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Abstract

This paper studies fault tolerant algorithms for the
problem of gathering N autonomous mobile robots. A
gathering algorithm, executed independently by each
robot, must ensure that all robots are gathered at one
point within finite time. It is first observed that most
existing algorithms fail to operate correctly in a setting
allowing crash failures. Subsequently, an algorithm
tolerant against one crash-faulty robot in a system of
three or more robots is presented. It is then shown
that in an asynchronous environment it is impossible to
perform a successful gathering in a 3-robot system with
one Byzantine failure. Finally, in a fully synchronous
system, an algorithm is provided for gathering N > 3
robots with at most a single faulty robot, and a more
general gathering algorithm is given in an N-robot
system with up to f faults, where N > 3f + 1.

1 Introduction

1.1 Background Systems of multiple autonomous
mobile robots engaged in cooperative activities have
been extensively studied throughout the past decade
[2, 8, 4, 5, 1]. This subject is of interest for a number
of reasons. For ome, it may be possible to use a
multiple robot system in order to accomplish tasks that
no single spatially limited robot can achieve. Another
advantage of multiple robot systems has to do with the
decreased cost due to the use of simpler and cheaper
individual robots. Also, these systems have immediate
applicability in a wide variety of tasks, such as military
operations and space missions. Subsequently, studies
of autonomous mobile robot systems can be found
in different disciplines, from engineering to artificial
intelligence (e.g., [9]).

Our interest is in problems related to the distributed
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control of systems of autonomous mobile robots. Most
studies on robot control problems resulted in the design
of algorithms based on heuristics, with little emphasis
on formal analysis of the correctness, termination or
complexity properties of the algorithms. During the
last few years, various aspects of this problem have
been studied from the point of view of distributed
computing (cf. [2, 10, 15, 16, 13]), where the focus
is on trying to model an environment consisting of
mobile robots, and studying the capabilities the robots
must have in order to achieve their common goal. A
number of computational models were proposed in the
literature, and some studies attempted to characterize
the influence of the models on the ability of a group
of robots to perform certain basic tasks under different
constraints.

The primary motivation of the studies presented in
[13, 16, 10, 11, 15] is to identify the minimal capabilities
a collection of distributed robots must have in order to
accomplish certain basic tasks and produce interesting
interaction. Consequently, the models adopted in these
studies assume the robots to be relatively weak and sim-
ple. In particular, these robots are generally assumed
to be dimensionless (namely, treated as points that do
not obstruct each other’s visibility or movement), obliv-
ious (or memoryless, namely, do not remember their
previous actions or the previous positions of the other
robots), have no common coordinate system, orienta-
tion or scale, no explicit communication, and are anony-
mous (some of these assumptions are modified in order
to achieve goals that are otherwise unfeasible). Thus
the robots base their movement decisions on viewing
their surroundings and analyzing the configuration of
robot locations. A robot is capable of locating all robots
within its visibility range and laying them in their pri-
vate coordinate system, thereby calculating their posi-
tion (distance and angles) with respect to one another
and with respect to itself. Hence, from the “distributed
computing” angle, such problems are particularly inter-
esting since they give rise to a different type of com-
munication model, based solely on “positional” or “ge-
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ometric” information exchange.

A basic task that has received considerable atten-
tion is the gathering problem, defined as follows. Given
an initial configuration of N autonomous mobile robot,
all N robots should occupy a single point within a fi-
nite number of steps. The closely related convergence
problem is defined similarly, except that the robots are
only required to converge to a single point, rather than
reach it. Namely, instead of demanding that the robots
gather to one point within finite time, the convergence
requirement is that for every e > 0, there is a time ¢,
by which all robots are within distance of at most € of
each other.

1.2 Fault-tolerance As the common models of mul-
tiple robot systems assume cheap, simple and relatively
weak robots, the issue of resilience to failure becomes
prominent, since in such systems one cannot possibly
rely on assuming fail-proof hardware or software, espe-
cially when such robot systems are expected to operate
in hazardous or harsh environments. At the same time,
one of the main attractive features of multiple-robot sys-
tems is their potential for enhanced fault tolerance. It
seems plausible that the inherent redundancy of such
systems may be exploited in order to enable them to
perform their tasks even in the presence of faults.
Following the common “f of N” classification often
used in the area, a fault tolerant algorithm for a given
task is required to ensure that in a system consisting
of N robots where it is assumed that at most f robots
might fail in any execution, the task is achieved by all
nonfaulty robots, regardless of the actions taken by the
faulty ones. In the gathering task, for example, when
faults are introduced into the system, the requirement
applies only for the nonfaulty robots, i.e., if f’ robots
fail, then all the remaining N — f’ nonfaulty robots are
required to occupy a single point within a finite time.
Perhaps surprisingly, however, this aspect of multi-
ple robot systems has been explored to very little extent
so far. In fact, almost all the results we are aware of
in the literature rely on the assumption that all robots
function properly, and follow their protocol without any
deviation. One exception concerns transient failures. As
observed in [16, 13, 6], any algorithm that works cor-
rectly on oblivious robots is necessarily self-stabilizing,
i.e., it guarantees that after any transient failure the
system will return to a correct state and the goal will
be achieved. Yet another line of study concerns a fault
model where it is assumed that restricted sensor and
control failures might occur, but if faults do occur in
the system, then the identity of the faulty robots be-
comes known to all robots [13]. This may be an unreal-
istic assumption in many typical settings, and it clearly

provides an easy means of overcoming the faults: each
nonfaulty robot may simply ignore the failed ones, ef-
fectively removing them from the group of robots, so
the algorithm continues to function properly. However,
in case unidentified faults occur in the system, it is no
longer guaranteed that the algorithms of [13, 16] remain
correct, i.e., the goal might not be achieved. The only
concrete attempt we’re aware of for dealing with crash
faults is described in [18], where an algorithm is given
for the Active Robot Selection Problem (ARSP) in the
presence of initial crash faults. The ARSP creates a sub-
group of nonfaulty robots from a group that includes
also initially crashed robots and makes the robots in
that subgroup recognize one another. This allows the
nonfaulty robots in the subgroup to overcome the ex-
istence of faults in the system, and they can further
execute any algorithm within the group.

Hence the design of fault-tolerant distributed con-
trol algorithms for multiple robot systems is still a
largely unexplored direction, which the current paper
aims at investigating.

1.3 Related work The class of agreement and pat-
tern formation problems of autonomous mobile robot
systems discussed so far in the literature includes,
among others, the following basic tasks: formation of
simple geometric patterns [13], gathering and conver-
gence [14, 15, 4, 3], flocking (namely, following the move-
ment of a predefined leader) [12], uniform distribution
over a specified region [13], and partitioning into groups
[13].

The problem of gathering autonomous mobile
robots, dealt with in this article, was studied extensively
in two computational models. The first is the model of
[13, 16], hereafter referred to as the semi-synchronous
(SSYNC) model. The second is the closely related
CORDA model [10, 11, 15], hereafter referred to as the
asynchronous (ASYNC) model.

The gathering problem was first discussed in [15, 16]
in the SSYNC model. It was proven there that it
is impossible to achieve gathering of two oblivious au-
tonomous mobile robots that have no common sense of
orientation in the SSYNC model. The algorithms pre-
sented therein for NV > 3 robots rely on the assumption
that a robot can identify a point p* occupied by two or
more robots (a.k.a. multiplicity point). This assump-
tion was later proven to be essential for achieving gath-
ering in all asynchronous and semi-synchronous models
[12]. Another necessary requirement for solvability in
the SSYNC and ASYNC models is that the input con-
figuration does not include more than one multiplicity
point of nonfaulty robots (it is easy to show that if two
multiplicity points of nonfaulty robots are allowed, the
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situation is equivalent to the 2-robot system, thus gath-
ering is impossible). In fact, all known gathering algo-
rithms for N > 3 rely on a strategy by which a single
multiplicity point p* is formed during the execution of
the algorithm, and once this happens, all robots move
to the point p*.

Under these assumptions, an algorithm is developed
in [16] for gathering N > 3 robots in the SSYNC model.
In the ASYNC model, an algorithm for gathering N =
3,4 robots is brought in [12, 4], and an algorithm for
gathering N > 5 robots has recently been described in
[3]-

1.4 Our results This paper presents a systematic
study of failure-prone robot systems, through examining
the gathering problem in the crash and Byzantine
fault models. An (N, f)-fault system is a system
consisting of IV robots, at most f of which might fail at
any execution. An (N, f)-crash system (resp., (N, f)-
Byzantine system), is an (N, f)-fault system where
the faults considered are according to the crash or
Byzantine model.

In the crash fault model, we show that the gather-
ing problem is solvable in current computational models
such as the SSYNC model, though most existing algo-
rithms fail to deal correctly with such faults and, in
particular, there is currently no algorithm for N > 4
that solves the gathering problem in the presence of
one faulty robot under the crash fault model. We pro-
pose an algorithm that solves the gathering problem in
(N, 1)-crash system, for any N > 3, under the SSYNC
model.

We then consider (N, f)-Byzantine systems for N >
3. We first observe that all existing algorithms fail to
deal correctly with this situation. Moreover, we show
that it is impossible to perform a successful gathering in
(3,1)-Byzantine systems under the SSYNC model. We
then introduce the fully synchronous (FSYNC) model,
which is similar to the synchronous model mentioned
in [16], and present an algorithm solving the gathering
problem under this model in (N, f)-Byzantine systems
for every ' N > 3f + 1.

2 The model

Each robot R; in the system is assumed to operate
individually in simple cycles. Every cycle consists of
three steps, “look”, “compute” and “move”. In the
FSYNC and SSYNC models the length of this cycle
is uniform for all robots. The “look” step identifies

TA peculiarity of our algorithms is that N = 3 robots can
tolerate f = 1 failures, but N > 3 robot systems require

N > 3f + 1, rather than N > 3f.

the locations of all robots in R;’s private coordinate
system; the result of this step is a multiset of points
P = {p1,...,pn} defining the current configuration.
The robots are indistinguishable, so each robot R;
knows its own location p;, but does not know the
identity of the robots at each of the other points. The
“compute” step executes the given algorithm, resulting
in a goal point pg. In the “move” step, the robot
moves towards the point pg. The robot might stop
before reaching its goal point pg, but is promised to
traverse a distance of at least S (unless it has reached
the goal). Note that the “look” and “move” steps
are carried out identically in every cycle, and the
differences between different algorithms occur in the
“compute” step. Moreover, the procedure carried out
in the “compute” step is identical for all robots. If the
robots are oblivious, then the algorithm cannot rely on
information from previous cycles, thus the procedure
can be fully specified by describing a single “compute”
step, and its only input is the current configuration
P = {p1,...,pn}, giving the locations of the robots
Ry,...,Ry. Throughout, we denote the location of
R; in the configuration P by p(R;). Also, whenever
no confusion may arise, we identify p(R;) as the point
p;- As mentioned earlier, our computational model
for studying and analyzing problems of coordinating
and controlling a set of autonomous mobile robots
follows two well studied models: the SSYANC model and
the ASYNC model. The semi-synchronous (SSYNC)
model is partially synchronous, in the sense that all
robots operate according to the same clock cycles,
but not all robots are necessarily active in all cycles.
The activation of the different robots can be thought
of as managed by a hypothetical “scheduler”, whose
only “fairness” obligation is that each robot must be
activated and given a chance to operate infinitely often
in any infinite execution. The fully asynchronous
(ASYNC) model differs from the SSYNC model in that
each robot acts independently in a cycle composed of
four steps: Wait, Look, Compute, Move. The length
of this cycle is finite, but not bounded. Consequently,
there is no bound on the length of the walk in a single
cycle, and different cycles of the same robot may vary
in length. In contrast, in the SSYNC model a bound
exists on the cycle length due to the common clock and
as a result the robot will not necessarily reach the target
point p in the current cycle, but stop somewhere on its
trajectory to p.

In this paper we consider also the extreme fully
synchronous (FSYNC) model. This model is similar to
the SSYNC model in the sense that each robot works
according to the same three steps cycle. In addition, in
this model, robots operate according to the same clock
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cycles, and all robots are active on all cycles. There is
a lower bound of S units on the minimum movement of
a robot in a cycle, except in the case that the robot has
reached the point towards which it was moving. There
is also a limit of maximum movement in each cycle.

Following most previous papers on the gathering
problem in the literature [14, 15, 7, 4, 12], the model
adopted throughout this paper is the oblivious model,
where it is assumed that the robots cannot remember
their previous states, and thus the decisions they make
in each step are based only on the current configuration.
The main motivation for developing algorithms for the
oblivious model is twofold. First, solutions developed on
the basis of assuming non-obliviousness do not necessar-
ily work in a dynamic environment where the robots
are activated in different cycles, or robots might be
added/removed from the system dynamically. Secondly,
as mentioned earlier, any algorithm that works correctly
for oblivious robots is inherently self-stabilizing, i.e., it
withstands transient errors. More generally, it is ad-
vantageous to develop algorithms for the weakest robot
types possible, as an algorithm that works correctly for
weak robots will clearly work correctly in a system of
stronger robot types. In contrast, our lower bounds
serve mainly to draw the borderlines where the various
models become too weak to allow solutions.

The fault models discussed throughout the paper
are the crash fault model and the Byzantine fault model.
In the Byzantine fault model, it is assumed that a faulty
robot might behave in arbitrary and unforeseeable ways.
For the sake of analysis, it is convenient to model the
behavior of the system by means of an adversary which
has the ability to control the behavior of the faulty
robots, as well as the “undetermined” features in the
behavior of the nonfaulty processors (e.g., the distance
to which they move). Specifically, in each cycle the
adversary has the following roles. For each nonfaulty
robot, it determines the distance to which the robot
will move in this cycle (for a robot R; located at p;
and headed for the goal point pg, if dist(p;,pg) < S,
then the robot must be allowed to reach pg; else, the
adversary may stop R; at any point on the line segment
PpG that is at least in distance S away from p;). In
addition, for each faulty robot it determines its course of
action in that cycle, which can be arbitrary. In the crash
fault model, the behavior of the system is similar to the
one described in the Byzantine fault model, except that
for each faulty robot the adversary is only allowed to
stop its movement. This may be done at any point in
time during the cycle, i.e., either during the movement
towards the goal point or before it has started. Once
the adversary crashed the faulty robot, that robot will
remain stationary indefinitely.

3 Gathering in the crash fault model

3.1 Inadequacy of known algorithms Let A be a
gathering algorithm that works in an N-robot system.
In every configuration C, the algorithm instructs some
robots to move and some to remain stationary. Denote
the number of robots A instructs to move in configura-
tion C by M(C,.A), and let M (N, A) = min{M(C, A) |
C is a configuration in an N —robot system}.

LEMMA 3.1. In an (N, f)-crash system, an algorithm
A with M(N, A) < f will fail in achieving gathering or
convergence.

(Throughout this extended abstract, proofs are deferred
to the full paper.)

We remark that every gathering algorithm A we’re
aware of in the SSYNC and ASYNC models [14, 15,
4, 3] has M(N, A) =1 for N > 4, and consequently, by
Lemma 3.1, these algorithms fail to achieve gathering
even in the presence of one crash faulty robot. On the
other hand, it turns out that the gathering algorithm
given in [4] for N = 3 in the ASYNC model, can
be shown to operate correctly also in the presence of
one crashed robot (we give a slightly simpler algorithm
for this case in the SSYNC model below), and the
algorithm given therein for N = 4 can be transformed
into an algorithm for (4,1)-crash systems with some
minor changes. The algorithm described in [3] for
gathering N > 5 robots in the ASYNC model uses
the operation moveTolfFreeWay which can fail even in
the presence of one crash faulty robot, if that robot lies
between any robot R; and its goal point p.

An additional difficulty in handling a robot system
with crash faults is caused by the assumption, made
by all current algorithms, that only a single multiplic-
ity point is created throughout the execution of the al-
gorithm. In the presence of faults, the fact that the
adversary has the ability to stop the nonfaulty robots
after traversing a minimal distance S and the ability to
crash the faulty robots at any step during the execu-
tion, makes it easy for the adversary to create a second
multiplicity point once the first was created, whenever
the trajectories of two or more robots moving towards
their goals intersect.

3.2 An algorithm for a (3,1)-crash system Con-
sider the following Procedure 3-Gather,.s, for gathering
in a (3,1)-crash system in the SSYNC model. As dis-
cussed earlier, we only need to present the procedure
used for the “compute” step. The input to this proce-
dure is the configuration P = {p1,p2,p3}. The proce-
dure classifies the configuration according to its state,
and acts in each case as follows.
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Procedure 3-Gathercrash(P)

1. State [Mult]: P contains a multiplicity point p*: Set
PG —p"

2. State [Collinear]: pi,ps, ps are collinear, say, with p,
in the middle: Set pg «— pa.

3. State [Obtuse]: 3i € {1,2,3} such that Zp;pipr >
7/2: Set pg — pi.

4. State [Acute]: Api,ps,p3 is acute: Set pg to be the
intersection point of the three angle bisectors.

Remark: Note that state [Collinear| is redundant,
since it is covered by state [Obtuse]. It is included
merely for convenience of presentation.

In analyzing our algorithms, we use the following
notation regarding points and lines in the Euclidean
plane. Denote the Euclidean distance between two
points p and g by dist(p, g). Also, denote the Euclidean
distance between two current locations p; and p; of the
two robots R; and R; (respectively) by dist(R;, R;).
Denote the line segment between the points p and ¢
by pq.

Our analysis is based on showing that in each case,
some pair of robots decrease their distance by a constant
(depending on the minimum movement length value S)
while no other pair of robots increase their distance, so
eventually they must meet. A fact used throughout the
analysis is that the algorithm guarantees that the states
the system can be in create a directed acyclic graph
(DAG) leading to the state [Mult], and the goal point
of each robot remains constant until a multiplicity point
is created. (This property does not hold, for example,
in case the goal in each cycle is chosen to be the center
of gravity or the intersection point of the three angle
bisectors).

THEOREM 3.1. Algorithm 3-Gather .5, solves the gath-
ering problem in a (3,1)-crash system wunder the

SSYNC model.

3.3 An algorithm for an (N,1)-crash system,
N > 3 Let us start with some terminology. A legal
configuration in the (N, 1)-crash system is a set P of
robot locations that has at most one multiplicity point.
Denote the smallest enclosing circle of the set P by
SEC(P) and the points on its circumference by C.ir(P)
and let Cint(P) = P\Ceir(P). For a circle C and the set
of points P = {py,...,p} on its circumference, denote
the partition of the circle C into Voronoi cells according
to the points in P by Vor(C, P), and denote by Cell(py)
the cell defined by the point px € P (see Figure 1). Two
points ¢ and ¢’ in C are said to share the cell Cell(py)
if they both lie inside the cell or on its boundary.
Consider the following Algorithm Gathercasn for
gathering all nonfaulty robots in an (N, 1)-crash system

H\'H

&

7

Figure 1: Example of a circle division according to the
Voronoi cells.

under the SSYNC model. The input to this algorithm
is a legal configuration P = {p1,...,pn}. The algo-
rithm classifies the configuration according to its state,
and acts in each case as follows.

Algorithm Gathercpasn(P)

1. State [Singletons]: P does not contain a multiplicity
point: Invoke Procedure Create_Mult(P).

2. State [MULT]: P contains a single multiplicity point
p*: Invoke Procedure GoTo_Mult(P).

Procedure Create_Mult(P)
State [N3]: N = 3: Invoke Procedure 3-Gather, ., on
P1,P2,P3.
State [N4+]: N > 4
1. Compute the smallest enclosing circle of the set P,
SEC(P).
2. Sub-State [INO]: |Cint(P)| = 0: Set pg to be the
center of SEC(P).

3. Sub-State [IN1]: |C;»n:(P)| = 1 with p; as the single
point in C;n:(P): Set pg «— p;

4. Sub-State [IN2]: |Cin:(P)| = 2 with p; and p; as the
two points in Cin¢(P):
Each robot Ry in Ceir(P) sets pa(Rr) «— p(Rk).
The two robots R; and R; in Cint(P) do:

(a) Compute the Voronoi
Vor(SEC(P),Ceir (P)).
Sub-State [IN2(a)]: p; and p; do not share cells:
R; and R; move towards the center of SEC(P).

Sub-State [IN2(b)]: p; and p; share a single
cell, Cell(Ry): R; and R; move towards Ry.

Sub-State [IN2(c)]: p; and p; share two cells,
i.e., both robots lie on the radius forming the
boundary between two adjacent cells Cell(Ry) and
Cell(Rr+1):
The robot closer to the circle, say R;, chooses the
first of Ry, Rr+1 in its clockwise direction, say Ry,
and sets pg(R;) < p(Rk); The other robot, R;,
sets pa(R;) < p(R:).
5. Sub-State [IN3]: |C;n:(P)| > 3:

Each robot Ry in Cei(P) sets pg(Rx) — p(Rk).

Each robot Ry, in C;nt (P) recursively invokes Procedure

Create_Mult(C;n: (P)).

partition
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Figure 2: lllustration of the three sub-states of sub-state
[IN2] in Procedure Create_Mult.

We say that robot R;, has a “free corridor” to
the point p if no other robot is currently located on
the straight line segment p;p. Note that as robots are
viewed as dimensionless objects, the availability of a free
corridor is not necessarily a prerequisite for allowing a
robot to get home free. However, allowing a robot to
follow a trajectory through the location of another robot
makes the algorithm prone to the creation of more than
one multiplicity point. Therefore Procedure GoTo_Mult
attempts to avoid such trajectories.

Procedure GoTo_Mult(P) (for robot R;)

/* The configuration contains a multiplicity point p* */

1. State [Free]: R; has a free corridor to p*: Set pg «—
P
2. State [Blocked]: There exist one or more robots on
R;’s trajectory towards p™:
a. Translate your coordinate system to be centered
at p*.
*—>
b. Compute for each robot R; the angle p; of p*p;

counterclockwise from the z axis.

c. Find the robot R; with smallest angle pr > p;.
Let p = (pr + 21:)/3, and d = dist(R;i, Ri) (see
Figure 3(a)).

d. Let p} be the point at distance d and angle y from

p*

@ (b)

Figure 3: lllustration of state [Blocked] in Procedure
GoTo_Mult.

To analyze the algorithm, we show that in an (N, 1)-
crash system, if the initial configuration contains no

multiplicity points, then Procedure Create_Mult leads,
within finite time, to a configuration that includes a
single multiplicity point p*, and subsequently, within
finite time, procedure GoTo_Mult gathers all nonfaulty
robots at p* while avoiding the creation of additional
multiplicity points.

THEOREM 3.2. Algorithm Gather. .., solves the gath-
ering problem in an (N,1)-crash system under the
SSYNC model for any N > 3.

the

4 Impossibility of gathering under

Byzantine fault model

In [11] it is shown that the class of problems solvable in
ASYNC is contained in the class of problems solvable
in the SSYNC model. We next prove that in the
SSYNC model it is impossible for any algorithm to
achieve either gathering or convergence of three robots
in the Byzantine fault model, even in the presence of at
most one faulty robot.

Definition: A gathering algorithm A is called hyper-
active if it instructs every robot to make a move in every
cycle until the task is achieved, i.e., M(N, A) = N.

THEOREM 4.1. In a (3,1)-Byzantine system under the
SSYNC model, any non-hyperactive gathering algo-
rithm will fail in achieving gathering or convergence.

Definition: A distributed robot algorithm is N-
diverging if there exists an (N, f)-Byzantine system and
a configuration in which the instructions of the algo-
rithm combined with the actions of the adversary can
cause two nonfaulty robots to increase the distance be-
tween them. (An example for divergence caused by
the instructions of the algorithm is illustrated in Figure
4(a). An example for divergence caused by the interven-
tion of the adversary is illustrated in Figure 4(b), where
robot R; is stopped short of reaching its goal point.)

The premature-stopping technique: Our impos-
sibility proofs make extensive use of the following tech-
nique. In order to cause two robots to diverge in some
given configuration C of a given system 7, the adver-
sary can stop a nonfaulty robot R; after traversing a rel-
atively small distance S;. Note that S; might be smaller
than S in the current system, in which case the adver-
sary is not permitted to stop R; prematurely. However,
as the algorithm is required to be valid in any system, it
is intuitively clear that we may always consider a differ-
ent system 7' with S small enough to allow a movement
of distance S;. Moreover, since the algorithm is unaware
of the value of S, it cannot distinguish between identi-
cal configurations in the two systems 7 and 7', and will
issue the same instructions to each robot in configura-
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tion C in 7 and 7. Therefore the premature-stopping
technique can be applied with any movement length.

As for the applicability of the premature-stopping
technique, the adversary can apply it to cause the robots
to diverge in any case where two robots move towards
their respective goals on nonintersecting trajectories
(see Figure 4(c)). In addition, even if the trajectories
do intersect, the adversary can still apply the technique
in some cases and again cause divergence, as seen in
Figure 4(Db).

N 7
) i

Figure 4: Divergence of robots.

LEMMA 4.1. In the SSYNC (or even the FSYNC)
model, a 3-diverging algorithm will fail to achieve gath-
ering or convergence.

THEOREM 4.2. In a (3,1)-Byzantine system under the
SSYNC model it is impossible to perform successful
gathering or convergence.

Remarks: In the FSYNC model, an N-diverging al-
gorithm for N > 3 will not necessarily fail. In particu-
lar, the algorithms suggested in Sect. 6 for the FSYNC
model might be diverging, yet still achieve gathering.
Also, in the FSYNC model, a non-hyperactive algo-
rithm will not necessarily fail. In particular, the gath-
ering algorithm for N = 3 suggested in Sect. 5 for the
FSYNC model is not always hyperactive (for example,
when the 3 robots are collinear, the robot lying in the
middle is instructed to remail still). In fact, the converse
may hold, namely, in both the FSYNC and SSYNC
models, a hyperactive algorithm might be problematic.
For example, it can be shown that in a one-dimensional
setting, the adversary can cause failure of every hyper-
active algorithm (Proof of this fact is deferred to the
full paper.)

Discussion: The difficulty of handling a system of
autonomous mobile robots with Byzantine faults lies,
among other reasons, in the conventions regarding mul-
tiplicities which most existing algorithms rely on. In
particular, these algorithms are based on enforcing the
following conventions. (a) no more than one multiplic-
ity point is created throughout the execution of the al-
gorithm, until successful gathering is achieved, (b) all
robots lying in a multiplicity point remain stationary,
and (c) robots lying in a multiplicity point are never

separated again. All the above assumptions no longer
hold in a system where Byzantine faults might occur.
First, the adversary could create a second multiplicity
point as soon as it detects one such point, by “failing”
a robot that does not lie in the multiplicity point and
sending it to the location of yet another currently single
robot. As a result, in the gathering problem assumption
(b) cannot be relied on. Assumption (c) is violated even
if the algorithm instructs all robots lying on the same
point to move towards the same destination point, as
the adversary could stop their movement in different
locations.

Since all known algorithms rely on conventions (a)-
(c) listed above, which can be violated in a system
consisting of N robots with at most one Byzantine
faulty robot, it is clear that those algorithms fail to
achieve gathering.

To get a feeling for the possible complications that
may occur in this model, let us consider some simple
solutions one might propose for the problem. One
natural general approach for attacking the problem is
to try to gradually reduce the number of distinct points
where the robots reside, by gathering partial subsets
of robots at different points. A possible algorithm
attempting to achieve that is to require each robot,
in each cycle, to move towards its closest neighbor.
This may lead to deadlocks once the robots pair up,
since their closest neighbor already resides at the same
location. Therefore the algorithm should instruct each
robot to move towards the closest robot among those
currently residing at locations other than its own. One
problem that arises is that sets of robots that have
already met might break up again, hence “progress” is
hard to measure. Another obvious problem is that of
symmetry-breaking. Even ignoring this problem, this
approach can still lead to non-converging scenarios. For
instance, suppose that the N robots are located on a
straight line, with R; at location z; = 4(i — 1)/2. Then
the algorithm requires R; to move towards R, and R;
to move towards R;_; for every 2 < ¢ < N. However,
if Ry is faulty, and chooses to move away from R,
and all robots traverse exactly distance S, then the
configuration is translated by S in the —z direction,
and is otherwise unchanged. (See Fig. 5.)

R R Rs Ry Rs
0o 1 3 6 10

Figure 5: Bad scenario for nearest-neighbor algorithm.

Another natural algorithm is based on computing
the center of gravity pg of the configuration, and going
to pg. This algorithm can be failed by the adversary in
similar manner, by failing a robot located far from the
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rest, and taking it to a walk towards infinity, forcing the
entire pack of nonfaulty robots to drag along.

5 Fault tolerant gathering in the FSYNC model

We now discuss the problem of gathering N autonomous
mobile robots in an (N, f)-Byzantine system under the
fully synchronous model. We use the following notation.
Denote the geometric span (or diameter) of the set of
points P by Span(P) max{dist(p,q) | p,q¢ € P}.
Denote the convex hull of a multiset of points P by
H(P), and the set of vertices of H(P) by Vi (P). Denote
the center of gravity (or barycenter) of a multiset P of
n > 3 points p; = (24,¥i),t = 1,...,N by Cgrav(P) =
(il z)/N, (ZLiw)/N).

Note that for any set of points P, while the center

of gravity Cgrav(P) is defined in terms of the point coor-
dinates in some specific coordinate system, the resulting
point is independent of the particular coordinate system
in use. Hence for a set of robots in some arbitrary con-
figuration C in the plane, whenever each of the robots
computes Cgrav(P), the resulting point computed by the
different robots is the same, even if each robot has its
own coordinate system.
Definition: A distributed robot algorithm is concen-
trating if it satisfies the following properties: (1) it is
non-diverging, i.e., no two nonfaulty robots will increase
the distance between them in any round, and (2) there
exists a constant ¢ > 0 such that at each step, at least
one pair of nonfaulty robots that are at different lo-
cations either meets or decreases the distance between
them by at least c.

LEMMA 5.1. Let A be a concentrating algorithm. Then
in a (3,1)-Byzantine system under the FSYNC model,
A achieves gathering.

Definition: A distributed robot algorithm A is said
to dictate triple convergence in a given cycle if in that
cycle it instructs three robots to decrease the distance
between every pair of them by a constant amount.

Note that for N = 3, triple convergence implies
also non-divergence and hence also concentration. Note
also that this condition does not require that the
robots involved be nonfaulty; in particular, one of them
may fail and disobey the algorithm’s instructions, in
which case its distances will not decrease as needed.
Nevertheless, the condition turns out to be sufficient for
gathering in certain settings.

Let us next describe a gathering algorithm for three
robots in a FSYNC model with at most one Byzantine
fault. The input to this procedure is a configuration

P= {p17p27p3}‘

Procedure 3-Gathergy,(P)

1. State [Collinear]: pi,pz,ps are collinear with p, in
the middle: Set pg — po.

2. State [Triangle]: The points form a triangle: Set pg
to be the intersection of its angle bisectors.

Proving this algorithm enjoys triple-convergence yields
the following.

THEOREM 5.1. Algorithm 3-Gatherp,, solves the gath-

ering problem in a (3,1)-Byzantine system under the
FSYNC model.

6 Gathering algorithm for f > 1 and N >3f+1
in the FSYNC model

In this section we propose an algorithm for solving
the gathering problem in an (N, f)-Byzantine system,
where N > 3f+1 in the FSYNC model. The main idea
of the algorithm is to ensure that the goal point selected
in each cycle falls in the convex hull of the nonfaulty
robot locations. As shown later on, this ensures that the
geometric span of the set of locations of the nonfaulty
robots decreases by at least 0.25S5, thus the robots will
meet within a finite number of cycles. Due to its high
complexity, this algorithm is only of theoretical merit,
except for small values of f.
Definition: The hull intersection HF,(P) is the con-
vex set created as the intersection of all (%) sets
H(P\ {pi,,---,pi}), for 1 <k < N, p;; € P. (See
Figure 6 for k =1.)

Figure 6: lllustration of H;,

Consider the following Procedure Gathergy, for de-
termining the goal point pg in each cycle. The input to
this procedure is a configuration P = {p1,... ,pn}, and
f is the maximum number of faulty robots.

Procedure Gathergy,(P)
1. Compute Q — VH(Hifnt(P))-
2. Set pg «— Cgrav(Q).
To establish that the algorithm is well-defined, we
rely on Helly’s theorem (cf. [17]) to prove the following.

LEMMA 6.1. For a multiset P = {p1,...
3k+ 1, HE (P) is conver and nonempty.

,ON}, N >
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The analysis of Procedure Gathergy, is based on
showing that if a set of K robots Ry,..., Rk initially
located at the points P = {pi,...,px} move towards
a point pg in their convex hull H(P), and their new
positions are at the points P’ = {p!|,...,p%}, then
their geometric span decreases by at least ¢S for some
constant ¢ > 1/4, i.e., Span(P’) < Span(P) — cS.
Consequently, the robots will meet within a finite
number of cycles.

THEOREM 6.1. Algorithm Gatherp,. solves the gather-

ing problem in an (N, f)-Byzantine system under the
FSYNC model for any N > 3f + 1.
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