5 is,

then, guaranteed for the new number of robots. In this

statement we have a hidden assumption that the system is

stable in the sense that the uniform, maximal-average, optimal

under-bounded frequency is guaranteed as long as the system

performs properly, and if a failure occurs it again guarantees

the above properties after a short reorganization time. This

reorganization time is the period of time necessary for the

robots to execute the algorithm and arrive at their new initial

positions. If all robots are to walk along the cyclic path

following the current direction, then this period of time will

not exceed
len(HC)

6 , see Lemma 6 for the proof. If the system

is unstable, i.e., robots fail one after the other, then Theorem 5

is guaranteed for the final number of robots after stabilization.

Lemma 6: The reorganization time required when decreas-

ing the number of robots from k to k−1 is maximum the time

required to travel the distance
len(HC)

6 if robots follow the

circular path on their way towards their new initial positions.

Proof: Consider the case in which there are three robots,

and one fails. The length of the HC is divided by the three

robots prior to the failure, and is divided by two after the

failure. Therefore, if only one robot travels along the path, it

has to travel from len(HC)/3 to len(HC)/2, which is exactly

len(HC)/6. For any other k, the distance traveled is smaller:
len(HC)

k−1 − len(HC)
k < len(HC)

2 − len(HC)
3 for any k > 2.

Clearly, for k = 2 the remaining robot has no reorganization

phase, as it simply patrols along the circular path alone.

VIII. CONCLUSIONS AND FUTURE WORK

In this work we have discussed the patrol problem and

its frequency aspects. First, we have suggested frequency

parameters according to which a patrol mission can be eval-

uated. Next, we described an algorithm for finding a minimal

Hamiltonian cycle in a non-uniform, directional, terrain. Based

on this cyclic path, we have shown an algorithm that assigns

locations to the robots along the path such that the time

necessary to arrive to those locations is minimal, and patrolling

from those locations create a uniform maximal-frequency

patrol. Last, we have shown that this algorithm is robust in

the sense that it guarantees patrol at uniform frequency as

long as at least one robot works properly.

There are still several areas we plan to pursue in future

work. First, we would like to take into consideration at the

cycle generation phase also other aspects, for example mini-

mizing number of turns. Second, we would like to examine the

case in which the robots are heterogeneous. In addition, we

would like to consider task allocation during patrol missions,

for example extracting robots to handle events while satisfying

some frequency constraints. Last, we wish to consider also

non-uniform terrains having also prioritized requirements.

REFERENCES

[1] N. Agmon, N. Hazon, and G. Kaminka. Constructing spanning trees for
efficient multi-robot coverage. In ICRA, 2006.

[2] M. Ahmadi and P. Stone. A multi-robot system for continuous area
sweeping tasks. In ICRA, 2006.

[3] A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V. Cor-
ruble, and Y. Chevaleyr. Recent advances on multi-agent patrolling.
Lecture Notes in Computer Science, 3171:474–483, 2004.

[4] D. Carrolla, C. Nguyena, H. Everetta, and B. Frederickb. Development
and testing for physical securtiy robots. In SPIE, Orlando, 2005.

[5] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling prob-
lem. In Proceedings of Intelligent Agent Technology (IAT), 2004.

[6] J. Colegrave and A. Branch. A case study of autonomous household
vacuum cleaner. In AIAA/NASA CIRFFSS, 1994.

[7] T. Corman, C. Leiserson, and R. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[8] Y. Gabriely and E. Rimon. Spanning-tree based coverage of contin-
uous areas by a mobile robot. Annals of Mathematics and Artificial

Intelligence, 31:77–98, 2001.
[9] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid

environments by a mobile robot. Comp. Geometry, 24:197–224, 2003.
[10] D. W. Gage. Command control for many-robot systems. In The

nineteenth annual AUVS Technical Symposium (AUVS-92), 1992.
[11] Y. Guo, L. Parker, and R. Madhavan. Towards collaborative robots for

infrastructure security applications. In CTS04, pages 235–240, 2004.
[12] Y. Guo and Z. Qu. Coverage control for a mobile robot patrolling a

dynamic and uncertain environment. In WCICA, June 2004.
[13] N. Hazon and G. Kaminka. Redundancy, efficiency, and robustness in

multi-robot coverage. In ICRA, 2005.
[14] S. Hedberg. Robots cleaning up hazardous waste. AI Expert, pages

20–24, May 1995.
[15] B. Jung and G. Sukhatme. Tracking targets using multiple robots: The

effect of environment occlusion. Autonomous Robots, 13(3), 2002.
[16] H. W. Kuhn. The hungarian method for the assignment problem. In

Naval Research Logistics Quarterly, volume 2, pages 83–97, 1995.
[17] S. Kumar, T. Lai, and A. Arora. Barrier coverage with wireless sensors.

In ACM MobiCom, pages 284–298, Cologne, Germany, 2005.
[18] K. Williams and J. Burdick. Multi-robot boundary coverage with plan

revision. In ICRA, 2006.

WeB1.2

390

