
Convexified Graph Neural Networks for Distributed Control in Robotic Swarms

Saar Cohen , Noa Agmon
Department of Computer Science, Bar-Ilan University, Israel

saar30@gmail.com, agmon@cs.biu.ac.il

Abstract
A network of robots can be viewed as a signal
graph, describing the underlying network topol-
ogy with naturally distributed architectures, whose
nodes are assigned to data values associated with
each robot. Graph neural networks (GNNs) learn
representations from signal graphs, thus making
them well-suited candidates for learning distributed
controllers. Oftentimes, existing GNN architec-
tures assume ideal scenarios, while ignoring the
possibility that this distributed graph may change
along time due to link failures or topology varia-
tions, which can be found in dynamic settings. A
mismatch between the graphs on which GNNs were
trained and the ones on which they are tested is thus
formed. Utilizing online learning, GNNs can be re-
trained at testing time, overcoming this issue. How-
ever, most online algorithms are centralized and
work on convex problems (which GNNs scarcely
lead to). This paper introduces novel architectures
which solve the convexity restriction and can be
easily updated in a distributed, online manner. Fi-
nally, we provide experiments, showing how these
models can be applied to optimizing formation con-
trol in a swarm of flocking robots.

1 Introduction
Nowadays, data networks are everywhere to be found due to
the arising networking revolution. Networks model entities
in a wide variety of domains, such as communication net-
works, biology, and sociology. Unique to swarm robotics,
data exhibits irregular and complex structures, provoking ex-
isting linear methods. Modeling data networks as graphs,
whereas the data is viewed as a signal on top of it, Graph Sig-
nal Processing (GSP) [Ortega et al., 2018] expands the con-
cept of graph convolutions, which account for the underly-
ing graph structure during the processing of data. Built upon
the GSP’s goal, Graph Neural Networks (GNNs) constitute
nonlinear representation maps with capability of exploiting
those underlying structures [Gama et al., 2020]. As in most
neural networks, GNNs are then trained by solving a non-
convex Empirical Risk Minimization (ERM) problem, which
is known to be NP-hard [Blum and Rivest, 1992].

Considering the problem of controlling a robotic swarm in
dynamic settings with different initial positions and veloci-
ties, as well as topology changes, yields a difference in struc-
tures between training and testing due to the dynamic nature
of the system. GNNs have been proven to have the funda-
mental properties of permutation equivariance and stability
to changes in the topology [Gama et al., 2020].

For improving the performance, Online Learning consti-
tutes an appropriate solution, providing us with adaptive op-
timization algorithms suitable for continuously time-varying
topologies [Dabbagh and Bannan-Ritland, 2005]. Yet, it re-
quires the convexity of both the domain and the loss function.
However, ERM on a nonlinear neural network model is gen-
erally non-convex, as on GNNs. Thus, this paper introduces
convexified GNN architectures, which are well-suited for both
online algorithms and real-world applications, in which data
can be naturally represented as graphs (e.g., recommenda-
tion systems [Gao et al., 2020]), while maintaining conver-
gence guarantees. Following [Zhang et al., 2017], we first
illustrate a convex relaxation when regarding linear activa-
tion functions. For the nonlinear case, we then propose a
relaxation to a suitably chosen Reproducing Kernel Hilbert
Space (RKHS), reducing the problem to the linear case. Fi-
nally, we demonstrate in rigorous experiments the superiority
of the convexified GNN solutions over existing solutions for
formation control in a swarm of robots in terms of faster con-
vergence rate, up to an expected generalization error.

2 Related Work
[Li et al., 2019] concern with the problem of collision-free
navigation in multi-robot systems, where the robots possess
limited sensing and no global reference frame for localiza-
tion. They compose a Convolutional Neural Network (CNN),
which extracts adequate features from local observations, and
a GNN that communicates these features among the robots.
[Sartoretti et al., 2019] assume no explicit communication.
Yet, both researches are restricted to zero communication
time-delay. Accordingly, [Tolstaya et al., 2020] offer the
use of Aggregation GNNs [Gama et al., 2018a] (A-GNNs) to
operate on time-varying graph processes. Both papers utilize
Imitation Learning, and rely on the availability of an optimal
solution (i.e., expert data). Furthermore, they each run one
GNN per time instant, posing a high computational expense,
which thus requires shallow GNNs and short filters.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2307

Online learning is vastly explored in the context of neural
networks [Li et al., 2004; Hong et al., 2015]. [Gao et al.,
2020] tackle the convexity requirement of online algorithms
by proposing the Wide and Deep GNN (WD-GNN), consist-
ing of two components: a wide component (which is a bank
of graph filters), and a deep component (which is a GNN).
They solely retrain the linear wide component, whereas the
deep one remains fixed after the training phase. Yet, their so-
lution is limited to the extent of linear transforms and does
not involve online retraining of the GNN. As opposed to their
work, we retrain the GNN part as well.

[Nikolentzos et al., 2018]’s approach to the graph classi-
fication problem is similar to our own: they extract patches
from each input graph via community detection, embed them
with graph kernels and then feed them through a 1D CNN,
to which pooling is applied. A fully-connected layer with a
softmax completes the architecture. Community detection al-
gorithms, which partition a network into clusters of densely
connected nodes, are known to be computationally intractable
and require a large storage space [Blondel et al., 2008]. We
thus leverage the graph signal processing (GSP) concepts for
learning from graph signals (via GNNs) [Ortega et al., 2018],
rather than communities. Additionally, as opposed to their
one-layered model, ours are multi-layered.

Notations. For brevity, [n] denotes the discrete set {1, 2,
. . . , n} for any n ∈ N>0. For a rectangular matrix A, let
||A||∗ be its nuclear norm, and ||A||2 be its spectral norm
(i.e., maximal singular value). Let L2(N) denote the set of
countable dimensional vectors v such that

∑∞
i=1 vi <∞.

3 GNNs - Background
Let G = (V, E ,W) be the underlying graph structure, where:
V = {1, ..., n} denotes the vertex set, E denotes the edge
set and W : E → R denotes the edge weight function,
where a missing edge (i, j) is depicted byW(i, j) = 0. The
neighborhood of node i ∈ V is denoted by Ni := {j ∈
V|(j, i) ∈ E}. Following [Ortega et al., 2018], we lever-
age the graph signal processing (GSP) concepts for deriv-
ing the foundation of learning from graph signals. Thus,
the data X ∈ Rn×F is modeled as a graph signal where
[X]i = xi constitutes an F -dimensional feature vector, as-
signing a state for node i ∈ V . In the context of swarm
robotics, this state is typically described by the agent’s po-
sition, velocity or acceleration. For the sake of relating the
the graph signal X with the underlying structure of G, we de-
fine a graph shift operator (GSO) by S ∈ Rn×n, which cor-
relates to the graph’s sparsity and satisfies [S]ij = sij = 0
if (j, i) /∈ E for j 6= i. Commonly utilized GSOs in-
clude the adjacency matrix [Sandryhaila and Moura, 2013;
Sandryhaila and Moura, 2014], which corresponds to either
directed or undirected graphs, the Laplacian matrix [Shu-
man et al., 2013], which solely applies to undirected graphs,
and their normalized counterparts [Defferrard et al., 2016;
Gama et al., 2018b]. Hence, we clarify that the considera-
tion of either a directed or an undirected graph is with close
proximity to the choice of the GSO. The graph signal X can
be shifted over the nodes by viewing S as a linear operator,
yielding that the output at node i for the f th feature becomes:

[SX]if =
n∑
j=1

[S]ij [X]jf =
∑
j∈Ni

sijxjf (1)

The second equality thereby emphasizes the sparsity na-
ture (or, more accurately, locality) of S . We shall observe
that, whereas SX corresponds to the local information ex-
change between a given node and its direct neighbors, apply-
ing this linear operator recursively yields information from
nodes in further hops along the graph, i.e., the k-shifted signal
SkX constitutes the aggregation of information from nodes
which are k-hops away. Hence, given a set of filter taps
H := {Hk ∈ RF×G}Kk=0, a graph (convolutional) filter [Or-
tega et al., 2018] with G output features can be defined as a
linear combination of data located at consecutive hops:

Ψ(X ;S, H) :=
K∑
k=0

SkXHk (2)

where the output is another graph signal of order n×G, over
the same graph. Feeding a graph filter into a pointwise non-
linear activation function yields a Graph Neural Network
(GNN) [Gama et al., 2020]. It is defined as a nonlinear map-
ping between graph signals Φ : Rn×F → Rn×G given by:

Φ(X ;S, H) = XL; X` := σ(Ψ(X`−1;S, H`)) (3)

where ` ∈ [L]. σ : R → R is a pointwise non-linear acti-
vation function (which, for brevity, denotes its entrywise ap-
plication in (3)), and H := {H`k = (hfg`k) ∈ RF`−1×F` |k ∈
[K] ∪ {0}, ` ∈ [L]} is a set of filter taps. The graph signal
X` ∈ Rn×F` is referred to as a graph perceptron [Gama et al.,
2020], occupying the `th layer of a multi-layer graph percep-
tron generated by the cascade of all L graph signals above.
The input is X0 = X , yielding F0 = F , where the output
has FL = G features. Each input feature xg`−1 (g ∈ [F`−1])
at layer ` is processed in parallel by F` graph filters to out-
put the following features. Given some positive constantsR`,
which can be viewed as communication power constraints,
the non-convex function class of GNNs is provided by:

Fgnn := {Φ as in (3) : max
0≤k≤K

hfg`k ≤ R` ∀f, g} (4)

3.1 Empirical Risk Minimization (ERM)
We train the GNN (3) by solving the following empirical
risk minimization (ERM) problem for some loss function
J : Rn×G → R and a training set T := {X (j)}mj=1:

Φ∗gnn ∈ arg min
Φ∈Fgnn

1

m

m∑
j=1

J(Φ(X (j);S, H)) (5)

The number of parameters H to be trained is determined by
the number of: layers L, filter taps K and features F` in the
`th layer. Abusing the notation slightly, we regard (5) as ca-
pable of coping with supervised problems, due to the possible
extension of J to operate on the optimal action as well.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2308

4 GNNs Convexification
Since Fgnn (4) forms a non-convex set and due to the non-
linearity of the activation function, the ERM problem on
GNNs is non-convex, yielding that: (1) their training pro-
cess is NP-hard, and (2) they are unsuitable for online learn-
ing. Hence, we aim at overcoming this issue by convexifying
both the ERM’s predictions domain and loss function. Fol-
lowing the method put forth by [Zhang et al., 2017] for Con-
volutional Neural Networks (CNNs), we develop the class of
Convexified GNNs (Cx-GNNs). As a first step, in Section
4.1 we illustrate a convex relaxation of a low-rank constraint
based on the nuclear norm when regarding linear activation
functions. In the nonlinear case (Section 4.2), we propose
relaxation to a suitably chosen Reproducing Kernel Hilbert
Space (RKHS), where the resulting relaxed filters satisfy a
low-rank constraint, reducing the problem to the linear case.

4.1 Linear Activation Functions
In this section, we employ the nuclear norm in the simple case
of the linear activation function σ(w) = w (yielding xf` = uf`
due to (3)), which provides us with a convex function class,
as opposed to (4). Indeed, consider the eigenvector decom-
position of the shift operator S = V ΛV T , with orthogonal
eigenvectors matrix V := [vi]

n
i=1 and distinct eigenvalues

matrix Λ := diag[λi]
n
i=1, in ascending order. For each fil-

ter (1 ≤ f ≤ F`, 1 ≤ g ≤ F`−1):

Hfg
` (S) = Hfg

` (V ΛV T) =
K∑
k=0

hfg`kV ΛkV T = V Hfg
` (Λ)V T (6)

where Hfg
` (Λ) = diag[hfg` (λi)] for hfg` : R → R given by

hfg` (λ) =
∑K
k=0 h

fg
`kλ

k, which satisfies (from (4)):

hfg` (λ) ≤ R`
K∑
k=0

λk =: R`sK(λ) (7)

Note that {hfg` (λi)vi}ni=1 would be less than n if and only
if λi is a root of the polynomial hfg` (λ), i.e., rk(Hfg

` (Λ)) ≤
n. From (3) and (6), xf` can be written as follows:

xf` =

F`−1∑
g=0

V Hfg
` (Λ)V Txg`−1 = tr(X`−1H̃

f
`) (8)

where, in the last step, we have defined the F`−1×F`−1 block
matrix H̃f

` := diag[V Hfg
` (Λ)V T]

F`−1

g=0 . Hence, xf` linearly
depends on H̃f

` , whose rank satisfies (rk(Hfg
` (Λ)) ≤ n):

rk(H̃f
`) =

F`−1∑
g=0

rk(Hfg
` (Λ)) ≤ nF`−1 (9)

Let H̃` := [H̃f
`]F`

f=1. From (9), we clearly infer:

rk(H̃`) ≤ nF`F`−1 (10)

whereas X` can be written as:

X` = [tr(X`−1H̃
f
`)]F`

f=1 =: ΦH̃`(X`−1) (11)

As in [Zhang et al., 2017], the nuclear norm of H̃` is a
convex relaxation of its rank constraint. In the supplementary
material, we provide a rigorous proof, yielding:

||H̃`||∗ ≤ R`F`F`−1

√√√√tr
((K∑

k=0

Sk
)2)

=: B` (12)

Hence, defining the function class for Cx-GNN:

Fcx-gnn := {ΦH̃` as in (11) : ||H̃`||∗ ≤ B`} (13)

it is guaranteed that Fgnn ⊆ Fcx-gnn. Consequently, solving
the ERM (5) over Fcx-gnn instead of Fgnn yields a convex
optimization problem over a wealthier class of functions.

4.2 Nonlinear Activation Functions
Following [Zhang et al., 2017], for certain nonlinear activa-
tion functions σ and suitably chosen kernel functions K, we
prove that the class of GNNs can be relaxed to a Reproduc-
ing Kernel Hilbert Space (RKHS), reducing the problem to
the linear activation case. Full proofs are omitted due to
space constraints, and can be found in the supplementary
material (https://u.cs.biu.ac.il/∼agmon/IJCAI21Sup.pdf).
Furthermore, readers should refer to [Schölkopf et al., 2001]
for a brief overview on RKHS.

Let hfg` : R→ R be given by hfg` (λ) =
∑K
k=0 h

fg
`kλ

k. Let
K : Rn×Rn → R be a positive semidefinite kernel function.
We are able to show that (wf` (i) :=

∑F`−1

g=0 hfg` (λi)ei):

uf` = (〈yf` , w
f
` (i)〉)ni=1; yf` :=

F`−1∑
g=0

xg`−1 (14)

Hence, regarding certain choices of kernels and a suffi-
ciently smooth σ, the function τf` : z 7→ σ((〈z, wf` (i)〉)ni=1)
is contained within the RKHS induced by the kernel func-
tion K. From the representer theorem, provided a sufficiently
smooth σ, and in regard with a certain choice of kernel K,
there exists a feature mapping ϕ : Rn → L2(N) for which
K(z, z′) = 〈ϕ(z), ϕ(z′)〉. From (14) (i ∈ [n]):

σ(〈z, wf` (i)〉) ≡ 〈ϕ(z), ϕ(wf` (i))〉 =: 〈ϕ(z), w̄f` (i)〉 (15)

where w̄f` (i) ∈ L2(N) is a countable-dimensional vector,
due to the fact that ϕ itself is a countable sequence of func-
tions. Regarding the supplementary material, we have that
||w̄f` (i)||2 ≤ Cσ(||wf` (i)||2), provided a monotonically in-
creasing Cσ which depends on K. Consequently, ϕ may be
utilized as the vectorized representation of the output features
uf` , where w̄f` (i) constitutes the linear graph filter taps, thus
reducing the problem to training a GNN with the identity
activation function. That is, each graph perceptron is now
parametrized by the countable-dimensional vector w̄f` (i).

As our next step, we shall provide a reduction of the orig-
inal ERM problem to a finite-dimensional one. Output on
the training data T := {X (j)}mj=1 should be solely con-
sidered when solving the ERM problem, i.e., the output of
〈ϕ(yf` (j)), w̄f` (i)〉 (where yf` (j) is as given in (14) for X0 =

X (j)). Without loss of generality, for the sake of solving the

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2309

https://u.cs.biu.ac.il/~agmon/IJCAI21Sup.pdf

ERM, we assume that w̄f` (i) ∈ span{ϕ(yf
′

` (j))|(j, f ′) ∈
[m]× [F`]}. We can thus reparameterize it by:

w̄f` (i) =
∑

(j,f ′)∈[m]×[F`]

αf
′

`,j(i)ϕ(yf
′

` (j)) (16)

Let αf` (i) := [αf
′

`,j(i)](j,f ′)∈[m]×[F`]. Hence, for estimat-
ing w̄f` (i), it suffices to estimate the vector αf` (i). By def-
inition, the relation (αf` (i))TKf

` α
f
` (i) = ||w̄f` (i)||22 holds,

where Kf
` ∈ RmF`×mF` denotes the symmetric kernel ma-

trix, whose rows and columns are indexed by the example-
state index (j, f ′) ∈ [m] × [F`]. The entry at row (j′, f ′)

and column (j′′, f ′′) equals to K(yf
′

` (j′), yf
′′

` (j′′)). For a
suitable approximation of Kf

` such that Kf
` ≈ QQT for

Q ∈ RmF`×p, let Q+ be the pseudo-inverse of Q. Let
v`(z) ∈ RmF` be a vector whose (j, f)th coordinate equals
to K(z, yf` (j)). Denoting A` := [Af`]F`

f=1, the Cx-GNN is
given as follows (in regard with (3) and (14)):

X̃` = [tr(Af` ỹ
f
`)]F`

f=1 =: ΦA`(X`−1) (17)

ỹf` := Q+v`(y
f
`); w̃f` (i) := QTαf` (i);Af` := [w̃f` (i)]ni=1

(18)

Remark 1. Note that: ỹf` (j) = Q+v`(y
f
` (j)) = [Q]j,f .

The Cx-GNN can also be depicted by:

τf` (z) := (〈Q+v`(z), Q
Tαf` (i)〉)ni=1 (19)

It can thus be proven that:

||A`||∗ ≤
n∑
i=0

F`Cσ(R`F`−1sK(λi)) =: B̃` (20)

4.3 Learning Multi-Layer Cx-GNNs
Alg.1 is an abbreviated version for learning a multi-layer
Cx-GNN. At each layer, given regularization parameters
{R`}L`=1, solving the following optimization problem is re-
quired (from (17)):

Â` ∈ arg min
||A`||∗≤R`

J̃(A`); J̃(A`) :=
1

m

m∑
j=1

J(X̃ (j)
`) (21)

The naive approach is solving via projected gradient de-
scent: At iteration t, for a step size ηt > 0, we compute:

At+1
` = ΠR`

(At` − ηt∇AJ̃(At`)) (22)
where ΠR`

denotes the Euclidean projection onto the nuclear
norm ball with radius R`. As in [Zhang et al., 2017], this
can be done by projecting the vector of singular values onto
the `1-ball, and then reconstructing the matrix using the pro-
jected singular values. Afterwards, the `th layer output shall
be retrieved: they propose to compute the singular value de-
composition Â` = U`Σ`W

T
` , and then define Ũ` to be the

first F` columns of U`. The resulting output, whose (f, i)th

element equals to 〈Q+v`(z), Q
Tαf` (i)〉, is given by:

H̃`(z) := ŨT` Ỹ`(z); Ỹ`(z) := Q+v`(z) (23)

Algorithm 1 Learning Multi-Layer Cx-GNNs

Input: Samples {X (j)}mj=1, kernel K, {R`}L`=1, number of
graph filters {F`}L`=1, H̃1(z) = z

1: for 2 ≤ ` ≤ L do
2: Taking {H̃`−1(X (j))}mj=1 as training examples, con-

struct a kernel matrix Kf
` ∈ RmF`×mF` , such that

the entry at row (j′, f ′) and column (j′′, f ′′) equals to
K(yf

′

` (j′), yf
′′

` (j′′)). Compute a suitable approxima-
tion of Kf

` such that Kf
` ≈ QQT for Q ∈ RmF`×p.

3: Compute Ỹ(j)
` := [ỹf` (j)]F`

f=1 as in Remark 1 for X (j).

4: Solve (21) so as to obtain a matrix Â`.
5: Compute the singular value decomposition Â` =

U`Σ`W
T
` , and define Ũ` as the first F` columns of U`.

6: Compute P̃`(z) := [tr(Âf` Ỹ`(z))]
F`

f=1 and H̃`(z) (23).
7: end for

Output: Predictor P̃L, output H̃L and parameters ÂL.

The time complexity is affected by p. For instance, by
Nyström method [Williams and Seeger, 2001], an approxi-
mation of Kf

` is achieved by randomly sampling p � mF`
rows/columns from the original Kf

` in O(p2mF`) time.

4.4 Convergence Analysis
As in Theorem 1 of [Zhang et al., 2016], we prove the fol-
lowing theorem, from which we infer that the role R` plays
is twofold: it ensures that Fgnn ⊆ Fcx-gnn and Fcx-gnn is
a wealthier class of functions, but not ”too big”. We de-
note yf` (z) :=

∑F`−1

g=0 zg . We use the random kernel ma-
trix K(X`−1) ∈ RF` × RF` , whose (f, f ′)th entry is given
by K(yf` , y

f ′

`), where yf` is as in (3) and the `th layer input
X`−1 ∈ Rn×F`−1 is drawn randomly.

Theorem 1. Let J(·) be L-Lipchitz continuous and K be ei-
ther the inverse polynomial kernel or the Gaussian kernel.
For any valid activation function σ, in regard with the radius
B̃` as in (20), the expected generalization error satisfies:

EX [J(P̃`(X))] ≤ inf
Φ∈Fgnn

EX [J(Φ(X ;S, H))]+

+
cLB̃`

√
log(mF`)E[||K(X`−1)||2]√

m
(24)

at layer ` and for a universal constant c > 0.

Proof. (Sketch) Let B̃f`i := Cσ((Rfg` F`−1sK(λi))
2). While

regarding the `th layer, the proof comprises of two parts:
First, a wealthier function class shall be considered, which
contains the class of GNNs. It is defined as follows:

Fcx-gnn := {z 7→ [(〈yf` (z), wf` (i)〉)n
∗

i=1]F`

f=1 : n∗ <∞

and ||wf` (i)||H ≤ B̃f`i ∀i, f} (25)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2310

where || · ||H is the associated RKHS norm. We prove that the
predictor P̃`, as computed by Alg.1, solves the ERM problem
for Fcx-gnn. Afterwards, we provide an upper bound on its
Rademacher complexity. After proving Fgnn ⊆ Fcx-gnn, we
infer that the generalization loss of P̃` is bounded by that of
GNNs. Combined with the theory of Rademacher complex-
ity [Bartlett and Mendelson, 2002], this loss converges to the
least possible error of Fcx-gnn, establishing (24).

5 Extensions of Cx-GNNs
In this section, we extend the model proposed in Section 4 to
other existing architectures found in the literature.

As a first step, we consider Aggregation GNNs (A-
GNNs), which apply to a signal with temporal structure, in-
corporating the topology of the graph [Gama et al., 2018a].
Denoting the `th aggregation sequence at node i by:

Z(`)
i := [[Y(`)

k]i]
K
k=0; Y(`)

k := SkX` (26)

the `th layer output can be thus expressed as:

ζ(X ;S, H) := Z(L)
i ; Z(`)

i = σ(Z(`−1)
i H`) (27)

As in Section 4, leveraging the concept of convexified
CNNs [Zhang et al., 2017], the class of Convexified A-GNNs
(CA-GNNs) can be readily formed. Indeed, for a linear acti-
vation function, regarding (27), we infer thatZ(`)

i linearly de-
pends on H`, satisfying: rk(H`) ≤ kmin(F`−1, F`). As in
Section 4.1, we prove that the nuclear norm ofH` is bounded.
Noting ||H`||∗ =

∑F`

f=1 ||H
f
` ||∗, those nuclear norms can be

bounded as follows:

||Hf
` ||∗ ≤

F`−1∑
g=0

||Hfg
` ||∗ :=

F`−1∑
g=0

tr(

√
(Hfg

`)THfg
`) =

=

F`−1∑
g=0

√√√√ K∑
k=1

(hfg`k)2 ≤ R`F`−1

√
K (28)

where the last step stems from (4). Consequently:

||H`||∗ ≤ R`F`F`−1

√
K =: C` (29)

Hence, defining the function class for CA-GNN:

Fca-gnn := {ζ as in (27) : ||H`||∗ ≤ C` ∀`} (30)

it is guaranteed that Fgnn ⊆ Fca-gnn. Consequently, solving
the ERM (5) over Fca-gnn instead of Fgnn yields a convex
optimization problem over a wealthier class of functions.

As in Subsection 4.2, for certain nonlinear activations and
suitably chosen kernel functions K : RK × RK → R, we
are able to show that z 7→ σ(zH`) is contained in the RKHS
induced by K. Alg.1 can then be applied.

Now, we regard a variant of A-GNN, referred to as Time-
Delayed A-GNN. At time t, we denote the time-delayed ag-
gregation sequence [Tolstaya et al., 2020] of i by:

Zit := [[Ykt]i]Kk=0; Ykt := St,kXt−k (31)

where St,k =
∏t
τ=t−k+1 Sτ for t− k ≥ 0, and St,k ≡ 0 oth-

erwise. St,k constitutes the aggregation of information from

nodes which are k-hops away at time t − k. The `th layer
output of a Time-Delayed A-GNN (TA-GNN) is given by:

uti := Z(L)
it ; Z(`)

it = σ(Z(`−1)
it H`), Z(0)

it := Zit (32)
As for CA-GNNs, the class of Convexified Time-Delayed

A-GNNs (CTA-GNNs) can be equivalently formed.
Finally, following [Gao et al., 2020], in this section we

propose the Half-Convex GNN (HC-GNN) model. For
Φ as in (3), a convex GNN ζ, and combination weights
αgnn, αcx-gnn, it is given as follows:
Υ(X ;S, H) = αgnnΦ(X ;S, H)+αcx-gnnζ(X ;S, H) (33)
An Aggregation HC-GNN (AHC-GNN) is an HC-GNN

which comprises of an A-GNN and a CA-GNN. A Time-
Delayed AHC-GNN (TAHC-GNN) is defined similarly.

6 Distributed Online Convex Optimization
The convexity of our suggested models along with the
bounded convergence time (as proven in Theorem 1) al-
lows us to apply them as a distributed online algorithm, to
tackle the problem of time-varying topologies and handling
the computational expense of running one GNN per time in-
stant. Let ÂL be the parameters provided by the training
phase. At time t, each node i ∈ V has access to a local
loss J ti (Φ

Ai(Xt)), where Xt is the observed signal. Nodes
should thus aim at minimizing the sum of local losses, s.t.
Ai = Aq ≡ A ∀i, q : q ∈ Ni. (21) can thus be altered as:

{Âi}ni=1 ∈ arg min
{Ai}ni=1

n∑
i=1

J ti (Φ
Ai(Xt)) (34)

Due to the convexity of our proposed architectures, they
can thus be retrained. Setting A0

i = ÂL, each node i updates
its local parameters in respect with:

At+1
i = Ati − ηt∇AJ ti (ΦAi(Xt)) (35)

Literally, each Ati is descended along the local gradient to
approach the optimal solution of (34).

7 Flocking Model
Given n robots moving with random initial velocities sampled
in the interval [−v, v]2, at time t, each robot i ∈ N is char-
acterized by pti, v

t
i , u

t
i ∈ R2, which are its position, velocity

and acceleration (respectively). We aim to derive controllers
Ut := [uti]

n
i=1, for the robots to converge to a common veloc-

ity without collisions. [Tolstaya et al., 2020] provide a cen-
tralized optimal controller, which requires access to all agent
velocities and positions. In the distributed settings, at time t,
let N t

i := {q ∈ N : ||pti − ptq||2 ≤ R} be the neighborhood
of robot i with visibility radius R. A communication graph
Gt is thus established in respect with Section 3, whereas the
GSO St is the adjacency matrix.

As in [Tolstaya et al., 2020], GNNs can be utilized for
learning a distributed controller Ut = ΦA(Xt), with a graph
signal Xt, which linearly aggregates position and velocity in-
formation of neighboring robots. At testing time, they mea-
sure performance by the velocity variation among robots over
the whole trajectory and also at the final time step (a detailed
flocking model can be found in the supplementary material).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2311

0 80 160 240 320 400

0

1,000

2,000

3,000

4,000

≈ 11171.741 ≈ 11712.444

Number of Epochs

T
V

V
—

V
al

id
at

io
n

TA A TAHC AHC CTA

(a)

500

1,000

1,500

2,000

AV
G

T
V

V
—

V
al

id
at

io
n

TA A TAHC AHC

0.5 1.5 2.5 3.5 4.5

0

100

200

300

400

500

Maximum Initial Velocity (v)

T
V

V
—

Tr
ai

ni
ng

TA A TAHC AHC Optimal

(b)

1 1.5 2 2.5 3 4

60

80

100

120

Visibility Radius (R)

T
V

V
—

Tr
ai

ni
ng

TA A TAHC AHC Optimal

500

1,000

1,500

2,000

2,500

3,000

3,500

AV
G

T
V

V
—

V
al

id
at

io
n

TA A TAHC AHC

(c)

25 50 75 100 125 150

0

100

200

300

400

500

600

Number of Agents (n)

T
V

V
—

Tr
ai

ni
ng

TA A TAHC AHC Optimal

500

600

700

800

AV
G

T
V

V
—

V
al

id
at

io
n

TA A TAHC AHC

(d)

Figure 1: Fig.1a provides a comparison with respect to the total velocity variation (TVV) relative to the optimal controller over the validation
set, along the training phase. Figs.1b-1d depict the change in the average TVV over the validation set and over the training set (bar charts),
both relative to the optimal controller, with respect to varied values of: v (1b), R (1c), and n (1d).

8 Empirical Analysis on Flocking Swarms
In this section, our methods are evaluated through the task in
which robots aim to align their velocities and regulate their
spacing. We compare our models to architectures found in
the literature, where the later are solely trained offline.

8.1 Experimental Setup
Evaluations [Cohen and Agmon, 2021] were conducted us-
ing a 12GB NVIDIA Tesla K80 GPU, implemented in Py-
Torch v1.7.0, accelerated with Cuda v10.1, and situated in the
GymFlock [Tolstaya et al., 2020] flocking environment. For
training each type of GNN, the Dataset Aggregation (DAg-
ger) algorithm is used, following the learner’s policy instead
of the expert’s with probability 1 − β when collecting train-
ing trajectories [Ross et al., 2011], where β is decayed by
a factor of 0.993 to a minimum of 0.5. The ADAM opti-
mizer is used with learning rate 5 · 10−4, decaying factors
0.9, 0.999, and a MSE cost function. The dataset contains
400 trajectories for training, 40 for validation and 40 for test-
ing, each of length 200 total. All GNNs consist of two hidden
layers, with 32 neurons each, where K=3, σ= tanh for non-
convex GNNs and σ= sin for convex GNNs. For our baseline
scenario, we consider R=1m, v=3m/s,N=100. The robots’
locations were initialized uniformly on a disc of radius

√
n

to normalize the density of agents for changing flock sizes.
αgnn=1, αcx-gnn=0.001 is chosen for all HC-GNNs.

8.2 Results
We first compare both A-GNNs and TA-GNNs to their Half-
Convex counterparts and a CTA-GNN (Fig.1a). After a single
epoch, our models exhibit the best performance, whereas the
CTA-GNN outperforms them all. This behaviour is attributed
to the fact that A-GNNs and TA-GNNs are trained by solving
a non-convex ERM, which is an NP-hard process. However,
during the upcoming epochs, the CTA-GNN is outperformed
by all the other models, which can be explained by Theo-
rem 1. We also note that the HC-GNNs achieve performance
competitive with the non-convex GNNs. This stems from the
magnified representation power attained when utilizing a lin-
ear combination of a GNN and its convex counterpart: the
GNN ensures that robots approach a perfect velocity consen-

sus, whereas the convexified GNN provides us with a faster
convergence.

We now provide a comparison in regard with different
flocking scenarios, which are displayed by different initial
conditions. Figs.1b-1d depict the change in the average to-
tal velocity variation over the validation set and the total ve-
locity variation over the training set (bar charts), with respect
to varied values of: v (1b), R (1c), and n (1d). More accu-
rately, in each scenario, we fix the parameters of the baseline
scenario, and solely alter the examined one. We observe that
the performance of all models over the training set is com-
parable, a fact which was also illustrated by Fig.1a. How-
ever, Figs.1b-1c illustrate that the HC-GNNs yield the best
performance (on average), when regarding the validation set.
This is due to the fast convergence rate during the first epoch
demonstrated by Fig.1a. Yet, Fig.1d provides us with an op-
posite outcome: the non-convex GNNs perform better with
respect to the validation set (on average). We note that this
stems from the drawback embedded in convexified GNNs,
which is proven by Theorem 1. Namely, since the expected
generalization error is bounded by a term which depends on
the number of robots n, we conclude that the higher the value
of n, the higher the expected generalization error.

9 Conclusions and Future Work
In this paper we presented convexified GNN architectures,
which address the NP-hardness of common non-convex ERM
problems. The proposed convex relaxation is two-fold: the
nuclear norm for the rank constraint of the parameter matrix,
and the RKHS relaxation for handling non-linearity. Exploit-
ing the resulting convexity, we employed a distributed online
learning scheme, so as to learn distributed controls for con-
trolling a robotic swarm in dynamic settings.

In many real-world applications, data can be naturally rep-
resented as graphs (e.g., recommendation systems [Gao et al.,
2020]), making our proposed models suitable in such contexts
as well. Future work thus warrants exploring applicability of
our models outside the realm of swarm robotics.

Acknowledgments
This research was funded in part by ISF grant 2306/18.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2312

References
[Bartlett and Mendelson, 2002] Peter L Bartlett and Shahar

Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learn-
ing Research, 3(Nov):463–482, 2002.

[Blondel et al., 2008] Vincent D Blondel, Jean-Loup Guil-
laume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Jour-
nal of statistical mechanics: theory and experiment,
2008(10):P10008, 2008.

[Blum and Rivest, 1992] Avrim L Blum and Ronald L
Rivest. Training a 3-node neural network is np-complete.
Neural Networks, 5(1):117–127, 1992.

[Cohen and Agmon, 2021] Saar Cohen and Noa Agmon.
Code implementation. https://github.com/saarcohen30/
convexified-gnn, 2021.

[Dabbagh and Bannan-Ritland, 2005] Nada Dabbagh and
Brenda Bannan-Ritland. Online learning: Concepts,
strategies, and application. Pearson/Merrill/Prentice Hall
Upper Saddle River, NJ, 2005.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bres-
son, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In
Advances in neural information processing systems, pages
3844–3852, 2016.

[Gama et al., 2018a] Fernando Gama, Antonio G Marques,
Geert Leus, and Alejandro Ribeiro. Convolutional neu-
ral network architectures for signals supported on graphs.
IEEE Transactions on Signal Processing, 67(4):1034–
1049, 2018.

[Gama et al., 2018b] Fernando Gama, Alejandro Ribeiro,
and Joan Bruna. Diffusion scattering transforms on
graphs. arXiv preprint arXiv:1806.08829, 2018.

[Gama et al., 2020] Fernando Gama, Elvin Isufi, Geert Leus,
and Alejandro Ribeiro. Graphs, convolutions, and neural
networks. arXiv preprint arXiv:2003.03777, 2020.

[Gao et al., 2020] Zhan Gao, Fernando Gama, and Alejandro
Ribeiro. Wide and deep graph neural networks with dis-
tributed online learning. arXiv preprint arXiv:2006.06376,
2020.

[Hong et al., 2015] Seunghoon Hong, Tackgeun You, Suha
Kwak, and Bohyung Han. Online tracking by learning
discriminative saliency map with convolutional neural net-
work. In International conference on machine learning,
pages 597–606, 2015.

[Li et al., 2004] Yan Li, N Sundararajan, P Saratchan-
dran, and Zhifeng Wang. Robust neuro-h/sub/spl in-
fin//controller design for aircraft auto-landing. IEEE
Transactions on Aerospace and Electronic Systems,
40(1):158–167, 2004.

[Li et al., 2019] Qingbiao Li, Fernando Gama, Alejandro
Ribeiro, and Amanda Prorok. Graph neural networks for
decentralized multi-robot path planning. arXiv preprint
arXiv:1912.06095, 2019.

[Nikolentzos et al., 2018] Giannis Nikolentzos, Polykarpos
Meladianos, Antoine Jean-Pierre Tixier, Konstantinos
Skianis, and Michalis Vazirgiannis. Kernel graph convo-
lutional neural networks. In International Conference on
Artificial Neural Networks, pages 22–32. Springer, 2018.

[Ortega et al., 2018] Antonio Ortega, Pascal Frossard, Jelena
Kovačević, José MF Moura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and appli-
cations. Proceedings of the IEEE, 106(5):808–828, 2018.

[Ross et al., 2011] Stéphane Ross, Geoffrey Gordon, and
Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceed-
ings of the fourteenth international conference on artificial
intelligence and statistics, pages 627–635, 2011.

[Sandryhaila and Moura, 2013] Aliaksei Sandryhaila and
José MF Moura. Discrete signal processing on graphs.
IEEE transactions on signal processing, 61(7):1644–
1656, 2013.

[Sandryhaila and Moura, 2014] Aliaksei Sandryhaila and
Jose MF Moura. Discrete signal processing on graphs:
Frequency analysis. IEEE Transactions on Signal Process-
ing, 62(12):3042–3054, 2014.

[Sartoretti et al., 2019] Guillaume Sartoretti, Justin Kerr,
Yunfei Shi, Glenn Wagner, TK Satish Kumar, Sven
Koenig, and Howie Choset. Primal: Pathfinding via re-
inforcement and imitation multi-agent learning. IEEE
Robotics and Automation Letters, 4(3):2378–2385, 2019.

[Schölkopf et al., 2001] Bernhard Schölkopf, Ralf Herbrich,
and Alex J Smola. A generalized representer theorem. In
International conference on computational learning the-
ory, pages 416–426. Springer, 2001.

[Shuman et al., 2013] David I Shuman, Sunil K Narang, Pas-
cal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and
other irregular domains. IEEE signal processing maga-
zine, 30(3):83–98, 2013.

[Tolstaya et al., 2020] Ekaterina Tolstaya, Fernando Gama,
James Paulos, George Pappas, Vijay Kumar, and Alejan-
dro Ribeiro. Learning decentralized controllers for robot
swarms with graph neural networks. In Conference on
Robot Learning, pages 671–682, 2020.

[Williams and Seeger, 2001] Christopher KI Williams and
Matthias Seeger. Using the nyström method to speed up
kernel machines. In Advances in neural information pro-
cessing systems, pages 682–688, 2001.

[Zhang et al., 2016] Yuchen Zhang, Jason D Lee, and
Michael I Jordan. l1-regularized neural networks are im-
properly learnable in polynomial time. In International
Conference on Machine Learning, pages 993–1001, 2016.

[Zhang et al., 2017] Yuchen Zhang, Percy Liang, and Mar-
tin J Wainwright. Convexified convolutional neural net-
works. In International Conference on Machine Learning,
pages 4044–4053. PMLR, 2017.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2313

https://github.com/saarcohen30/convexified-gnn
https://github.com/saarcohen30/convexified-gnn

	Introduction
	Related Work
	GNNs - Background
	Empirical Risk Minimization (ERM)

	GNNs Convexification
	Linear Activation Functions
	Nonlinear Activation Functions
	Learning Multi-Layer Cx-GNNs
	Convergence Analysis

	Extensions of Cx-GNNs
	Distributed Online Convex Optimization
	Flocking Model
	Empirical Analysis on Flocking Swarms
	Experimental Setup
	Results

	Conclusions and Future Work

