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Abstract
Coalition formation involves partitioning agents
into disjoint coalitions based on their preferences
over other agents. In reality, agents may lack
enough information to assess their preferences be-
fore interacting with others. This motivates us to
initiate the research on coalition formation from
the viewpoint of online learning. At each round,
a possibly different subset of a given set of agents
arrives, that a learner then partitions into coali-
tions. Only afterwards, the agents’ preferences,
which possibly change over time, are revealed. The
learner’s goal is optimizing social cost by mini-
mizing his (static or dynamic) regret. We show
that even no-static regret is hard to approximate,
and constant approximation in polynomial time is
unattainable. Yet, for a fractional relaxation of our
problem, we devise an algorithm that simultane-
ously gives the optimal static and dynamic regret.
We then present a rounding scheme with an opti-
mal dynamic regret, which converts our algorithm’s
output into a solution for our original problem.

1 Introduction
A set of computer science students initiates their Bache-
lor’s degree, eager to enhance their learning experience and
academic successes by forming study groups during the
semester. Initially, with limited information about other stu-
dents’ skills and work habits, the students change their prefer-
ences through interactions, making informed decisions to join
study groups aligned with their working styles and academic
goals. This adaptive process enables them to optimize collab-
orative learning, leveraging the strengths of diverse groups.
The composition of study groups may also evolve over time
as students’ preferences adapt and factors like schedules and
health-related issues affect physical attendance at the univer-
sity. Such situations and many other real-life scenarios no-
ticed in our social, economic, and politic life, fall within the
phenomenon of coalition formation, where agents perform
activities in coalitions rather than on their own.

A popular framework for studying coalition formation is
that of hedonic games [Drèze and Greenberg, 1980], which
disregards externalities, i.e., agents’ utilities solely depend on

the coalition they are part of. The outcome of such games is
a set of disjoint coalitions (hereafter, partition). Most of the
hedonic games literature considers an offline setting, where a
single game is fully available upfront. Yet, in many realistic
cases as our study groups example (see, e.g., [Cohen and Ag-
mon, 2023a]), not all agents are initially present, but different
subsets of them arrive over time, while their preferences to-
ward other agents are initially unknown and may change.

In this paper, we present and study a new model captur-
ing such real-world scenarios in coalition formation from the
perspective of online learning. At each round, a possibly dif-
ferent subset of a given set of agents arrives, that a learner
then partitions into coalitions. Only afterwards, the agents’
preferences, which possibly alter across time, are revealed.
For performance evaluation, we focus on the classic metric of
regret [Shalev-Shwartz, 2012]. Prior works on online learn-
ing typically consider the static regret [Hazan, 2016], evalu-
ating the learner’s decisions against an optimal fixed offline
decision. Yet, it is not a suitable measure in dynamic settings
such as ours, where the best decision may change frequently.
As a remedy, recent studies focus on dynamic regret [Yang et
al., 2016], comparing the learner’s decisions against the de-
cisions optimal for individual time steps. In our model, the
learner’s goal is thus minimizing (static or dynamic) regret.

Our study aims to characterize what the learner can attain
in terms of static and dynamic regret. First, we prove that no-
static regret is hard to approximate. We show that, if we have
an efficient learner, then we can devise an efficient algorithm
that approximately solves an offline variant of our problem,
proven to be hard to approximate due to Bilò et al. [2022].
Our result also indicates constant approximation to no-static
regret is unattainable in polynomial time. Surprisingly, this
result does not apply to the more stringent dynamic regret. To
overcome our hardness result, we consider a fractional relax-
ation of our problem, where agents are fractionally assigned
to multiple coalitions. We prove that such a relaxation al-
lows us to obtain a best of both (regret) worlds algorithm that
concurrently attains the optimal static and dynamic regret.
Our algorithm is derived from a primal-dual formulation for
our problem’s fractional relaxation. Finally, we provide our
main technical contribution: we supply a randomized round-
ing scheme proven to have an optimal dynamic regret, which
converts the fractional solution produced by our above algo-
rithm into an integral one. All omitted proofs can be found in



the supplementary materials [Cohen and Agmon, 2024].

2 Related Work
Hedonic games have been introduced by Drèze and Green-
berg [1980], and later expanded to the study of various
solution concepts such as stability, fairness, and optimal-
ity (see, e.g., [Aziz and Savani, 2016; Woeginger, 2013]).
One major concern is designing computationally manage-
able classes of hedonic games, which led to an abundance
of game representations. Some are ordinal and can fully ex-
press any preference over coalitions [Bouveret et al., 2010;
Elkind and Wooldridge, 2009], yet may require exponen-
tial space. In contrast, cardinal hedonic games, based on
weighted graphs [Aziz et al., 2019; Bogomolnaia and Jack-
son, 2002], are not fully expressive, but only require poly-
nomial space for reasonable weights. Our work focuses on
additively separable hedonic games [Bogomolnaia and Jack-
son, 2002], wherein a large body of research considers sta-
bility notions [Banerjee et al., 2001; Bogomolnaia and Jack-
son, 2002; Aziz et al., 2011; Ballester, 2004], while we re-
gard economic efficiency [Aziz et al., 2015; Bullinger, 2020;
Elkind et al., 2020].

Our work is closely related to the online version of hedonic
games introduced by Flammini et al. [2021], where agents
arrive one at a time and should be immediately and irrevo-
cably assigned to coalitions with the goal of maximizing so-
cial cost. This problem was then studied by Bullinger and
Romen [2023], for which they also recently considered var-
ious stability concepts [2024]. Notably, requiring that algo-
rithms exactly know the agents’ preferences before making
decisions limits practicality as agents may lack enough in-
formation to assess their preferences before interacting with
others as in our study groups example. In fact, social interac-
tions are complex and relationships often require time to de-
velop. Those works also make a single, immediate and irrevo-
cable assignment for each agent, while assuming that agents’
preferences do not change. In contrast, we consider realis-
tic scenarios where preferences dynamically evolve based on
interactions, allowing agents to adapt to changing situations.
Our repeated game nature allows agents to learn the coalitions
proven most relevant and effective for them.

We offer a novel framework that mitigates those issues
by studying coalition formation from the viewpoint of on-
line learning. Our study contributes to the research trend
on online learning in combinatorial domains such as online
task allocation [Cohen and Agmon, 2023b], submodular opti-
mization [Hazan and Kale, 2012; Krause and Golovin, 2014],
matching markets [Zhang et al., 2022; Maheshwari et al.,
2022], clustering [Christou et al., 2024; Fotakis et al., 2021],
bandits [Tekin and Van Der Schaar, 2015], online inventory
problems [Hihat et al., 2023] and many more. Our fractional
relaxation technique is a common approach for handling im-
possibilities, proven fruitful for combinatorial online learning
problems (see, e.g., [Gergatsouli and Tzamos, 2022]), and
many other problems such as matchings [Aziz and Klaus,
2019] and fair division [Amanatidis et al., 2023]. Our al-
gorithm for this relaxation is also related to online learning
primal-dual methods, which were applied in, e.g., bandits

[Li et al., 2021; Tirinzoni et al., 2020]. Note that primal-
dual analysis is also used in many other (online) domains be-
yond online learning (e.g., online matchings [Ekbatani et al.,
2023]). Yet, as far as we know, we are the first to study on-
line learning in hedonic games, providing algorithms proven
to have optimal regret.

In this context, most related to our work are matching mar-
kets, which can be seen as a constrained variant of hedonic
games where coalitions are restricted to be of size at most 2.
Unlike our work, the input instances are also limited to be
bipartite, while either only one side must have preferences
over the other one [Maheshwari et al., 2022], or both sides
have preferences over each other [Jagadeesan et al., 2021;
Zhang et al., 2022]. Some works study learning matchings
with monetary transfers [Liu et al., 2020; Sankararaman et
al., 2021]. Yet, our setting is more challenging as it is not
limited to matchings and monetary transfers are not available.

Those studies and ours are also connected to online con-
vex optimization (see [Shalev-Shwartz, 2012; Hazan, 2016]
for surveys). Its classic performance measure is the static
regret, evaluating the learner’s decisions against a single opti-
mal decision in hindsight. Over the past decades, various al-
gorithms, such as online gradient descent (OGD) [Zinkevich,
2003; Hazan et al., 2007], have been proposed to yield (op-
timal) sub-linear regret under different scenarios. However,
in real-life scenarios such as our dynamic context the optimal
decision drifts over time. Hence, algorithms that guarantee
decisions close to a static one may perform poorly in dynamic
settings. As a remedy, the dynamic regret has recently be-
come a popular metric [Zinkevich, 2003; Besbes et al., 2015;
Zhang et al., 2017], comparing the learner’s overall loss
against a comparator sequence of solutions optimal for indi-
vidual time steps. Due to the arbitrary fluctuation in the loss
functions, it is well-known that the worst-case dynamic regret
scales linearly in the number of rounds T [Yang et al., 2016],
unless some restrictions are imposed [Jadbabaie et al., 2015].

Yet, the dynamic regret can be bounded by certain regular-
ities of the comparator or function sequences. A natural reg-
ularity is the path-length [Zinkevich, 2003], denoted as ST⋆ ,
reflecting the fluctuation of online optimal decisions. When
known in advance, Zinkevich [2003] shows OGD has a dy-
namic regret of O(

√
T (1 + ST⋆ )) for convex functions, that

can be improved to O(ST⋆ ) for smooth functions that are ei-
ther strongly convex [Mokhtari et al., 2016], or convex with
minimizers lying in the decision set’s interior [Yang et al.,
2016]. For the latter, Yang et al. [2016] prove that O(ST⋆ )
dynamic regret is optimal. Another regularity is the tempo-
ral variability [Besbes et al., 2015; Baby and Wang, 2019],
capturing the function values’ variation.

In our work, we present the interaction term, a novel reg-
ularity measuring the variation in agents’ interactions, which
holds the potential of expanding the research on online learn-
ing within computational social choice in general. Further,
our problem falls under the learning from expert advice prob-
lem, wherein the well-known multiplicative weights update
(MWU) method is no-regret [Hazan, 2016]. However, MWU
cannot be applied to our setting due to its demanding time
and space requirements: MWU maintains different weights



for all possible partitions, which form a space exponential in
the number of agents. This required us to devise new methods
that can solve our problem efficiently.

3 Online Learning in Hedonic Games
We consider an online learning variant of additively separable
hedonic games (ASHGs), where different subsets of a given
agents set dynamically arrive across T rounds, while possibly
changing their preferences over time. We study the most gen-
eral setting, where an online learning algorithm (hereafter,
learner) maintains a partition of the agents into disjoint sub-
sets (i.e, coalitions) over time, while interacting with an ad-
versary that controls both the agents’ composition and their
preferences across time without posing any restrictions on
their behaviour. Formally, the input to our problem is given
by a finite set N = {1, . . . , n} of n agents. For x ∈ N, we
hereafter denote [x] := {1, . . . , x} and [0] = {0}. At each
time t ∈ [T ], the learner and the adversary interact according
to the following protocol. The adversary first picks a subset
N t ⊆ N of nt := |N t| agents that are present in the game
at time t, capturing (worst-case) adversarial arrivals. Without
loss of generality, we assume that N t ̸= ∅ at any time t.

Afterwards, the learner selects a partition πt of the agents
in N t, where we denote |πt| as the number of its coalitions
and πt(i) as the coalition C ∈ πt such that i ∈ C. We focus
on real-life scenarios where the number of coalitions and the
size of each coalition are bounded. Fixing positive integers
α ≤ n and k ≤ n before any agent arrives, we assume that
the learner chooses an (α, k)-partition πt at each time t, i.e.,
|πt| ≤ k and |C| ≤ α for each coalition C ∈ πt. We denote
the collection of all (α, k)-partitions at time t as Πtα,k.

Only after the learner picks a partition, the adversary re-
ports the preferences of each agent i ∈ N t. While her prefer-
ences are usually given as her utility from others, for the sake
of the analysis we represent them by an analogous cardinal
disutility dti : N

t → R with dti(i) = 0, specifying that agent
i assigns a disutility of dti(j) ∈ R to any agent i ̸= j ∈ N t

which indicates the degree of her dislike for agent j. Essen-
tially, it is the negation of agent i’s utility. We denote the
agents’ joint disutility at time t as dt = (dti)i∈Nt .
Remark 1. (Valuations’ Evolution) For any pair of agents
i, j ∈ N t that were also present during some time t′ < t (i.e.,
i, j ∈ N t′ ), note that dti(j) may not be equal to dt

′

i (j). This
models scenarios where the agents’ social interactions at dif-
ferent time instants may yield an (adversarial) alteration in
their preferences. However, an agent’s valuations may re-
main unchanged over time, i.e., each agent i ∈ N may have
a fixed disutility di : N → R with di(i) = 0 such that her
utility at time t for any agent j ∈ N t is simply dti(j) = di(j).

For obtaining (cardinal) preferences over coalitions, indi-
vidual disutilities are aggregated via their summation. That is,
we denote by N t

i the set of coalitions agent i ∈ N t belongs
to, i.e., N t

i = {C ⊆ N t : i ∈ C}. Agent i’s disutility can
be then additively aggregated to preferences over each coali-
tion C ∈ N t

i via dti(C) =
∑
j∈C d

t
i(j). We further denote

by dti(π
t) = dti(π

t(i)) the disutility agent i receives from the
partition πt chosen by the learner, which induces the parti-
tion πt’s disutility profile dt(πt) := (dti(π

t))i∈Nt .

After the agents’ valuations are revealed, the learner in-
curs the social cost of the partition πt, which is defined by
the sum of all agents’ disutilities for that partition. Intu-
itively, the social cost indicates the agents’ overall dissatis-
faction with the partition. Formally, for a coalition C ⊆ N t,
we let sc(C,dt) =

∑
i∈C d

t
i(C) be the social cost of C

w.r.t. dt. The social cost of the partition πt w.r.t. dt is
sc(πt,dt) =

∑
C∈πt sc(C,dt) =

∑
i∈Nt dti(π

t). Hence,
a partition π of the agents in N t is cost-minimal if it min-
imizes the social cost amongst all possible partitions, i.e.,
π ∈ argminπ′∈Πt

α,k
sc(π′,dt). We can thus summarize the

learner-adversary interaction protocol as follows:
1. At each time t, the adversary picks the subset of agents
N t ⊆ N that are present in the game at time t.

2. The learner then selects an (α, k)-partition πt of N t.
3. Afterwards, the adversary reports the joint disutility pro-

file dt = (dti)i∈Nt for the agents in N t.
4. The learner incurs a social cost of sc(πt,dt).
We study an online learning problem, termed as (α, k)-

Online Partitions ((α, k)-OP), which is defined as follows.
At each time t, based on the agents’ past joint disutilities
{dτ}τ∈[t−1], the learner’s goal is choosing an (α, k)-partition
πt at time t such that the learner’s cumulative social cost over
time is close to the overall social cost of the cost-minimal par-
titions. The standard metric for online learning algorithms is
the static regret [Shalev-Shwartz, 2012], which compares the
learner’s decisions against the optimal decision in hindsight.
In our context, the optimal decision is a single partition of
all n agents minimizing the learner’s cumulative social cost
over time. Formally, we denote the set of all (α, k)-partitions
of the agents in N as Π. Given a partition π ∈ Π, we can
obtain an (α, k)-partition π ∩ N t := (C ∩ N t)C∈π:C∩Nt ̸=∅
of the agents present at time t (i.e., N t). Note that π ∩N t is
not necessarily cost-minimal at time t. Further, if the bounds
on the number of coalitions and their size are bounded such
that α · k < n, then not all the agents in N are assigned
to a coalition in π. In this case, if the partition π ∩ N t

contains any empty coalition at time t, we use the conven-
tion that dti(∅) = 0 for each agent i ∈ N t. As such, the
learner’s single optimal decision in hindsight is any partition
π ∈ argminπ′∈Π

∑T
t=1 sc(π

′ ∩N t,dt).
Next, we present the formal definition of static regret. First,

we denote the absolute maximum value of a non-zero single-
agent disutility as W := maxt∈[T ],i,j∈Nt:dti(j)̸=0 |dti(j)|. If
the learner’s overall social cost is at most c > 0 times the to-
tal social cost of a single optimal (offline) partition up to an
additive term that is sublinear in T , then the learner is said to
be no-c-regret. Formally, the learner is no-c-regret (c > 0)
if and only if, for any sequence of agent sets {N t}t∈[T ] and
joint disutility profiles {dt}t∈[T ] that are chosen by the adver-
sary, the partitions {πt}t∈[T ] selected by the learner satisfy:∑T

t=1 sc(π
t,dt) ≤ c ·minπ∈Π

∑T
t=1 sc(π ∩N t,dt)

+Θ(poly(n,W ) · T δ) (1)

where δ < 1. If c = 1, then the learner is called no-regret.
However, since the static regret benchmarks the learner with a



single fixed partition, it fails to accurately assess the quality of
decisions in our dynamic setting. Namely, the minimum so-
cial cost is not static, but it changes dynamically as both the
agents’ composition and their preferences evolve over time.
The stronger notion of dynamic regret naturally reflects this
concept, allowing us to measure the performance difference
between the learner and a set of partitions optimal for in-
dividual time instants in hindsight [Jadbabaie et al., 2015].
Formally, for c > 0, the learner’s c-dynamic regret for his
selected partitions {πt}t∈[T ] is given by:

RT
c :=

∑T
t=1 sc(π

t,dt)− c ·
∑T
t=1 sc(π

t
⋆,d

t) (2)

where πt⋆ is a cost-minimal partition w.r.t. dt. For c = 1,
we obtain the standard dynamic regret RT := RT

1 . No-c-
dynamic regret is defined similarly to (1).

4 Hardness of Being No-c-Regret
Though certain domains admit no-static regret algorithms
(see, e.g., [Zinkevich, 2003]), we begin with proving that it
is hard to approximate in our context, despite that it is weaker
than dynamic regret. The key idea is that if we have a good
efficient learner, then we can obtain an efficient algorithm
that approximately solves an offline variant of our problem,
proven to be hard to approximate due to Bilò et al. [2022].
Formally, our strong negative result holds even for a restricted
version of (α, k)-OP termed as (α, k)-OP=, where, at any
time t, there are exactly nt = α ·k agents and a partition must
contain exactly k coalitions, each containing exactly α agents.
We also consider the following offline variant, where the sub-
sets of agents and their valuations are available upfront:

Definition 1. (Offline (α, k)-OP=) Given a sequence of B
agent sets {N b}b∈[B] with |N b| = αk for any b ∈ [B]

and corresponding joint disutility profiles {db}b∈[B], se-
lect an (α, k)-partition π of N = ∪b∈[B]N

b with exactly
k coalitions, each containing exactly α agents, such that∑B
b=1 sc(π ∩ N b,db) is minimized. For any b ∈ [B], note

that π ∩ N b is an (α, k)-partition, but it is not required
to contain exactly k coalitions, each with exactly α agents.
Denoting π⋆ as the optimal partition minimizing this objec-
tive, a c-approximation algorithm for offline (α, k)-OP= re-
turns an (α, k)-partition π such that

∑B
b=1 sc(π∩N b,db) ≤

c ·
∑B
b=1 sc(π⋆ ∩N b,db) in polynomial time.

To go from our learning problem to the combinatorial
offline (α, k)-OP= problem, we perform the following ap-
proximation preserving reduction from (α, k)-OP= to offline
(α, k)-OP= that will imply our main result:

Lemma 1. Any (randomized or deterministic) no-c-regret al-
gorithm for (α, k)-OP= yields a (c+1)-approximation algo-
rithm for offline (α, k)-OP=.

Proof. As deterministic algorithms are a special case of ran-
domized ones, we focus on the latter. Consider any ran-
domized no-c-regret algorithm A for (α, k)-OP=. For an in-
stance of offline (α, k)-OP= given by a sequence of agent sets
N := {N b}b∈[B] and their joint disutilities D := {db}b∈[B],

we devise the algorithm A′ that simulates this instance on-
line over some T > 0 rounds using algorithm A as fol-
lows. First, A′ picks τ ∈ [T ] uniformly at random. Then,
it runs an adversary that, at each time t ∈ [T ], selects uni-
formly at random a set of agents N t and its corresponding
joint disutility dt. Let πt and π ∈ Π be the random par-
tition returned by A at time t and the random offline opti-
mal solution (resp.). The algorithm A′ returns the partition
πτ . Since A is no-c-regret:

∑T
t=1

1
B

∑B
b=1 E[sc(πt,db)] ≤

c · T
B

∑B
b=1 E[sc(π ∩ N b,db)] + Θ(poly(n,W ) · T δ),

where δ < 1 and the expectation is over the random-
ness of A and the adversary. Thus, the expected so-
cial cost of A′ is at most: 1

T

∑T
t=1

∑B
b=1 E[sc(πt,dt)] =

B
T

∑T
t=1

1
B

∑B
b=1 E[sc(πt,dt)] ≤ cB

T · T
B

∑B
b=1 E[sc(π ∩

N b,dt)] + Θ(poly(n,W ) · T δ−1). As T was arbitrary, set-
ting T = Θ(poly(n,W )1/(1−δ)) yields that A′ is a (c + 1)-
approximation algorithm for offline (α, k)-OP=.

We can now obtain our computational hardness results. We
remark that they hold even for simple games, where, at any
time t, the disutility of each agent i ∈ N t for any other agent
i ̸= j ∈ N t satisfies dti(j) ∈ {0,−1}.
Theorem 1. When k is not constant, assuming the Expo-
nential Time Hypothesis (ETH), there does not exist a no-
(n1/ log logβ n − 1)-regret algorithm for (α, k)-OP=, where
β > 0 is a universal constant independent of n. Further, as-
suming that there is a constant ε > 0 s.t. no subexponential-
time algorithm can distinguish between a satisfiable 3SAT
formula and one which is only (1−ε)-satisfiable (also known
as Gap-ETH), there does not exist a no-(nf(n) − 1)-regret
algorithm for (α, k)-OP= for any function f ∈ o(1). Both
results hold even for simple games.

Proof. (Sketch) The proof readily follows via combining
Lemma 1 with Theorem 11 by Bilò et al. [2022], and is thus
deferred to Appendix A. First, we show that Theorem 11 by
Bilò et al. [2022] can be applied to offline (α, k)-OP= with
B = 1 by proving that it is a variant of the problem consid-
ered by Bilò et al. [2022]. Combining this observation with
Lemma 1 establishes our hardness results. We also note that
Theorem 11 by Bilò et al. [2022] is obtained by reduction
from the Densest β-Subgraph (DβS) problem, known to be
hard to approximate [Manurangsi, 2017]. For completeness,
in Appendix A we supply our reduction from DβS to offline
(α, k)-OP= that, combined with Lemma 1 and [Manurangsi,
2017, Corollary 1.3], gives an alternative proof.

Remark 2. As (α, k)-OP= is a subproblem of (α, k)-OP,
Theorem 1 also holds for the latter. As it is well-known
that the worst-case dynamic regret scales linearly in T , we
show in Appendix B that a no-c-dynamic regret algorithm is
unattainable for any c > 0. Hence, Theorem 1 does not ap-
ply to dynamic regret. Since we posed no restriction on the
agents’ disutilities, our result also holds when they remain
unchanged over time (see Remark 1).

This establishes the possible regret bounds and indicates
that constant approximation to no-static regret cannot be at-
tained in polynomial time for (α, k)-OP when α is bounded



(i.e., α < nt at each time t). Thus, our result motivates us to
assume the following most general setting:
Assumption 1. The coalition size bound α is unbounded at
each time t (i.e., α = n), in which case we term the (α, k)-OP
problem as k-OP for short. We also assume that k ≥ 2 since
the case of k = 1 is trivial.

Next, we devise online learning schemes that attain non-
trivial regret bounds in polynomial time. Initially, we con-
sider a fractional relaxation of our problem, where agents are
fractionally assigned to multiple coalitions (Section 5), for
which we devise a no-static regret learner that simultaneously
has low dynamic regret (Section 5.1). In fact, our algorithm
is best of both (regret) worlds: it is optimal in terms of both
static and dynamic regret. We then give an efficient random-
ized rounding scheme with optimal dynamic regret that con-
verts the fractional partitions produced by our algorithm into
integral ones (Section 6).

5 Fractional Online Partitions
In this section, we consider fractional k-OP, the fractional
relaxation of our problem where agents are allowed to be part
of several coalitions by being fractionally assigned to mul-
tiple coalitions. This approach is common in numerous re-
lated problems (e.g., matchings [Aziz and Klaus, 2019] and
fair division [Amanatidis et al., 2023]), and has been proven
fruitful for overcoming impossibilities as the one in Theorem
1. This setting also has many real-life applications. For in-
stance, a company manager may assign his employees to sev-
eral project teams, where a fractional assignment models the
amount of time an employee spends working on each project.
Later, we show that such relaxation leads to a no-regret algo-
rithm, proven to attain optimal static and dynamic regret.

Fractional k-OP (k-FOP) is defined as follows. First, we
denote the k-dimensional simplex as ∆k = {y ∈ Rk≥0 :∑
ℓ∈[k] yi,ℓ = 1}. At each time t, after the adversary

picks the subset of agents N t, the learner selects a vec-
tor yti = (yti,ℓ)ℓ∈[k] ∈ ∆k for any agent i (i.e., a agent
i’s fractional assignment), where yti,ℓ stands for the fraction
of agent i assigned to the ℓ-th (possible) coalition for each
ℓ ∈ [k]. We term yt = (yti)i∈Nt as the fractional partition.
Afterwards, the adversary reports the joint disutility profile
dt = (dti)i∈Nt for the agents in N t. Let 1xt

i,ℓ>0 be equal to
1 if xti,ℓ > 0, and 0 otherwise. The learner then incurs the
fractional social cost fsc(yt,dt), which is the optimal value
of the following convex linear program:

min
∑
i∈Nt

∑
ℓ∈[k] 1xt

i,ℓ>0

∑
i ̸=j∈Nt xtj,ℓd

t
i(j)

s.t.
∑
ℓ∈[k] x

t
i,ℓ = 1,∀i ∈ N t

xti,ℓ ≥ 0, xti,ℓ ≤ yti,ℓ,∀i ∈ N t, ℓ ∈ [k]
(3)

where the minimum is over the fractional partition xt =
((xti,ℓ)ℓ∈[k])i∈Nt . The intuition behind problem (3)’s objec-
tive is that, if agent i is fractionally assigned to the ℓ-th coali-
tion (i.e., xti,ℓ > 0), then she receives a disutility of xtj,ℓd

t
i(j)

from each agent i ̸= j ∈ N t. Thus, given the fractional par-
tition yt selected by the learner of the agents in N t with the
joint disutility dt chosen by the adversary, problem (3) picks

xt for minimizing its objective such that xti,ℓ ≤ yti,ℓ for any
agent i ∈ N t and ℓ ∈ [k]. Since the learner chooses the
fractional partition before observing the agents’ valuations,
he can solve (3) for obtaining the agents’ fractional assign-
ments only after the disutilities are revealed.

Once the agents’ assignment vectors are integral (i.e.,
xti,ℓ ∈ {0, 1}), each agent can be assigned to at most one
coalition. This reduces k-FOP to the original k-OP problem,
in which case the fractional social cost equals to the original
social cost. Thus, we infer the following relation:
Lemma 2. For any sequence of agent sets {N t}t∈[T ] and
joint disutility profiles {dt}t∈[T ], the social cost of a cost-
minimal partition πt⋆ for k-OP at each time t is lower
bounded by the fractional social cost of the optimal frac-
tional partition yt⋆ for the corresponding k-FOP problem,
i.e., sc(πt⋆,d

t) ≥ fsc(yt⋆,d
t).

Commonly used methods for solving problems such as k-
FOP are based on online gradient descent (OGD) [Hazan,
2016]. Such algorithms use the subgradients of the problem’s
objective function, which are defined as follows:
Definition 2. (Subgradients) For a function g : Rm → R, a
vector z ∈ Rm is a subgradient of g at point y ∈ Rm if and
only if g(y′) ≥ g(y) + z⊤(y′ − y) for any y′ ∈ Rm. The set
of g’s subgradients at point y ∈ Rm is denoted as ∂g(y).

Generally, calculating subgradients is computationally
challenging. However, we show that they can be easily at-
tained for our problem (3) by solving a new primal-dual pro-
gram, which we obtain in Lemma 3 by following the common
approach for solving constrained optimization problems via
their Lagrangian relaxed form.
Lemma 3. Given the set N t of nt agents, their valuations
dt, the fractional partition yt and the fractional assignment
xti of each agent i ∈ N t, the Lagrangian relaxation of (3)
at time t gives the primal-dual optimization problem given by
the following convex linear program:

max
∑
i∈Nt λti −

∑
i∈Nt

∑
ℓ∈[k] µ

t
i,ℓ · yti,ℓ∑

i̸=j∈Nt:xt
j,ℓ>0 d

t
j(i) + µti,ℓ = λti + γti,ℓ,

λti ≥ 0, µti,ℓ ≥ 0, γti,ℓ ≥ 0, ∀i ∈ N t, ℓ ∈ [k]

(4)

where the minimum is over the Lagrangian multipliers λt ∈
Rnt

≥0, µt ∈ Rn
t×k

≥0 and γt ∈ Rn
t×k

≥0 .

Proof. (Sketch) In Appendix C, we consider the Lagrangian
function L(xt,yt, λt, γt, µt) of (3) and the Lagrangian
dual function g(λt, γt, µt) = infxt L(xt,yt, λt, γt, µt).
We find the supremum by computing the gradi-
ent ∇xtL(xt,yt, λt, γt, µt) w.r.t. yt and solving
∇xtL(xt,yt, λt, γt, µt) = 0. The latter gives us the
constraints in (4), whose substitution to the Lagrangian
function yields that the objective of our primal-dual problem
is g(λt, γt, µt) =

∑
i∈Nt λti −

∑
i∈Nt

∑
ℓ∈[k] µ

t
i,ℓ · yti,ℓ.

Next, we show how the subgradients in ∂ fsc(yt,dt) can be
easily computed using the optimal solution to the optimiza-
tion problem in (4). We also supply an upper bound on the
subgradients, which depends on m := maxt∈[T ] |N t| (i.e.,



Algorithm 1 : Online Gradient Descent for k-FOP
Input: A constant step size η > 0

1: The learner initializes z1i as z1i,ℓ = 1/k ∀i ∈ N, ℓ ∈ [k].
2: for each time t ∈ [T ] do
3: The adversary picks the agents N t arriving at time t.
4: The learner picks yti,ℓ = zti,ℓ ∀i ∈ N t, ℓ ∈ [k].
5: The adversary reports the agents’ disutilities dt.
6: The learner incurs fsc(yt,dt).
7: The learner solves (3) and obtains xt⋆,i ∀i ∈ N t.
8: Given xt⋆,i and yt, the learner solves (4) to attain µt⋆.
9: The learner sets gt = ((−µt⋆,i,ℓ)ℓ∈[k])i∈Nt .

10: The learner picks yt+1 = P∆k
(yt − ηgt).

11: The learner sets zt+1
i as yt+1

i if i ∈ N t, and yti o.w.

the maximum number of agents that are present at a single
time instant), and the absolute maximum value W of a non-
zero single-agent disutility (as defined before (2)).
Lemma 4. Given a set N t of nt agents and their valuations
dt at time t, let λt⋆, µ

t
⋆, γ

t
⋆ be the optimal solution of the prob-

lem (5) with respect to a fractional partition yt and a frac-
tional assignment xt. Then, for any fractional partition ŷt

and fractional assignment x̂t: fsc(ŷt,dt) ≥ fsc(yt,dt) +∑
ℓ∈[k]

∑
i∈Nt(−µt⋆,i,ℓ) · (ŷti,ℓ− yti,ℓ). Further, the subgradi-

ents are upper bounded by: | − µt⋆,i,ℓ| ≤ (m− 1)W .

5.1 A Best of Both (Regret) Worlds Algorithm
We are now ready to present our algorithm for k-FOP (Al-
gorithm 1), which is no-regret while also providing low dy-
namic regret. Our algorithm provides the best of both (re-
gret) worlds: it simultaneously achieves optimal static and
dynamic regret. Algorithm 1 uses a modified variant of on-
line gradient descent (OGD) [Zinkevich, 2003], and is pa-
rameterized by a constant η > 0. We will later provide the
suitable selections of η that yields low regret. Algorithm 1
runs as follows. The learner first initializes a fractional par-
tition z1 = ((z1i,ℓ)ℓ∈[k])i∈N that splits each agent equally
among the k possible coalitions (i.e., z1i,ℓ = 1/k for each
agent i ∈ N and ℓ ∈ [k]). At each time t, the adversary
first selects the arriving agents N t and the learner responds
with yt = ((zti,ℓ)ℓ∈[k])i∈Nt . The adversary then selects the
agents’ disutilities dt and the learner incurs the fractional so-
cial cost fsc(yt,dt).

Given the learner’s obtained information, the learner can
readily solve the convex linear program (3) using standard
methods and obtain the optimal fractional assignment xt⋆,i
of each agent i ∈ N t. The learner can then easily solve
the convex linear program (4) via classic approaches and re-
ceive its optimal solution λt⋆, µt⋆, γt⋆. Using Lemma 4, the
learner computes the corresponding subgradient. Finally, the
learner computes the fractional partition yt+1 at time t + 1
by performing a gradient descent step w.r.t. the subgradient
gt = ((−µt⋆,i,ℓ)ℓ∈[k])i∈Nt corresponding to the current solu-
tion yt, where P∆n

k
(·) denotes the projection onto the nearest

point in ∆n
k . Finally, for any agent i ∈ N , the learner updates

agent i’s zt+1
i as yt+1

i if i ∈ N t, and yti otherwise.

In Theorem 2, we show that Algorithm 1 is no-regret for a
proper choice of η > 0. Note that an offline optimal decision
for k-FOP is given by a fractional partition y, from which we
can derive a fractional partition y|Nt := (yi)i∈Nt at time t.

Remark 3. At each time t, as zti = yti for any i ∈ N t,
note that the fractional social cost induces a loss function
ft : ∆

n
k → R given by ft(zt) = fsc(zt|Nt ,dt) = fsc(yt,dt).

Theorem 2. For any sequence of agent sets {N t}t∈[T ] with
joint disutilities {dt}t∈[T ] that are chosen by the adversary,
the learner is no-regret when producing the fractional par-

titions {yt}t∈[T ] using Algorithm 1 with η =

√
log(n)

(m−1)W
√
2T

,
and the learner also obtains a minimax optimal static regret
bound of O(2(m− 1)W

√
2T log(n)).

Proof. (Sketch) By Lemma 4 and using the triangle inequal-
ity, note that for any pair of fractional partitions yt, ŷt:
| fsc(yt,dt) − fsc(ŷt,dt)| ≤ |

∑
ℓ∈[k]

∑
i∈Nt µt⋆,i,ℓ(ŷ

t
i,ℓ −

yti,ℓ)| ≤
∑
ℓ∈[k]

∑
i∈Nt |µt⋆,i,ℓ|·|ŷti,ℓ−yti,ℓ| ≤ (m−1)W∥ŷt−

yt∥1, where ∥ · ∥1 is the L1-norm. That is, fsc(·,dt) is
L-Lipschitz w.r.t. ∥ · ∥1 for L := (m − 1)W . In Ap-
pendix E, we show that this also applies to ft(·) from Remark

3. Hence, setting η =

√
log(n)

L
√
2T

, Corollary 2.14 by Shalev-
Shwartz [2012] yields the desired static regret bound when
applying it to the sequence of loss functions {ft}t∈[T ].

Though no-static regret is hard to approximate for the orig-
inal k-OP problem by Theorem 1, note that our obtained
O(

√
T ) static regret is minimax optimal due to Abernethy et

al. [2008] (i.e., the minimal static regret that can be attained
in the worst case for convex programs).

Remark 4. Observe that the bound’s dependence onW indi-
cates that, if the agents’ disutilities fluctuate moderately over
time (or even remain unchanged as discussed in Remark 1),
then the static regret is reduced.

Despite that we reached the minimax optimal static regret,
recall that dynamic regret is still more suitable for evaluat-
ing the performance of the learner in our dynamic setting.
Hence, we now focus on dynamic regret. It is well-known
that the worst-case dynamic regret scales linearly in T since
the agents’ valuations arbitrarily fluctuate. Yet, it is possi-
ble to bound the dynamic regret in terms of certain regular-
ities. We herein consider the path-length of the optimal se-
quence of fractional partitions [Zinkevich, 2003], given by
ST⋆ :=

∑t
t=2 ∥yt⋆ − yt−1

⋆ ∥2, capturing the overall Euclidean
norm of the difference between two successive solutions.

In Theorem 3, we show that Algorithm 1 is not only no-
regret, but it also has an optimal dynamic regret.

Theorem 3. For any sequence of agent sets {N t}t∈[T ] with
joint disutilities {dt}t∈[T ] that are chosen by the adversary,
the fractional partitions {yt}t∈[T ] produced by the learner
using Algorithm 1 with η = 1

2L for any constant L > 0 yield
an optimal dynamic regret bound of O(ST⋆ ).

Proof. (Sketch) In Appendix F, we first show that fsc(yt,dt)
is convex as a function of yt since it can be expressed as a



linear function of yt. Then, we prove that it is L-smooth for
any constant L > 0, i.e., as it twice differentiable, we show
that z⊤∇2 fsc(yt,dt)z ≤ L∥z∥22 for any pair of fractional
partitions yt, z and constant L > 0. Thus, ft(·) from Re-
mark 3 is also convex and L-smooth. By setting η = 1

2L ,
the conditions of Theorem 3 by Yang et al. [2016] and we
obtain the desired dynamic regret bound, when applying it to
the sequence of loss functions {ft}t∈[T ]. Since fsc(yt,dt)
is a linear function of yt, then it is not strongly convex (see
Appendix G for a proof). Due to Proposition 1 by Yang et al.
[2016], our dynamic regret of O(ST⋆ ) is optimal for smooth
and (non-strongly) convex functions.

Remark 5. We conclude that, if the learner runs Algorithm
1 with η as in Theorem 2, then the learner simultaneously
obtains the optimal static and dynamic regret since we can
invoke Theorem 3 as η = 1

2L for L = (m−1)W
√
2T

2
√

log(n)
. Recall

that no-dynamic regret is generally unattainable. However,
if the optimal fractional partition only slightly changes be-
tween consecutive time steps, then our dynamic regret bound
O(ST⋆ ) can become smaller. For instance, if ∥yt⋆ − yt−1

⋆ ∥ =

Ω(1/
√
T ) for each time t, then ST⋆ = Ω(

√
T ).

6 Randomized Rounding for k-OP
Recall that static regret not only fails to accurately reflect the
learner’s performance in dynamic environments, no-regret is
also hard to approximate for k-OP due to Theorem 1. Hence,
in this section we focus on the more stringent dynamic re-
gret, which is also more suitable for our dynamic setting. Us-
ing standard randomized rounding techniques, we next show
how the resulting fractional partition produced by Algorithm
1 can be converted into a randomized integral partition, while
obtaining the optimal dynamic regret bound. Formally:

Mechanism 1. (Randomized Rounding) Given η > 0 as in-
put, run Algorithm 1 with η. At any time t, given the fractional
partition yt, we can obtain an integral partition πt via ran-
domized rounding: If a fraction yti,ℓ of agent i is assigned to
the ℓ-th coalition, then agent i is assigned to the ℓ-th possible
coalition with probability yti,ℓ (Recall that

∑
ℓ∈[k] y

t
i,ℓ = 1

for any agent i ∈ N t). Note that decisions are independent
among different agents and different time instants.

Our bound in Theorem 4 involves a new regularity met-
ric for dynamic regret, called the interaction term, mea-
suring the overall difference between the agents’ disutili-
ties from their interactions according to the fractional par-
tition yt and the respective optimal solution xt of (3) at
each time t. Namely, the interaction term is given as
IT =

∑T
t=1

∑
i∈Nt

∑
ℓ∈[k]

∑
i ̸=j∈Nt |[yti,ℓytj,ℓ − 1xt

i,ℓ>0 ·
xtj,ℓ]d

t
i(j)|, which is at most O(T ) (in the worst-case) as

|yti,ℓytj,ℓ − 1xt
i,ℓ>0 · xtj,ℓ| ≤ 1 and |dti(j)| ≤W . Intuitively, at

time t, yti,ℓy
t
j,ℓ can be viewed as the probability that any pair

of agents i, j are assigned to the ℓ-th possible coalition for any
ℓ ∈ [k] (i.e., they form an interaction), where yti,ℓy

t
j,ℓd

t
i(j) is

agent i’s resulting fractional disutility from their interaction.
Similarly, 1xt

i,ℓ>0 · xtj,ℓ can be interpreted as the assignment

probability of agent j to the ℓ-th coalition at time t, given that
agent i is assigned to that coalition with a positive probability
(i.e., xti,ℓ > 0), while agent i’s resulting fractional disutility
from their interaction is 1xt

i,ℓ>0 · xtj,ℓdti(j).

Theorem 4. For any sequence of agent sets {N t}t∈[T ] with
joint disutilities {dt}t∈[T ] that are chosen by the adversary,
the fractional partitions {yt}t∈[T ] produced by the learner
using Mechanism 1 with η = 1

2L for any constant L > 0

yield an optimal dynamic regret bound of IT +O(ST⋆ ).

Proof. (Sketch) In Appendix H, we first prove∑T
t=1 E[sc(πt,dt)] ≤ IT +

∑T
t=1 fsc(y

t,dt), from
which the bound is obtained by Theorem 3. For optimality,
we show that a sublinear dynamic regret is unattainable if
the the path length is unconstrained (i.e., it is upper bounded
by Ω(T )). However, if the path length is at most o(T ), then
we prove that it is impossible to get a better dynamic regret
bound of IT +O((ST⋆ )ψ) for ψ ∈ (0, 1).

Remark 6. We obtained the following groundbreaking re-
sult: while no-static regret is hard to approximate for inte-
gral partitions (but the minimax optimal static regret is at-
tainable for fractional ones), the more stringent dynamic re-
gret can be solved optimally in both the fractional and in-
tegral settings. Recall that no-dynamic regret is generally
unfeasible. Yet, if the optimal fractional partition and the
agents’ interactions only slightly change between consecu-
tive time steps, then our dynamic regret bound can become
smaller. For instance, if ∥yt⋆ − yt−1

⋆ ∥ = Ω(1/
√
T ) and

|[yti,ℓytj,ℓ − 1xt
i,ℓ>0 · xtj,ℓ]dti(j)| = Ω(1/m2k

√
T ) for each

time t, agents i ̸= j and ℓ ∈ [k], then IT + ST⋆ = Ω(
√
T ).

7 Conclusions and Future Work
In this paper, we presented a novel algorithmic framework for
studying coalition formation in dynamic settings from the per-
spective of online learning. We characterized the learner’s
capabilities in terms of both static and dynamic regret, obtain-
ing the following remarkable results. While no-static regret
is hard to approximate for integral partitions, dynamic regret
is not. However, for a fractional relaxation of our problem,
we devised an algorithm that concurrently has optimal static
and dynamic regret, thus achieving the best of both (regret)
worlds. Unlike static regret, the more stringent dynamic re-
gret can be also solved optimally for integral partitions. Fur-
ther, we presented the interaction term, a new regularity for
bounding dynamic regret that reflects the variation in agents’
interactions, and has the potential of expanding the research
on online learning in computational social choice.

Our research paves the way for many future works. Imme-
diate directions are the investigation of other classes of he-
donic games and other adversaries. Further, as in many real-
world domains preferences may be inherently uncertain, fu-
ture work warrants developing algorithms for online learning
in hedonic games under partial and possibly noisy feedback.
Another intriguing direction is considering other measures of
economic efficiency (e.g., Pareto-optimality) as well as other
solution concepts, such as stability and fairness notions.
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Luca Moscardelli. Hedonic games with fixed-size coali-
tions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 9287–9295, 2022.

[Bogomolnaia and Jackson, 2002] Anna Bogomolnaia and
Matthew O Jackson. The stability of hedonic coalition
structures. Games and Economic Behavior, 38(2):201–
230, 2002.

[Bouveret et al., 2010] Sylvain Bouveret, Ulle Endriss, and
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