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Abstract
The presence of robots in areas containing threats
is becoming more prevalent, due to their ability to
perform missions accurately, efficiently, and with
little risk to humans. Having the robots handle ad-
versarial forces in missions such as search and res-
cue, intelligence gathering, border protection and
humanitarian assistance, raises many new, exciting
research challenges. This paper describes recent re-
search achievements in areas related to robotic mis-
sion planning in adversarial environments, includ-
ing multi-robot patrolling, robotic coverage, multi-
robot formation, and navigation, and suggests pos-
sible future research directions.

1 Introduction
In developing robots to fulfill a wide range of functional
goals, it is necessary to address not only their ability to per-
form the tasks at hand, but also the ways in which they act
within and respond to the various characteristics of their sur-
roundings. As one of the foremost motives for replacing hu-
mans with robots in a task or mission involves proximity to
dangerous or hostile entities, an emerging body of research
is highlighting the need to account for the presence of adver-
saries in robotic environments. Dubbed adversarial robotics,
this field is gaining traction, particularly in light of the grow-
ing reliance on unmanned vehicles and other robots in haz-
ardous search and rescue missions and in security-related set-
tings worldwide.

Research in adversarial robotics focuses on the considera-
tions and challenges that arise when canonical robotic prob-
lems must be solved in the presence of opponents with con-
flicting goals or an intention to harm the robots involved.
When an adversary is introduced into a system, these prob-
lems change from their original forms, and therefore require
fundamentally different solutions. For example, as elaborated
below, the aim of a robot charged with patrolling a certain
threat-free area will be to optimize frequency criteria, while
the aim of a robot patrolling the same area, now inhabited by
an adversary, will be to maximize the detection of that ad-
versary. Clearly, these two aims raise different considerations
and call for different solutions.
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Adversarial presence in robotic problems can be divided
roughly into two: non-strategic, and strategic adversary. If
the adversary is non-strategic, the risk (or threats) it poses ex-
ist in the environment and are fixed, thus the robots plan their
task while accounting for those as given, static, factor. On the
other hand, if the adversary adopts a strategic behavior, it re-
acts to the strategy chosen by the robots. Thus ultimately,
alongside the strategic behavior of the robots themselves,
problems in adversarial robotics require that the knowledge
and behavior of the adversaries be modeled and addressed.
To this point, research that considered adversarial presence
mostly assumed (implicitly or explicitly) a non-strategic ad-
versary. Many challenges and open questions exist assuming
both adversary types, however the more general picture is the
strategic adversary, as it includes within it the case of a non-
strategic, fixed, adversary.

Adversarial robotics can be viewed from the perspective
of game theory, with robots and adversaries each trying to
maximize their self-perceived utility as opponents in a game.
Comprehensive work on game theory in the past decades has
indeed produced several models and tools (e.g., matrix game
representation) that are theoretically and practically relevant
to various aspects of adversarial robotics. However, the ap-
plicability of these pure game-theoretic methods is limited by
the dynamic and continuous nature of robotic behavior and
environments, as well as by the uncertainty of robot and ad-
versary perceptions and actions. Taking these constraints into
consideration, pioneering research has focused on the devel-
opment of tailor-made approaches to account for adversarial
presence in robotic environments.

A significant body of research has addressed the pres-
ence or involvement of opponents in robotic problems with-
out explicitly modeling adversarial knowledge or behavior.
Noteworthy examples include the issues of stealth navigation
[Tews et al., 2004] and covert path planning [Al Marzouqi
and Jarvis, 2011], in which robots must navigate through their
surrounding environment while minimizing detection by op-
ponents. In the games of soccer [Stone et al., 2000] and cap-
ture the flag [Huang et al., 2011], though robots need to plan
their behavior against the opposing team (with the purpose of
scoring goals or capturing their flag), the work done to date
on this paradigm has rarely involved strategic responses based
on modeling of opponent behavior.

Overall, work in these areas has provided valuable insight
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into robotic behavior in the face of an opponent, serving as the
foundation for later attempts to model adversarial behavior
and compute response strategies in accordance. This pattern,
in which a known, non-reactive (static) adversary is initially
assumed, and only then are the complications of strategic be-
havior in response to a goal-oriented and dynamic adversary
addressed, is representative of a general approach to solving
new problems in adversarial environments. A similar pro-
gression is demonstrated in the work on adversarial coverage
and adversarial formation, as detailed in the corresponding
sections below.

In the sections that follow, I review this work, which has,
to date, focused on the problems of multi-robot patrolling,
robotic coverage, multi-robot formation, and robot naviga-
tion in adversarial environments. While each of these prob-
lems entail a different set of considerations and solutions, the
premise underlying all research in this novel field is that intel-
ligent adversaries and dynamic threats are an inevitable com-
ponent of virtually every real-world environment in which
robots can be of benefit.

According to this conceptualization, which can be called
the paranoid conjecture, the adversary is always there,
though its behavior, and hence the response it requires, de-
pends on what it knows. As demonstrated above, if the adver-
sary knows nothing about the strategy of its opponent robots,
it is best for them to behave as though it were not there at all.

2 Multi-robot Patrolling
Due largely to its immediate relevance to pressing secu-
rity applications, the problem of multi-robot patrol has gar-
nered much attention in recent years (e.g., [Chevaleyre, 2004;
Ahmadi and Stone, 2006; Portugal and Rocha, 2011; Agmon
et al., 2011; 2012; Sless et al., 2014]). In the absence of ad-
versaries, the basic patrolling problem requires robots to re-
peatedly visit a target area in order to monitor changes in state
[Chevaleyre, 2004]. The majority of studies in this field (e.g.,
[Elmaliach et al., 2009]) involve frequency-based patrolling,
in which the robots’ goal is to optimize a particular frequency
criterion, such as maximization of the minimal frequency of
visits to a point in the environment or the average frequency
of visits along the entire area. In such cases, efficient patrol is
defined as guaranteeing a high frequency of visits to all parts
of the designated area, which may be a continuous 1D or 2D
environment or a discrete set of waypoints (graph).

As the visit frequency-optimization problem is NP-hard,
several heuristic and/or approximation strategies have been
proposed to solve it. These solutions may be based on the
creation of one cyclic path to be followed by all robots or
on the division of the patrol area between robots such that
each patrols its own zone. Regardless of the specific method,
strategies that optimize point-visit frequency criteria are de-
terministic by nature. Furthermore, it has been proven [Ag-
mon et al., 2011] that random robot behavior is suboptimal
with respect to frequency criteria.

In patrol environments containing adversaries, the goal of
robots changes from optimization of frequency criteria to
optimization of adversary detection. Given that the robots
face an adversary that may learn and adapt to their actions,

they must adopt random behavior. However, this randomness
should be smart, meaning that it should take the adversarial
model into account. Thus, the adversary is assumed to be ra-
tional with respect to its knowledge of the patrolling robots,
which it applies in choosing actions that maximize its chances
of successful penetration.

If the adversary has full knowledge of the patrolling strat-
egy, and knows where the robots currently reside, it will be
able to take advantage of this knowledge and penetrate at the
patrol’s weakest spot (the point with the minimal probability
that penetration will be detected). In this case, the robots’
strategy should maximize the minimal probability of penetra-
tion detection. It has been shown [Agmon et al., 2011] that
such a strategy can be found in polynomial time in linear en-
vironments, i.e., along an open fence (line) or closed perime-
ter (circle). This is an example of a leader-follower game
(also known as a Stackelberg game), in which the leader (our
robots) fixes its strategy and the follower (the adversary) ob-
serves the strategy and responds to it.

When it cannot distinguish between two or more options,
the adversary chooses either option at random, with uniform
distribution. Therefore, on the other end of the adversarial
knowledge continuum, if the adversary has no knowledge of
the strategy of the patrolling robots, and thus does not know
what they will do next, it will choose to penetrate through one
of the locations in which they do not reside, at random, with
uniform distribution. In this case, the robots will choose a pa-
trol strategy that maximizes the expected probability of pene-
tration detection. In [Agmon et al., 2008] we have shown that
a strategy maximizing the expected probability of penetration
detection is one that maximizes the frequency of visits at each
point in the environment, leading to the conjecture that the
original problem of patrolling in neutral environments (with-
out adversarial presence) is essentially a sub-case of the more
general problem of patrolling in adversarial environments.

Considering that the adversary (being rational) chooses ac-
tions based on its knowledge on the patrolling robots, we have
recently shown [Talmor and Agmon, 2017] that this knowl-
edge can be manipulated. Examining two different types of
manipulation, it is shown that in some cases it is possible to
deceive the opponent into thinking that the patrolling robots
have more power than they actually have. Specifically, we
have shown that if the adversary can view only a part of the
perimeter (a window), then it is possible to perfectly simu-
late a patrolling strategy along this window mimicking more
robots than there actually are in the system. In addition, when
using robots with no actual penetration detection capabilities
(similar to scarecrows), then the vulnerability of the system
is minimal. Common to both deception models, the ability to
perfectly deceive the opponent (without changing any phys-
ical capabilities) is based on the stochasticity of the robots’
actions.

3 Robotic Coverage
In the problem of robot coverage, a robot (one or more) must
visit each point in a target area once. Deciding on a path that
covers an area is one of the fundamental problems in robotics,
which serves as the basis for problems spanning from search
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and rescue, through cleaning, harvesting, and demining, to
mapping [Galceran and Carreras, 2013].

In the original problem of coverage (without adversarial
presence), the goal of the robot(s) is usually to minimize the
time or energy required to complete the coverage. In a single-
robot setting, this corresponds with minimizing the length
of the path that hits each point at least once. In a multi-
robot setting, various criteria can be selected for optimiza-
tion. Common criteria include minimizing the maximal ef-
fort (path length, energy) a robot invests in the coverage, or
minimizing the robot’s average effort. The problem of robot
coverage is NP-Hard, using a reduction from the Traveling
Salesman Problem (TSP). Based on some assumptions about
the size and the structure of the area with respect to the cover-
age tool, a popular method known as Spanning Tree Coverage
(STC) [Gabriely and Rimon, 2001] produced an optimal so-
lution for a single robot. This method was later generalized to
multiple robots [Hazon and Kaminka, 2008] , though it is not
optimal in this case. Other solutions perform a greedy heuris-
tic assignment of sub-areas to robots such that the union of
those areas covers the entire terrain, or use other TSP approx-
imation algorithms to define a coverage path for the robot(s).

When robotic coverage is considered in adversarial envi-
ronments, it is assumed that threats exist in the target area,
such that they might stop the covering robot with some prob-
ability. In this case, a new goal is added: optimizing robot
survivability, or the probability of finishing the coverage route
safely. There is a tradeoff between the two goals, as optimiz-
ing survivability may cause the robot to revisit safe areas (ar-
eas with no threats), causing coverage time to grow, whereas
minimizing coverage time may require the robots to adopt
a pattern that involves visiting dangerous areas more often.
Thus, ”choosing your battle” becomes necessary. It should
be noted that threats cannot be treated as obstacles; while ob-
stacles should be avoided, threats must be visited, as they are
part of the free-space. The question is, in what order. Opti-
mizing survivability can be translated into different optimiza-
tion functions. The problem has been initially investigated
in a single-robot setting [Yehoshua et al., 2016], where the
optimization criteria was defined as either minimizing the to-
tal number of visits to dangerous areas, or maximizing the
expected covered area (here, the order of visits matters: we
will want to visit more dangerous areas later in the coverage
process).

The problem of robot coverage in adversarial environments
(or adversarial coverage, in short) is NP-hard in simple envi-
ronments (grid world, no obstacles) as well, making it even
more difficult than the original coverage problem (with no
threats). This necessitates the use of heuristic or approxima-
tion algorithms for generating near-optimal coverage paths.
Fortunately, a simple greedy algorithm has been shown em-
pirically to perform close to optimally in practice, on a given
map (offline), with theoretical bounds. Further MDP-based
modeling for the offline case, as well as an online version,
has also been shown to perform efficiently [Yehoshua and
Agmon, 2015b; Yehoshua et al., 2015].

Further research has suggested using a team of multiple
robots for covering the adversarial environment [Yehoshua
and Agmon, 2016]. When multiple robots are involved in

the covering mission, then not only the solution becomes
more complex by an order of magnitude (similar to the orig-
inal coverage task in neutral environments), but determining
the problem itself, that is the optimization criteria, becomes
more complex and is no longer straightforward. Meaning,
Survivability of the team is composed of the survivability of
its individuals, but one can consider optimizing the minimal
survivability among the teammates (by that strengthening the
weakest link), maximizing the expected survivability (thus
strengthening the average case), and more. The impact of
losing a teammate can or cannot be considered when initially
allocating the coverage mission among the robots.

The work described above has not taken into account
strategic adversarial behavior. The threats are given, and as-
sumed to be spread randomly around the work area. In con-
trast, in [Yehoshua and Agmon, 2015a] we describe a more
sophisticated adversarial model, which represents a first step
toward modeling strategic behavior. The problem is described
from the adversary’s perspective: given a map of the envi-
ronment and k guards (threats), where should those guards
be placed in order to maximize the probability of stopping a
robot covering the environment. The strategy of the adversary
changes with respect to the knowledge it has regarding the
covering robot’s path. If it knows exactly the (deterministic)
covering path of the robot, it can easily optimize the probabil-
ity of stopping the robot by placing the guards at points that
are more frequently revisited by the robot. If it has no knowl-
edge whatsoever regarding the covering path, the problem of
finding an optimal placement of its guards is equivalent to
finding a coverage path that minimizes point-revisit. In this
case, since the problem is hard, the heuristic suggested solu-
tion is to identify points that the robot must revisit multiple
times (using graph representation of the world, and its corre-
lated graph-theoretic characteristics), and place the guards at
those points in descending order from more frequently visited
points to less frequently visited points. This has been shown
empirically to significantly decrease the survivability of the
covering robot.

An observant reader may have noted that if the adversary
has no knowledge regarding the covering robot’s path, the
problem of finding optimal placement of guards is equivalent
to finding the shortest covering path, which is the original
(adversary-free) coverage problem. This supports the afore-
mentioned paranoid conjecture, and extends it to the coverage
problem as well.

4 Multi-robot Formation
One of the earliest problems in robotics is the problem of
multi-robot formation: the need for a team of robots to travel
in a connected form through an environment [Balch and
Arkin, 1995]. This problem is motivated by natural phenom-
ena: from a school of fish, to a flock of birds, to a pride of
lions. Multi-robot formation is usually divided into two prob-
lems: (1) gathering in a certain shape (formation achieve-
ment) and (2) travelling in that shape through an environment
(formation maintenance). The goals of the robots are usually
to minimize gathering time and to minimize deviation from
the desired formation while avoiding obstacles (respectively).
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Research on multi-robot formation has concentrated on the
means of maintaining a connected form. This involves deter-
mining which robot should monitor which (usually referred to
as local leader), and how. The common way to model forma-
tions is by using a monitoring graph, representing the ability
of each robot to monitor its teammates [Kaminka and Glick,
2006]. Based on this graph, an optimal assignment of local
leader for each robot, as well as a formation leader (global
leader) if one exists, can be deduced. The identity of lead-
ers may change as the formation avoids obstacles or handles
faults internal to the robots and/or between them.

While teams in natural phenomena are commonly gener-
ated to handle threats or other (possibly destructive) exter-
nal forces, in robotic research these have been neglected un-
til recently. In [Shapira and Agmon, 2015], the problem of
path planning for optimizing the survivability of multi-robot
formations in adversarial environments (or adversarial forma-
tion, in short) was introduced. In this problem, threats exist-
ing in the environment may stop the robots with some prob-
ability. The goal of the robots is therefore twofold: (1) to
travel in a connected formation through the environment, and
(2) to optimize the survivability of the teammates, i.e., their
chances of leaving the area safely. It is thus necessary to de-
termine both the path that the robots should travel and the
shape that they must maintain to achieve their goals. In order
to solve the problem, it is necessary to define the characteris-
tics of the threat. This is achieved using two factors: time and
space. The time factor refers to time-variant versus time in-
variant threats, essentially asking whether threats change over
time and, if so, in what way. The space factor encompasses
various characteristics, including: range of influence (fixed
or monotonically decreasing with distance from the origin of
the threat), shape (circular, e.g., radiation cloud; line, e.g.,
tsunami), and concealment property (whether one robot can
conceal its teammates from the threat, e.g., a sniper, or not,
e.g., an earthquake), among others.

The problem of finding an optimal path for a given for-
mation traveling through an obstacle-free environment with
time-invariant threats, without concealment, can be trans-
formed to a graph problem, and solved both efficiently and
optimally. If the shape of the formation is not fixed, and can
change to adapt to the given threats, the optimal formation
has been proven to be a convoy. This result, however, does
not hold if concealment property exists, or in other complex
environments.

5 Robot Navigation
The problem of path planning is one of the fundamental prob-
lems in the field of agents and robotics (e.g., [Stentz, 1994]).
The goal in this problem is finding a sequence of world loca-
tions which allows the robot (or agent, in general) to arrive at
its destination while avoiding collisions, and optimizing some
given criteria (usually minimizing travel cost). Previous work
has examined the problem of navigation in areas containing
possible static threats (e.g., [Tews et al., 2004]). Research on
the pursuit-evasion problem considers mobile threats, though
the evading robot’s mission is to indefinitely avoid being cap-
tured by the pursuer(s).

In our recent work [Keidar and Agmon, 2017] we have de-
scribed a new version of the navigation problem, adversarial
navigation, in which an agent should navigate to a destination
point (safehouse) while avoiding being captured by a mobile
adversary. Given a model of the adversary, the agent’s goal is
to find a path to a safehouse such that its probability of being
captured is minimized. The problem is modeled as a simul-
taneous game, where each player does not have full informa-
tion of the opponent (its location and/or strategy). We have
created a framework that models the environment, and allows
the agent to choose its path at random (while avoiding various
risk attitudes), such that it maximizes its expected probability
of safe arrival. Moreover, the path can be adjusted on-the-fly,
according to new information revealed to the player as the
game progresses (for example, if it has viewed the opponent
along the way).

6 The Challenges

Research accounting for adversarial presence in robotic prob-
lems is in its early stages. As such, many problems are still
open and challenges are yet to be met. As stated above, much
of the work to this point considers a non-strategic adversary.
However, also under the assumption of such relatively im-
potent adversary, much is left unknown. In general, further
study in adversarial robotics is crucial to maximizing the po-
tential activity and contribution of robots with a wide range
of functions and aims.

One of the main considerations that has received little at-
tention in current research is the notion of uncertainty. Un-
certainty may exist in various levels: uncertainty about the
robots’ perception (am I sensing what is actually there?) and
action (am I doing or will I do what I was expected to be
doing?), and about its opponent (what is my opponent really
going to do? what is its type?). Similar uncertainties exist
also from the perspective of the adversary.

There are other canonical problems from robotics that can
benefit from adding an adversary to the environment. Also
in the problems that have already been touched in the context
of an adversary, many open questions exist. In the coverage
problem, how should a robot plan its coverage path if facing
a known dynamic threat? or a strategic opponent that plans
its path according to the robots strategy? how will the robots
benefit from adopting a stochastic behavior?

To this point, we have assumed that the adversary is ra-
tional with respect to its knowledge, i.e., it will optimize its
personal utility based on the knowledge it has on the robots
performing their mission, and the environment. A question
remained to be explored is the optimal behavior of robots
facing an irrational adversary. How this adversarial model
change the problem, and the behavior of the robots, is yet to
be explored.

One of the interesting challenges concerns the paranoid
conjecture. Whether it can be mathematically proven in prob-
lems other than patrolling and coverage that in certain adver-
sarial models (specifically, ones in which it has no knowledge
on the active robots and/or their strategy) the robots should
act as if there is no adversary, remains an open question.
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