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FAULT-TOLERANT GATHERING ALGORITHMS FOR
AUTONOMOUS MOBILE ROBOTS∗

NOA AGMON† AND DAVID PELEG‡

Abstract. This paper studies fault-tolerant algorithms for the problem of gathering N au-
tonomous mobile robots. A gathering algorithm, executed independently by each robot, must ensure
that all robots are gathered at one point within finite time. In a failure-prone system, a gathering
algorithm is required to successfully gather the nonfaulty robots, independently of the behavior of the
faulty ones. Both crash and Byzantine faults are considered. It is first observed that most existing
algorithms fail to operate correctly in a setting allowing crash failures. Subsequently, an algorithm
tolerant against one crash-faulty robot in a system of three or more robots is presented.

It is then observed that all known algorithms fail to operate correctly in a system prone to
Byzantine faults, even in the presence of a single fault. Moreover, it is shown that in an asynchronous
environment it is impossible to perform a successful gathering in a 3-robot system, even if at most
one of them might fail in a Byzantine manner. Thus, the problem is studied in a fully synchronous
system. An algorithm is provided in this model for gathering N ≥ 3 robots with at most a single
faulty robot, and a more general gathering algorithm is given in an N -robot system with up to f
faults, where N ≥ 3f + 1.
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1. Introduction.
Background. Systems of multiple autonomous mobile robots engaged in cooper-

ative activities have been extensively studied throughout the past decade [10, 5, 16,
17, 7, 11, 3, 27]. This subject is of interest for a number of reasons. For one, it may
be possible to use a multiple robot system in order to accomplish tasks that no single
spatially limited robot can achieve. Another advantage of multiple robot systems has
to do with the decreased cost due to the use of simpler and cheaper individual robots.
Also, these systems have immediate applicability in a wide variety of tasks, such as
military operations and space missions. Subsequently, studies of autonomous mo-
bile robot systems can be found in different disciplines, from engineering to artificial
intelligence (e.g., [18, 4, 15, 19]).

Our interest is in problems related to the distributed control of systems of au-
tonomous mobile robots. Most studies on robot control problems resulted in the
design of algorithms based on heuristics, with little emphasis on formal analysis of
the correctness, termination, or complexity properties of the algorithms. During the
last few years, various aspects of this problem have been studied from the point of
view of distributed computing (cf. [5, 20, 25, 26, 23, 2]), where the focus is on trying to
model an environment consisting of mobile robots, and studying the capabilities the
robots must have in order to achieve their common goal. A number of computational
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models were proposed in the literature, and some studies attempted to characterize
the influence of the models on the ability of a group of robots to perform certain basic
tasks under different constraints.

The primary motivation of the studies presented in [23, 26, 20, 21, 25] is to
identify the minimal capabilities a collection of distributed robots must have in order
to accomplish certain basic tasks and produce interesting interaction. Consequently,
the models adopted in these studies assume the robots to be relatively weak and
simple. In particular, these robots are generally assumed to be dimensionless (namely,
treated as points that do not obstruct each other’s visibility or movement), oblivious
(or memoryless; namely, they do not remember their previous actions or the previous
positions of the other robots), lacking a common coordinate system, orientation, or
scale, using no explicit communication, and anonymous (some of these assumptions
are modified in order to achieve goals that are otherwise unfeasible). They operate in
simple “look-compute-move” cycles. Thus the robots base their movement decisions
on viewing their surroundings and analyzing the configuration of robot locations.
A robot is capable of locating all robots within its visibility range (which can be
either limited or unlimited) and laying them in its private coordinate system, thereby
calculating their position (distance and angles) with respect to one another and with
respect to itself. Hence, from the “distributed computing” angle, such problems are
particularly interesting since they give rise to a different type of communication model,
based solely on “positional” or “geometric” information exchange.

A basic task that has received considerable attention is the gathering problem,
defined as follows. Given an initial configuration of N autonomous mobile robots, all
N robots should occupy a single point within a finite number of steps. The closely
related convergence problem is defined similarly, except that the robots are required
only to converge to a single point, rather than reach it. Namely, instead of demanding
that the robots gather to one point within finite time, the convergence requirement
is that for every ε > 0, there is a time tε by which all robots are within distance of at
most ε of each other.

Fault tolerance. As the common models of multiple robot systems assume cheap,
simple, and relatively weak robots, the issue of resilience to failure becomes prominent,
since in such systems one cannot possibly rely on assuming fail-proof hardware or
software, especially when such robot systems are expected to operate in hazardous or
harsh environments. At the same time, one of the main attractive features of multiple-
robot systems is their potential for enhanced fault tolerance. It seems plausible that
the inherent redundancy of such systems may be exploited in order to enable them
to perform their tasks even in the presence of faults.

Following the common “f of N” classification often used in the area, a fault-
tolerant algorithm for a given task is required to ensure that in a system consisting of
N robots where it is assumed that at most f robots might fail in any execution, the
task is achieved by all nonfaulty robots, regardless of the actions taken by the faulty
ones. In the gathering task, for example, when faults are introduced into the system,
the requirement applies only for the nonfaulty robots; i.e., if f ′ robots fail, then all
the remaining N − f ′ nonfaulty robots are required to occupy a single point within a
finite time.

Perhaps surprisingly, however, this aspect of multiple robot systems has been
explored to very little extent so far. In fact, almost all results we are aware of in
the literature rely on the assumption that all robots function properly and follow
their protocol without any deviation. One exception concerns transient failures. As
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observed in [26, 23, 13], any algorithm that works correctly on oblivious robots is
necessarily self-stabilizing; i.e., it guarantees that after any transient failure the system
will return to a correct state and the goal will be achieved. Yet another line of study
concerns a fault model where it is assumed that restricted sensor and control failures
might occur, but if faults do occur in the system, then the identity of the faulty robots
becomes known to all robots [23]. This may be an unrealistic assumption in many
typical settings, and it clearly provides an easy means of overcoming the faults: Each
nonfaulty robot may simply ignore the failed ones, effectively removing them from
the group of robots, so the algorithm continues to function properly. However, in case
unidentified faults occur in the system, it is no longer guaranteed that the algorithms
of [23, 26] remain correct; i.e., the goal might not be achieved. The only concrete
attempt we are aware of for dealing with crash faults is described in [29], where an
algorithm is given for the active robot selection problem (ARSP) in the presence of
initial crash faults. The ARSP creates a subgroup of nonfaulty robots from a group
that also includes initially crashed robots and makes the robots in that subgroup
recognize one another. This allows the nonfaulty robots in the subgroup to overcome
the existence of faults in the system, and they can further execute any algorithm
within the group.

Hence the design of fault-tolerant distributed control algorithms for multiple robot
systems is still a largely unexplored direction, which the current paper investigates.

Related work. A number of basic mobile robot coordination problems were con-
sidered in the literature. One class of problems involves the formation of geometric
patterns. The robots are required to arrange themselves in a given geometric form,
such as a circle, a simple polygon or a line, within finite time (see, e.g., [23, 9, 12]).
The task of flocking, requiring the robots to follow the movement of a predefined
leader, was studied in [22]. The even distribution problem, requiring the robots to
spread out uniformly over a specified region of a simple geometric shape, and the
related task of partitioning the robots into groups were studied in [23].

The problem of gathering autonomous mobile robots, dealt with in this paper,
requires the robots to gather to the same point within finite time (see, e.g., [24, 25,
14, 7, 6, 8]). This problem was studied extensively in two computational models. The
first is the model of [23, 26], hereafter referred to as the semisynchronous (SSYNC)
model. The second is the closely related CORDA model [20, 21, 25], hereafter referred
to as the asynchronous (ASYNC) model.

The gathering problem was first discussed in [25, 26] in the SSYNC model. It was
proved there that it is impossible to achieve gathering of two oblivious autonomous
mobile robots that have no common sense of orientation under the SSYNC model.
The algorithms presented therein for N ≥ 3 robots rely on the assumption that a robot
can identify a point p∗ occupied by two or more robots (also known as multiplicity
point). This assumption was later proved to be essential for achieving gathering in
all asynchronous and semisynchronous models [22]. Another necessary requirement
for solvability in the SSYNC and ASYNC models is that the input configuration
does not include more than one multiplicity point of nonfaulty robots (it is easy to
show that if two multiplicity points of nonfaulty robots are allowed, the situation is
equivalent to the 2-robot system, and thus gathering is impossible). In fact, all known
gathering algorithms for N ≥ 3 rely on a strategy by which a single multiplicity point
p∗ is formed during the execution of the algorithm, and once this happens, all robots
move to the point p∗. Under these assumptions, an algorithm is developed in [26] for
gathering N ≥ 3 robots in the SSYNC model. In the ASYNC model, an algorithm
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for gathering N = 3, 4 robots is brought in [22, 7], and an algorithm for gathering
N ≥ 5 robots is described in [6].

The gathering problem was also studied (in both the SSYNC and ASYNC mod-
els) in a system where the robots have limited visibility. The visibility conditions
are modelled by means of a visibility graph, representing the (symmetric) visibility
relation of the robots with respect to one another; i.e., an edge exists between Ri

and Rj if and only if Ri and Rj are visible to each other. It was shown that the
problem is unsolvable in the case that the visibility graph is not connected [14]. In
[1] a convergence algorithm was provided for any N in limited visibility systems. An
algorithm that achieves gathering in the ASYNC model is described in [14], under
the assumption that all robots share a compass (i.e., agree on a direction in the
plane).

Our results. This paper presents a systematic study of failure-prone robot systems
through examining the gathering problem under the crash and Byzantine fault models.
An (N, f)-fault system is a system consisting of N robots, of which at most f might
fail at any execution. An (N, f)-crash system (resp., (N, f)-Byzantine system) is an
(N, f)-fault system where the faults considered are according to the crash or Byzantine
model. A fault-tolerant algorithm for a given task in an (N, f)-fault system is required
to ensure that so long as at most f robots have failed, the task is achieved by all
nonfaulty robots, regardless of the actions taken by the faulty ones.

Under the crash fault model, we show that the gathering problem is solvable
in current computational models such as the SSYNC model, though most existing
algorithms fail to deal correctly with such faults and, in particular, there is currently
no algorithm for N ≥ 4 that solves the gathering problem in the presence of one faulty
robot under the crash fault model. We propose an algorithm that solves the gathering
problem in an (N, 1)-crash system, for any N ≥ 3, under the SSYNC model.

We then consider (N, f)-Byzantine systems for N ≥ 3. We first observe that
all existing algorithms fail to deal correctly with this situation. Moreover, we show
that it is impossible to perform a successful gathering in (3, 1)-Byzantine systems
under the SSYNC model. We then introduce the fully synchronous (FSYNC) model,
which is similar to the synchronous model mentioned in [26], and present an algorithm
solving the gathering problem under this model in (N, f)-Byzantine systems for every1

N ≥ 3f + 1.

2. The model. We follow the common computational model of distributed robot
systems. In particular, we make the following assumptions: The visibility range of the
robots is assumed to be unlimited. The robots are treated as points (dimensionless
objects) which do not obstruct each other’s visibility or movement. The robots are
anonymous and cannot communicate with each other. For the sake of analysis, denote
the robots in the system by R1, . . . , RN . Each robot Ri has its private coordinate
system, consisting of the position of the origin, direction of the positive x-axis, and
the size of one unit distance. It is assumed that the direction of the positive y-axis is
90◦ counterclockwise of the direction of the positive x-axis. The coordinate systems
of the various robots might all be different and not share the same direction or scale.

Following most previous papers on the gathering problem in the literature [24,
25, 14, 7, 22], the model adopted throughout this paper is the oblivious model, where
it is assumed that the robots cannot remember their previous states, and thus the

1A peculiarity of our algorithms is that N = 3 robots can tolerate f = 1 failures, but N > 3
robot systems require N ≥ 3f + 1 rather than N ≥ 3f .
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decisions they make in each step are based only on the current configuration. The
main motivation for developing algorithms for the oblivious model is twofold. First,
solutions developed on the basis of assuming nonobliviousness do not necessarily work
in a dynamic environment where the robots are activated in different cycles or might
be added/removed from the system dynamically. Second, as mentioned earlier, any
algorithm that works correctly for oblivious robots is inherently self-stabilizing, i.e., it
withstands transient errors. More generally, it is advantageous to develop algorithms
for the weakest robot types possible, as an algorithm that works correctly for weak
robots will clearly work correctly in a system of stronger robot types. In contrast, our
lower bounds serve mainly to draw the borderlines where the various models become
too weak to allow solutions.

Robot operation cycle. Each robot Ri in the system is assumed to operate indi-
vidually in simple cycles. Every cycle consists of three steps, Look, Compute, and
Move. In the FSYNC and SSYNC models the length of this cycle is uniform for all
robots.

• Look : Identify the locations of all robots in Ri’s private coordinate system;
the result of this step is a multiset of points P = {p1, . . . , pN} defining the
current configuration. As the robots are indistinguishable, each robot Ri

knows its own location pi but does not know the identity of the robots at
each of the other points.

• Compute: Execute the given algorithm, resulting in a goal point pG.
• Move: Move towards the point pG. The robot might stop before reaching its

goal point pG but is promised to traverse a distance of at least S (unless it
has reached the goal).

Note that the Look and Move steps are carried out identically in every cycle, indepen-
dently of the algorithm used. The differences between different algorithms occur in the
Compute step. Moreover, the procedure carried out in the Compute step is identical
for all robots. If the robots are oblivious, then the algorithm cannot rely on informa-
tion from previous cycles; thus the procedure can be fully specified by describing a
single Compute step, and its only input is the current configuration P = {p1, . . . , pN},
giving the robot locations. Throughout, we may denote the location of Ri in the con-
figuration P by p(Ri). Also, whenever no confusion may arise, we identify p(Ri) as
the point pi.

Three synchronization models. As mentioned earlier, our computational model for
studying and analyzing problems of coordinating and controlling a set of autonomous
mobile robots follows two well-studied models: the SSYNC model and the ASYNC
model. The semisynchronous (SSYNC) model is partially synchronous, in the sense
that all robots operate according to the same clock cycles, but not all robots are
necessarily active in all cycles. The activation of the different robots can be thought
of as managed by a hypothetical “scheduler,” whose only “fairness” obligation is
that each robot must be activated and given a chance to operate infinitely often
in any infinite execution. The fully asynchronous (ASYNC) model differs from the
SSYNC model in that each robot acts independently in a cycle composed of four steps:
Wait, Look, Compute, Move. The length of this cycle is finite, but not bounded.
Consequently, there is no bound on the length of the walk in a single cycle, and
different cycles of the same robot may vary in length. In contrast, in the SSYNC
model a bound exists on the cycle length due to the common clock, and as a result
the robot will not necessarily reach the target point p in the current cycle but stop
somewhere on its trajectory to p.

In this paper we also consider the extreme fully synchronous (FSYNC) model.
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This model is similar to the SSYNC model, where the robots operate according to
the same clock cycles, except that here all robots are active on all cycles. In this
model we assume discrete time 0, 1, . . . , and let pi(t) denote the position of Ri at
time t, where pi(0) is the initial position of Ri. In each cycle t, the set of positions
is a multiset, as two robots are not prohibited from occupying the same position
simultaneously. In each cycle t, each robot Ri is capable of moving over distance at
least S > 0 in one step (S is unknown to the robots). Therefore it is guaranteed that
if dist(piG, pi(t)) ≤ S, where piG is Ri’s goal point in the current cycle, then Ri will
reach its goal in the current cycle. Otherwise, it will traverse a distance of at least S
towards piG.

Failure models. The fault models discussed throughout the paper are the crash
fault model and the Byzantine fault model. In the Byzantine fault model, it is assumed
that a faulty robot might behave in arbitrary and unforeseeable ways. For the sake
of analysis, it is convenient to model the behavior of the system by means of an
adversary which has the ability to control the behavior of the faulty robots, as well
as the “undetermined” features in the behavior of the nonfaulty processors (e.g.,
the distance to which they move). Specifically, in each cycle the adversary has the
following roles. For each faulty robot, it determines its course of action in that cycle,
which can be arbitrary. For each nonfaulty robot, it determines the distance to which
the robot will move in this cycle (for a robot Ri located at pi and headed for the goal
point pG, if dist(pi, pG) ≤ S, then the robot must be allowed to reach pG; else, the
adversary may stop Ri at any point on the line segment pipG that is at least distance
S away from pi).

In the crash fault model, the behavior of the system is similar to the one described
in the Byzantine fault model, except that for each faulty robot the adversary is only
allowed to stop its movement. This may be done at any point in time during the
cycle, i.e., either during the movement toward the goal point or before it has started.
Once the adversary has crashed the faulty robot, that robot will remain stationary
indefinitely.

3. Gathering under the crash fault model.

3.1. Inadequacy of known algorithms. Most gathering algorithms proposed
in the literature fail to withstand even a single crash failure because they depend, in
certain configurations, on the movement of a single robot. More formally, let A be a
gathering algorithm for an N -robot system. In every configuration C, the algorithm
instructs some robots to move and some to remain stationary. Denote the number of
robots A instructs to move in configuration C by M(C,A), and let

M̌(N,A) = min{M(C,A) | C is a configuration in an N -robot system}.

Lemma 3.1. In an (N, f)-crash system, an algorithm A with M̌(N,A) ≤ f will
fail in achieving gathering or convergence.

Proof. Consider an (N, f)-crash system and a gathering algorithm A with
M̌(N,A) ≤ f , and let C ′ be the configuration of the system realizing M̌ , i.e., such
that M(C ′,A) ≤ f . Starting in that configuration, the adversary can fail the (f or
fewer) robots instructed by the algorithm to move. This will cause the next configu-
ration to be identical to C ′ again, and the N − f nonfaulty robots will remain in the
same configuration C ′ indefinitely.

In fact, every gathering algorithm A we are aware of in the SSYNC and ASYNC
models [24, 25, 26, 7] has M̌(N,A) = 1 for N ≥ 4, and, consequently, by Lemma 3.1,



62 NOA AGMON AND DAVID PELEG

these algorithms fail to achieve gathering even in the presence of one crash faulty
robot. The algorithm described in [6] for gathering N ≥ 5 robots in the ASYNC
model can also fail in the presence of one crash faulty robot if that robot lies between
some other robot and its goal point. On the positive side, it turns out that the
gathering algorithm given in [7] for N = 3 under the ASYNC model can be shown to
operate correctly also in the presence of one crashed robot (we give a slightly simpler
algorithm for this case in the SSYNC model below), and the algorithm given therein
for N = 4 can be transformed into an algorithm for (4, 1)-crash systems with some
minor changes.

An additional difficulty in handling a robot system with crash faults is caused by
the assumption, made by all current algorithms, that only a single multiplicity point
is created throughout the execution of the algorithm. In the presence of faults, the
fact that the adversary has the ability to stop the nonfaulty robots after traversing a
minimal distance S and the ability to crash the faulty robots at any step during the
execution makes it easy for the adversary to create a second multiplicity point once
the first is created, whenever the trajectories of two or more robots moving towards
their goals intersect. In particular, it is easy to see that in a collinear configuration
with N > 3 robots and given an algorithm that instructs all robots to move towards a
point on the line, the adversary can create two multiplicity points on the line, simply
by crashing some robot R at a point p between the multiplicity point and another
robot R′, thus forcing R′ to pass through p, and stopping it there.

3.2. An algorithm for a (3, 1)-crash system. Consider the following Proce-
dure 3-Gathercrash for gathering in a (3, 1)-crash system in the SSYNC model. As
discussed earlier, we need only present the procedure used for the Compute step. The
input to this procedure is the configuration P = {p1, p2, p3}. The procedure classifies
the configuration according to its state, and acts in each case as follows.

Procedure 3-Gathercrash(P )

1. State [MULT]: P contains a multiplicity point p∗:
Set pG ← p∗.

2. State [Collinear]: p1, p2, p3 are collinear (say, with p2 in the middle):
Set pG ← p2.

3. State [Obtuse]: ∃i ∈ {1, 2, 3} such that ∠pjpipk ≥ π/2:
Set pG ← pi.

4. State [Acute]: p1, p2, p3 form an acute triangle:
Set pG to be the intersection point of the three angle bisectors.

Note that state [Collinear] is redundant, since it is covered by state [Obtuse]. It
is included merely for convenience of presentation.

Analysis. In analyzing our algorithms, we use the following notation regarding
points and lines in the Euclidean plane. Denote the Euclidean distance between two
points p and q by dist(p, q). Also, denote the Euclidean distance between two current
locations pi and pj of the two robots Ri and Rj , respectively, by dist(Ri, Rj). Denote
the line segment between the points p and q by pq. We use the following well-known
fact.

Lemma 3.2. In a triangle �p1p2p3, the intersection point pM of the three angle
bisectors satisfies ∠pipMpj ≥ π/2 for every 1 ≤ i < j ≤ 3.
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Proof. Let α = ∠pMp1p2, β = ∠pMp2p3, γ = ∠pMp3p1, and θ = ∠p1pMp2 (see
Figure 1). It follows that 2α + 2β + 2γ = π; hence α + β = π/2− γ < π/2, and since
in the triangle �pMp1p2, θ + α+ β = π, it follows that θ > π/2. A similar argument
applies in �pMp2p3 and �pMp1p3.

Lemma 3.3. If two robots R1 and R2, initially located at the points p1 and p2,
respectively, move towards a common meeting point pG and α = ∠p1pGp2 ≥ π/2, then
the distance between them decreases by at least 0.7S.

Proof. For i = 1, 2, let Si denote the distance traversed by the robot Ri, and let p′i
denote the new location of Ri. Consider the triangle �p1p2pG, and let β = ∠p2p1pG
(see Figure 2). Denote the distance between the robot locations before and after the
movement by d1 = dist(p1, p2) and d2 = dist(p′1, p

′
2), respectively. Without loss of

generality, suppose that p′1 is closer than p′2 to the line p1p2. Draw a line parallel to
d1 through p′1, denote its intersection with p2pG by p′′, and let d3 = dist(p′1, p

′′).

We need to prove that d1 − d2 > 0.7S. Since it is clear that d2 ≤ d3, it suffices
to show that Δ = d1 − d3 > 0.7S. Drop a perpendicular line from p′1 to p1p2, and
let p0 be its intersection point with the line p1p2. Let Δ′ = dist(p0, p1). It is also
clear that Δ′ ≤ Δ; hence it remains to prove that Δ′ ≥ 0.7S. Since α ≥ π/2, the
remaining two angles in �p1p2pG sum to at most π/2. Without loss of generality,
let β ≤ π/4. Also, according to our model assumption, each robot moves a distance
of at least S in each cycle, i.e., Si ≥ S for i = 1, 2. Therefore, by the sine theorem
on the triangle �p1p

′
1p0 (see Figure 3), S ≤ S1 = S1

sin(π/2) = Δ′

sin(π/2−β) , and hence

Δ′ ≥ S · cos(β) ≥ S · cos(π/4) ≥ 0.7S, completing the proof.
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Lemma 3.4. There exists a constant c > 0 such that, given three robots R1, R2,
and R3 located at points p1, p2, and p3, respectively, where �p1p2p3 is an acute tri-
angle, if one or more of the robots traverses a distance of at least S towards the in-
tersection point pM of the three angle bisectors, then the circumference of the triangle
decreases by at least cS.

Proof. By Lemma 3.2, pipMpj > π/2 for every 1 ≤ i, j ≤ 3. Thus, by Lemma 3.3,
if two of the three robots move towards pM , then the distance between them decreases
by at least 0.7S, and as the other distances do not increase, the circumference of the
triangle decreases by at least 0.7S. It remains to show that even if only one robot
moves towards pM it decreases the distance between itself and its neighbors by at least
c′S for some constant c′; thus altogether the circumference of the triangle decreases
by at least 2c′S = cS.

Consider the triangle �pipMpj , 1 ≤ i, j ≤ 3. Let α = ∠pipMpj , β = ∠pMpipj ,
and γ = ∠pMpjpi (see Figure 4). Since �p1p2p3 is acute, it follows that 2β < π/2;
thus β < π/4 and, similarly, γ < π/4. Assume, without loss of generality, that robot
Ri traversed a distance Si ≥ S towards pM and lies on a point p′i. Let d1 = dist(pi, pj),
d2 = dist(p′i, pj), and Δ = d1−d2. By the sine theorem on the triangles �pipjpM and

�p′ipjpM it follows that d1

d2
=

sin(∠pjp
′
ipM )

sin β , and since ∠pjp
′
ipM > β, it follows that

d1 > d2. Let p0 be the point on the segment pipj that creates an isosceles triangle
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′
i; i.e., dist(pj , p0) = d2. Note that dist(p0, pi) = Δ. Let δ = ∠pip

′
ip0. Since

3π/8 <
π − γ

2
<

π − ∠pipjp
′
i

2
= ∠pjp0p

′
i = ∠pjp

′
ip0 < π/2,

it follows that 3π/8 < β + δ < π/2, and as β < π/4, we have π/8 < δ < π/2. By the
sine theorem on the triangle �pip

′
ip0 it follows that

Δ = Si
sin δ

sin(δ + β)
≥ S

sin δ

sin(δ + β)
≥ S

sin(π/8)

sin(π/2)
> 0.3S.

Therefore by choosing c′ = 0.3, the lemma holds for c = 0.6.
Theorem 3.5. Algorithm 3-Gathercrash solves the gathering problem in a (3, 1)-

crash system under the SSYNC model.
Proof. Consider an initial configuration P = {p1, p2, p3}. It suffices to show

that the algorithm causes the system to reach state [MULT]; i.e., either it gathers
all robots together in one point or it causes the creation of one multiplicity point,
since if the remaining robot is nonfaulty, then it will join the multiplicity point in
finite time by step 1 of the algorithm, and if it is faulty, then gathering has been
achieved. Consider the flow of states the system could be in. It suffices to show that
the states used for classifying the configurations in Procedure 3-Gathercrash form a
finite connected directed acyclic graph (DAG) (possibly with self-loops), where all
paths lead to a final state [MULT] in which a multiplicity point exists (see Figure 5),
such that starting with a configuration in any of the states, we reach the final state
within a finite number of cycles.

If in the initial configuration p1, p2, p3 are collinear, then the configuration will
remain collinear, and within finite time, either both extreme robots will arrive at the
location of the middle robot (if both are nonfaulty) or only one of them will arrive
(if one of the extreme robots is faulty); thus in any case a multiplicity point will be
created in the location of the middle robot, leading to state [MULT].

Next, suppose that the initial configuration is not collinear but obtuse; i.e., there
exists a point pi such that ∠pjpipk ≥ π/2. Then the configuration remains obtuse until
one robot reaches Ri. Since at least one of the robots instructed to move towards Ri

is nonfaulty, it will reach its goal point within finite time, thus reaching state [MULT].
Finally, if p1, p2, p3 create an acute triangle in cycle t, then one of the following

two cases holds. In the first case, at least one robot was active in the current cycle
and traversed a distance of at least S towards pM . There are two subcases to be
examined. If the system remains in state [Acute], then by Lemma 3.4 the circum-
ference of �p1p2p3 decreases by at least 0.6S. Therefore, if the robots constantly
remain in state [Acute], then at least two robots will eventually meet in pM , leading
to state [MULT]. The other subcase is that this movement causes �p1p2p3 to become
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Fig. 6. Example of a circle division according to the Voronoi cells.

obtuse. In this case, the system changes to state [Obtuse]. In the second case, all
active robots in this cycle traversed a distance smaller than S towards pM ; thus they
are now located at pM . Again there are two subcases. If two or more robots were
active, then they meet at pM , leading to state [MULT]. Otherwise, only one robot,
say Ri, is located in pM . Then by Lemma 3.2, ∠pjpipk ≥ π/2; thus �p1p2p3 becomes
obtuse, and the system changes to state [Obtuse], leading to gathering as discussed
above.

3.3. An algorithm for an (N, 1)-crash system, N ≥ 3. Let us start with
some terminology. A legal configuration in the (N, 1)-crash system is a set P of robot
locations that has at most one multiplicity point. Denote the smallest enclosing
circle of the set P by SEC(P ) and the points on its circumference by Ccir(P ) and let
Cint(P ) = P \ Ccir(P ). For a circle C and the set of points P = {p1, . . . , pl} on its
circumference, denote the partition of the circle C into Voronoi cells according to the
points in P by Vor(C,P ), and denote by Cell(pk) the cell defined by the point pk ∈ P
(see Figure 6). Two points q and q′ in C are said to share the cell Cell(pk) if they
both lie inside the cell or on its boundary.

Consider the following Algorithm Gathercrash for gathering all nonfaulty robots in
an (N, 1)-crash system under the SSYNC model. The input to this algorithm is a legal
configuration P = {p1, . . . , pN}. The algorithm classifies the configuration according
to its state and acts in each case as follows. If there are no multiplicity points in the
configuration, then each robot performs Procedure Create Mult in order to reach a
configuration with a multiplicity point. Figure 7 illustrates the three possible cases of
substate [IN2] in this procedure. Once a multiplicity point p∗ is detected, each robot
performs Procedure GoTo Mult in order to achieve gathering of all nonfaulty robots
in p∗, while avoiding creation of additional multiplicity points.

Algorithm Gathercrash(P )

1. State [Singletons]: The configuration P does not contain a multiplicity point:
Invoke Procedure Create Mult(P ).

2. State [MULT]: The configuration P contains a single multiplicity point p∗:
Invoke Procedure GoTo Mult(P ).

The input to Procedure GoTo Mult is the configuration P = {p1, . . . , pN}. We say
that robot Ri has a “free corridor” to the point p if no other robot is currently located
on the straight line segment pip. Note that as robots are viewed as dimensionless ob-
jects, the availability of a free corridor is not necessarily a prerequisite for allowing
a robot to get home free. However, allowing a robot to follow a trajectory through
the location of another robot makes the algorithm prone to the creation of more
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Procedure Create Mult(P )
State [N3]: N = 3:
Invoke Procedure 3-Gathercrash on p1, p2, p3.
State [N4+]: N ≥ 4:

1. Substate [IN0]: |Cint(P )| = 0:
Set pG to be the center of SEC(P ).

2. Substate [IN1]: |Cint(P )| = 1 with pj as the single point in Cint(P ):
Set pG ← pj .

3. Substate [IN2]: |Cint(P )| = 2 with pi and pj as the two points in Cint(P ):
Each robot Rk in Ccir(P ) sets pG(Rk) ← p(Rk).
The two robots Ri and Rj in Cint(P ) do:

(a) Compute the Voronoi partition Vor(SEC(P ), Ccir(P )).
(b) Substate [IN2(a)]: pi and pj do not share cells:

Ri and Rj move towards the center of SEC(P ).
(c) Substate [IN2(b)]: pi and pj share a single cell, Cell(Rk):

Ri and Rj move towards Rk.
(d) Substate [IN2(c)]: pi and pj share two cells; i.e., both robots lie on

the radius forming the boundary between two adjacent cells Cell(Rk) and
Cell(Rk+1):
The robot closer to the circle, say Ri, chooses the first of Rk, Rk+1 in its
clockwise direction, say Rk, and sets pG(Ri) ← p(Rk).
The other robot, Rj , sets pG(Rj) ← p(Ri).

4. Substate [IN3]: |Cint(P )| ≥ 3:
Each robot Rk in Ccir(P ) sets pG(Rk) ← p(Rk).
Each robot Rk in Cint(P ) recursively invokes Procedure Create Mult(Cint(P )).

(c)(b)(a)

Fig. 7. Illustration of the three substates of substate [IN2] in Procedure Create Mult.

than one multiplicity point. Therefore Procedure GoTo Mult attempts to avoid such
trajectories.

Analysis.
Lemma 3.6. If the initial configuration is in state [Singletons], i.e., it contains

no multiplicity points, then Procedure Create Mult leads, within finite time, to a con-
figuration in state [MULT], i.e., including a single multiplicity point.

Proof. We prove the lemma by looking at the flow of states the system could
be in. It suffices to show that the states used for classifying the configurations in
Procedure Create Mult form a finite connected DAG (possibly with self-loops), where
all paths lead to a final state [MULT] in which a multiplicity point exists (see Figure
9), such that starting with a configuration in any of the states, we reach the final
state within a finite number of cycles.
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Procedure GoTo Mult(P ) (for robot Ri)
/* The configuration contains a multiplicity point p∗ */

1. State [Free]: Ri has a free corridor to p∗:
Set pG ← p∗.

2. State [Blocked]: There exist one or more robots on Ri’s trajectory towards
p∗:

a. Translate your coordinate system to be centered at p∗.
b. Compute for each robot Rj the angle μj of

−−→
p∗pj counterclockwise from

the x-axis.
c. Find the robot Rk with smallest angle μk > μi.

Let μ = (μk + 2μi)/3, and d = dist(Ri, Rk) (see Figure 8(a)).
d. Let p′i be the point at distance d and angle μ from p∗.
e. Set pG ← p′i.

j

*p

p*

iR

i
k

μ
R

μ
μ

(a) (b)

Fig. 8. Illustration of state [Blocked] in Procedure GoTo Mult.
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Fig. 9. Statechart for Procedure Create Mult. (a) The general statechart. (b) The substates of
state [IN2].

State [N3]: If N = 3, then by Theorem 3.5, Procedure 3-Gathercrash achieves
gathering, and in particular one multiplicity point is created.

State [IN0]: If N ≥ 4 and |Cint(P )| = 0, then if not all robots move together
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to the same distance, the system changes either to state [MULT] or to a state where
|Cint(P )| ≥ 1, i.e., [IN1], [IN2], or [IN3]. If robots on the circumference move to a new
configuration P ′ in which they are all again on SEC(P ′), then the system remains in
the same state, [IN0], but the radius of SEC(P ) is reduced by at least S, since each of
the robots moved by at least S towards the center of SEC(P ). Therefore the self-loop
at state [IN0] can be repeated only finitely many times, ending in a configuration
where either |Cint(P )| ≥ 1, two robots meet and create a multiplicity point, or all
robots meet. Note also that if a multiplicity point is created after this step, then it
is necessarily unique, as it could be created only by two or more robots from Ccir(P )
meeting at the center point of SEC(P ), which is the only possible intersection point
for the trajectories of the robots.

State [IN1]: If N ≥ 4 and |Cint(P )| = 1, then a similar argument holds; thus
also here the self-loop can be taken only finitely many times or the system’s state
changes to a state where |Cint(P )| ≥ 2, namely, [IN2] or [IN3], or a multiplicity point
is created, leading to state [MULT]. If a multiplicity point is created as a result of this
step, then it is unique, as it could be created only by one or more robots from Ccir(P )
and the inner robot Ri, since the trajectories of any two robots moving towards Ri

intersect only at the location of Ri.

State [IN2]: If N ≥ 4 and |Cint(P )| = 2, then the only outcome of this state
could be a single multiplicity point, as can be verified by inspecting the possible
substates. In this state, only two robots are active and move towards one goal point;
thus the multiplicity point is unique.

State [IN2(a)]: If pi and pj do not share a cell, then both robots are instructed
to go to the center of SEC(P ). Eventually, either both robots will meet there, leading
to state [MULT], or only one will arrive at the center; thus the two robots now share
a cell, leading to state [IN2(b)].

State [IN2(b)]: If pi and pj share a single cell, Cell(Rk), then either they meet
on their way to Rk or one or both meet Rk at location pk, thus leading to state
[MULT].

State [IN2(c)]: If pi and pj share two cells, then the following possibilities may
occur. Either the robot closer to Ccir(P ), say Ri, meets with its target, say Rk, or Rj

will meet Ri on its way, thus creating a multiplicity point, leading to state [MULT],
or Rj enters the interior of the sector Cell(Rk), thus leading to state [IN2(b)].

State [IN3]: Finally, if N ≥ 4 and |Cint(P )| ≥ 3, then the procedure is ap-
plied recursively on the inner robots, while the outer robots remain stationary. Thus,
as seen above, a single multiplicity point is created on the lowest level of the
recursion.

Lemma 3.7. In an (N, 1)-crash system, if the initial configuration is in state
[MULT], i.e., it contains a single multiplicity point p∗, then Procedure GoTo Mult
guarantees that within finite time all nonfaulty robots gather at p∗ while avoiding the
creation of additional multiplicity points.

Proof. Every robot with a free corridor towards p∗ is instructed to go towards p∗;
thus all nonfaulty robots will arrive at p∗ within a finite time. If a robot Ri detects
another robot on its trajectory towards p∗, it looks for a free corridor by moving
orthogonally to the multiplicity point, while making sure that it does not obstruct
the free corridor of any other robot. This is ensured by moving only so as to change
its angle with respect to the x-axis and p∗ by a third of the angle to the closest-angle
neighboring robot Rj (see Figure 8(a)). Note that it is possible that Rj will also enter
the same sector, due to the lack of consistent coordinate system (and in particular,
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the absence of common orientation, which may cause the Rjth clockwise sector to be
the same as the Rith clockwise sector). However, even if Rj enters that clear sector,
it will be in the “far” third of the sector.

It is also possible for k ≥ 3 robots Ri1 , . . . , Rik to share a common corridor to
p∗ (see Figure 8(b)). In this case the one closest to p∗, say Ri1 , will move towards
p∗, and the others might take the same new trajectory to p∗. However, on this new
trajectory, only k − 1 robots collide, so the closest to p∗ has a free corridor, and only
k− 2 robots must shift orthogonally again. Hence if a robot has more than one robot
on its trajectory towards p∗, then it will remain in state [Blocked] during finitely many
cycles until it has a free corridor towards p∗; thus it will eventually switch to state
[Free] and arrive at p∗.

Theorem 3.8. Algorithm Gathercrash solves the gathering problem in an (N, 1)-
crash system under the SSYNC model for any N ≥ 3.

Proof. Since the initial configuration is legal, by Lemma 3.6 it is guaranteed
that Procedure Create Mult will lead to a single multiplicity point. By Lemma 3.7,
applying Procedure GoTo Mult on a system with one multiplicity point leads to the
gathering of all nonfaulty robots at that point.

4. Impossibility of gathering under Byzantine faults.

4.1. Impossibility results in the SSYNC and ASYNC models. In [21]
it is shown that the class of problems solvable in ASYNC is contained in the class
of problems solvable in the SSYNC model. It follows that proving impossibility
of gathering in an (N, 1)-Byzantine system in SSYNC also proves impossibility in
ASYNC. We next prove that in the SSYNC model it is impossible for any algorithm
to achieve either gathering or convergence of three robots in the Byzantine fault model,
even in the presence of at most one faulty robot.

Definition. A gathering algorithm A is called hyperactive if it instructs every
robot to make a move in every cycle until the task is achieved; i.e., M̌(N,A) = N .

Theorem 4.1. In a (3, 1)-Byzantine system under the SSYNC model, any non-
hyperactive gathering algorithm will fail in achieving gathering or convergence.

Proof. Suppose the system consists of three robots R1, R2, R3, and there exists a
scenario σ in which at some configuration C1, R1 is active, but the algorithm instructs
it to stay in place. In this system, the adversary can do the following. It designates R3

as faulty and executes the scenario σ with R3 acting correctly up to a configuration
C1. At this cycle, it makes R1 active and R2 passive. As a result, neither R1 nor R2

moves in this cycle. In addition, the adversary moves R3 to create a configuration C2

that from R2’s point of view is equivalent to what R1 has seen in C1 (see Figure 10).
The adversary now makes R1 passive and R2 active. Since R2’s state is equivalent
to R1’s state in the previous configuration, the algorithm will now instruct R2 to
stay in place. The adversary can now switch from configuration C1 to C2 and back,
forcing R1 and R2 to stay in place indefinitely. Therefore the algorithm fails to achieve
gathering or convergence of the nonfaulty robots.

Definition. A distributed robot algorithm is N -diverging if there exists an (N, f)-
Byzantine system and a configuration in which the instructions of the algorithm com-
bined with the actions of the adversary can cause two nonfaulty robots to increase
the distance between them. An example of divergence caused by the instructions of
the algorithm is illustrated in Figure 11(a). An example of divergence caused by the
intervention of the adversary is illustrated in Figure 11(b), where robot R1 is stopped
short of reaching its goal point.
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Fig. 11. Divergence of robots.

The premature-stopping technique. Our impossibility proofs make extensive use
of the following technique. In order to cause two robots to diverge in some given
configuration C of a given system T , the adversary can stop a nonfaulty robot Ri

after traversing a relatively small distance Si. Note that Si might be smaller than
S in the current system, in which case the adversary is not permitted to stop Ri

prematurely. However, as the algorithm is required to be valid in any system, it
is intuitively clear that we may always consider a different system T ′ with S small
enough to allow a movement of distance Si. Moreover, since the algorithm is unaware
of the value of S, it cannot distinguish between identical configurations in the two
systems T and T ′ and will issue the same instructions to each robot in configuration
C in T and T ′. Therefore the premature-stopping technique can be applied with
any movement length greater than zero. We make this argument more formal in the
proofs that follow.

As for the applicability of the premature-stopping technique, the adversary can
apply it to cause the robots to diverge in any case where two robots move towards
their respective goals on nonintersecting trajectories (see Figure 11(c)). In addition,
even if the trajectories do intersect, the adversary can still apply the technique in
some cases and again cause divergence, as seen in Figure 11(b). (One example for a
case in which the premature stopping technique cannot help the adversary to force
divergence is when the trajectories of the two robots R1 and R2 intersect and the
angle between p(R1), p(R1) and the intersection point is at least π/2; see Lemma 3.3
and Figure 2.)

Lemma 4.2. In the SSYNC (or even the FSYNC) model, a 3-diverging algo-
rithm will fail to achieve gathering or convergence.

Proof. Suppose, towards contradiction, that there exists a 3-diverging algorithm A
that solves the gathering problem. Consider a (3, 1)-Byzantine system T with robots



72 NOA AGMON AND DAVID PELEG

d

p

p

(t’-1)1

(t’)1

1
m

m

(a) (b)

d

p

p

p3(0)

(0)2

1(0)

2

p

p

t’d

0
t’-1

C
z2 (t’-1)p

2
p
2(t’)

p
3(t’-1)

z1

0d

t’ t’-1C0= C

Fig. 12. Lemma 4.2.

R1, R2, and R3, and a configuration C0 on which A’s instructions and the adversary’s
actions cause R1 and R2 to increase their distance. For t ≥ 0 and i = 1, 2, denote
by pi(t) the location of robot Ri in configuration Ct, and let dt = dist(p1(t), p2(t)).
Let σ = {C0, C1, . . . , Ck} be the sequence of configurations in an execution of the
algorithm in which the adversary intervenes on the transition from C0 to C1 so as
to increase dist(R1, R2) but does not intervene thereafter, and in Ck all robots are
gathered in one point. Note that d1 > d0. Let t′ = min{t | dt ≤ d0, 2 ≤ t ≤ k}. By
continuity considerations, as dt′−1 > d0 and dt′ ≤ d0, there must be a time during the
transition from Ct′−1 to Ct′ in which the robots R1 and R2 were located in middle
points pm1 and pm2 , respectively, at distance exactly dist(pm1 , pm2 ) = d0. For i = 1, 2,
let zi = dist(pi(t

′ − 1), pmi ) (see Figure 12) and denote the minimum distance any
robot traversed at any cycle 0 ≤ t ≤ t′ − 1 by z3.

Now replace the (3, 1)-Byzantine system T by another system T ′ where S =
min{z1, z2, z3} and consider the following scenario. The adversary designates R3 as
faulty and executes the scenario σ up to Ct′−1. At this cycle, it stops R1 and R2

at points pm1 and pm2 , respectively, and moves the faulty robot R3 to the exact same
position it occupied in C0. Thus, the new configuration C̃t is identical to C0; hence
the robots R1 and R2 will diverge again, and the system can be made to cycle through
the configuration sequence {C0, . . . , C̃t} indefinitely, and thus R1 and R2 will never
meet, contradicting the assumption.

Observation 4.3. Let A be an algorithm operating in a (3, 1)-Byzantine system.

Let 
Li,j be the straight half-line starting at pi and going through pj. Suppose that in
some configuration C, A instructs Ri and Rj to move on vectors 
vi and 
vj towards

destination points gi and gj, respectively. Denote the angle between 
Li,j and 
vi (mea-

sured from 
Li,j in the counterclockwise direction) by μi, and the angle between 
Li,j

and 
vj by μj (see Figure 13). Then each of the following is a sufficient condition for
A to be 3-diverging:

(C1) 0 ≤ μj ≤ μi ≤ π.
(C2) π ≤ μi ≤ μj ≤ 2π.
(C3) 0 ≤ μi ≤ π ≤ μj ≤ 2π or 0 ≤ μj ≤ π ≤ μi ≤ 2π.
(C4) 0 ≤ μi < μj ≤ π and either μi ≥ π/2 or μj ≤ π/2.
(C5) π ≤ μj < μi ≤ 2π and either μi ≤ 3π/2 or μj ≥ 3π/2.

Proof. To show that A is 3-diverging in each of these cases, we have to show a
scenario in which the instructions of A combined with the actions of the adversary will
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cause Ri and Rj to increase the distance between them. Denote the current distance
between Ri and Rj by d1, the location of Ri after traversing a distance Si by p′i, and
the location of Rj after traversing a distance Sj by p′j . Let d2 = dist(p′i, p

′
j).

Case (C1). It is easy to see that if μi = μj = π/2 and the robots move in different
distances towards their goals, then d2 > d1 (as the hypotenuse in a right triangle is the
longest side in the triangle). Therefore, in a system where S = min{Si, Sj}, Si �= Sj ,
it is enough that the adversary applies the premature-stopping technique, stops Ri

after exactly a distance Si, and stops Rj after traversing Sj . If μi = μj < π/2, then,
applying again the premature-stopping technique, the adversary stops Rj after exactly
a distance S and lets Ri continue traversing any distance greater than S. Similarly, if
μi = μj > π/2, then the adversary stops Ri after traversing exactly a distance S and
lets Rj traverse any distance greater than S. Finally, if 0 < μj < μi < π, then the
adversary can apply the premature-stopping technique and stop Rj after traversing a
small distance and let Rj continue its movement as planned. In all cases, d1 > d2.

Case (C2). This case is simply a reflection of Case (C1).

Case (C3). It is easy to see that the trajectories of Ri and Rj diverge and never
intersect. Traversing on those trajectories might not always cause divergence (for
example, if the trajectory of Rj runs close to the current location of Ri as in Figure
11(c)), but by applying the premature-stopping technique as explained earlier, the
adversary can cause divergence.

Case (C4). If 0 ≤ μi < μj ≤ π and either μi ≥ π/2 or μj ≤ π/2, then 
vi and

vj intersect at some point, pI . Without loss of generality let μi ≥ π/2. Drop a
perpendicular line from pj to the line going through pI and pi and let q0 be the in-
tersection point (see Figure 14). Let d3 = dist(pj , p

′
i). Consider the triangle �p′ipjq0.

Clearly d3 > d1; therefore as Sj → 0, d2 → d3, and hence d2 > d1. Now apply the
premature-stopping technique by stopping Rj after traversing a distance of exactly
S, where S is very small (tending to 0), and allow Ri to traverse a distance Si, thus
causing d2 > d1.

Case (C5). This case is a reflection of Case (C4).

Theorem 4.4. In a (3, 1)-Byzantine system under the SSYNC model it is im-
possible to perform successful gathering or convergence.

Proof. Consider a gathering algorithm A and an initial setting in which the
three robots R1, R2, and R3 are collinear, with R2 in the middle. If the algorithm
instructs R2 to remain stationary, then it is nonhyperactive and by Theorem 4.1 will
not achieve gathering. From Observation 4.3 it follows that if 0 ≤ μ1, μ2, μ3 ≤ π, then
in order to avoid being 3-diverging, necessarily μ3 > μ2 > μ1 (see Figure 15). But
under this assumption, if μ2 ≥ π/2, then applying Case (C4) of Observation 4.3 with
respect to p2 and p3 yields that A is 3-diverging. If, on the other hand, μ2 ≤ π/2,
then applying Case (C4) of Observation 4.3 with respect to p1 and p2 yields the same
conclusion.
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A similar argument applies in case π ≤ μ1, μ2, μ3 ≤ 2π. Finally, if μ1 > π and
μ2, μ3 < π or μ1, μ2 > π and μ3 < π, then algorithm A is 3-diverging by Case (C3)
of Observation 4.3. Thus, by Lemma 4.2, algorithm A fails to achieve gathering or
convergence.

We remark that in the FSYNC model, an N -diverging algorithm for N > 3
will not necessarily fail. In particular, the algorithms suggested in subsection 5.3
for the FSYNC model might be diverging yet still achieve gathering. Also, in the
FSYNC model, a nonhyperactive algorithm will not necessarily fail. In particular,
the gathering algorithm for N = 3 suggested in section 5 for the FSYNC model is not
always hyperactive (for example, when the three robots are collinear, the robot lying
in the middle is instructed to remain still). In fact, the converse may hold; namely,
in the FSYNC model, a hyperactive algorithm might be problematic. For example,
it is shown in the following lemma that in a one-dimensional setting, the adversary
can cause failure of every hyperactive algorithm.

Lemma 4.5. In the FSYNC model, a hyperactive algorithm for a one-dimensional
(3, 1)-Byzantine system will fail to achieve gathering or convergence.

Proof. Consider a (3, 1)-Byzantine system on the line. Consider an arbitrary
configuration C in which all robots are instructed by the algorithm to move. Without
loss of generality suppose that at least two of the robots, say R1 and R2, are instructed
to move to the right. Let εi denote the distance traversed by the robot Ri in the current
round, and without loss of generality suppose ε1 ≤ ε2. Then the same behavior will
occur in a robot system in which S ≤ ε1. In such a system, the adversary can stop R2

after traversing a distance of only ε1. The adversary can also fail the third robot R3,
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making it move to the right to distance ε1. The resulting configuration is identical to
the original C, implying that the adversary can keep the system at this configuration
indefinitely.

4.2. Intuition: Problems with previous approaches. The difficulty of han-
dling a system of autonomous mobile robots with Byzantine faults is due to, among
other reasons, the conventions regarding multiplicities on which most existing al-
gorithms rely. In particular, these algorithms are based on enforcing the following
conventions: (a) No more than one multiplicity point is created throughout the ex-
ecution of the algorithm until successful gathering is achieved. (b) All robots lying
in a multiplicity point remain stationary. (c) Robots lying in a multiplicity point are
never separated again. These conventions are used for both gathering algorithms and
other pattern formation algorithms; see [9].

All of the above assumptions no longer hold in a system where Byzantine faults
might occur. First, the adversary could create a second multiplicity point as soon as it
detects one such point, by “failing” a robot that does not lie in the multiplicity point
and sending it to the location of yet another currently single robot. As a result, in
the gathering problem assumption (b) cannot be relied on. Assumption (c) is violated
even if the algorithm instructs all robots lying on the same point to move towards
the same destination point, as the adversary could stop their movement in different
locations.

Since all known algorithms rely on conventions (a)–(c) listed above, which can be
violated in a system consisting of N robots with even one Byzantine faulty robot, it
is clear that those algorithms fail to achieve gathering.

To get a feel for the possible complications that may occur in this model, let
us consider some simple solutions one might propose for the problem. One natural
general approach for attacking the problem is to try to gradually reduce the number
of distinct points where the robots reside, by gathering partial subsets of robots at
different points. A possible algorithm attempting to achieve that is one that requires
each robot, in each cycle, to move towards its closest neighbor. This may lead to
deadlocks once the robots pair up, since each one’s closest neighbor already resides
at the same location. Therefore the algorithm should instruct each robot to move
towards the closest robot among those currently residing at locations other than its
own. One problem that arises is that sets of robots that have already met might
break up again; hence “progress” is hard to measure. Another obvious problem is
that of symmetry breaking. Even ignoring this problem, this approach can still lead
to nonconverging scenarios. For instance, suppose that the N robots are located on
a straight line, with Ri at location xi = i(i − 1)/2. Then the algorithm requires R1

to move towards R2 and Ri to move towards Ri−1 for every 2 ≤ i ≤ N . However,
if R1 is faulty and chooses to move away from R2, and all robots traverse exactly
a distance S, then the configuration is translated by S in the −x direction and is
otherwise unchanged. (See Figure 16.)

Another natural algorithm is based on computing the center of gravity pG of
the configuration and going to pG. This algorithm can be failed by the adversary in
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Fig. 16. Bad scenario for nearest-neighbor algorithm.
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similar manner, by failing a robot located far from the rest and taking it to a walk
towards infinity, forcing the entire pack of nonfaulty robots to be dragged along.

5. Fault-tolerant gathering in the FSYNC model.

5.1. Preliminaries. We now discuss the problem of gathering N autonomous
mobile robots in an (N, f)-Byzantine system under the fully synchronous model. We
use the following notation. Denote the geometric span (or diameter) of the set of
points P by

Span(P ) = max{dist(p, q) | p, q ∈ P}.

Denote the convex hull of a multiset of points P by H(P ), and the set of vertices of
H(P ) by VH(P ). Denote the set of (N to N − f) nonfaulty robots by RNF . Denote
the center of gravity (or barycenter) of a multiset P of n ≥ 3 points pi = (xi, yi), i =
1, . . . , N by

Cgrav(P ) =

(∑N
i=i xi

N
,

∑N
i=i yi
N

)
.

Define the sum of distances between all pairs of nonfaulty robots as

Dtot(P ) =
∑

Ri,Rj∈RNF

dist(Ri, Rj).

Note that for any set of points P , while the center of gravity Cgrav(P ) is defined
in terms of the point coordinates in some specific coordinate system, the resulting
point is independent of the particular coordinate system in use. Hence for a set of
robots in some arbitrary configuration C in the plane, whenever each of the robots
computes Cgrav(P ), the resulting point computed by the different robots is the same,
even if each robot has its own coordinate system.

Definition. A robot algorithm is concentrating if it satisfies the following proper-
ties:

1. It is nondiverging; i.e., no two nonfaulty robots will increase the distance
between them in any round.

2. There exists a constant c > 0 such that at each step, at least one pair of
nonfaulty robots that are at different locations either meets or decreases the
distance between them by at least c.

Lemma 5.1. Let A be a concentrating algorithm. Then in a (3, 1)-Byzantine
system under the FSYNC model, A achieves gathering.

Proof. If in each cycle Dtot decreases by a constant amount c, then within a finite
number of cycles A achieves gathering of all nonfaulty robots (since Dtot must reach
0). If there is indeed one faulty robot, then there may be only one pair of nonfaulty
robots. The algorithm A ensures that the distance between the two nonfaulty robots
decreases by at least a constant c in each cycle; hence Dnew

tot ≤ Dold
tot − c and therefore

these two robots will eventually meet. If all three robots are nonfaulty, then A ensures
that the distance between at least one pair, say R1 and R2, decreases by at least c
while dist(R1, R3) and dist(R2, R3) do not increase (since A is nondiverging); hence
Dnew

tot ≤ Dold
tot − c and A achieves gathering.

Definition. A distributed robot algorithm A is said to dictate 2-pair convergence
in a given cycle if in that cycle it instructs two distinct pairs of robots to decrease
the distance between them by a constant amount. A distributed robot algorithm A
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Fig. 17. Proof of Lemma 5.2.

is said to dictate triple convergence in a given cycle if in that cycle it instructs three
robots to decrease by a constant amount the distance between every pair of them.

Note that for N = 3, triple convergence implies also nondivergence and hence
also concentration. Note also that these conditions do not require that the robots
involved be nonfaulty; in particular, one of them may fail and disobey the algorithm’s
instructions, in which case its distances will not decrease as needed. Nevertheless,
these conditions turn out to be sufficient for gathering in certain settings.

Lemma 5.2. Consider two robots R1 and R2, initially located at the points p1

and p2, which traverse the same distance S′ towards a common meeting point pG, and
let α = ∠p1pGp2. If α ≤ π/2, then the distance between them decreases by at least
S′(1 − cosα).

Proof. Let p′1 and p′2 denote the new location of R1 and R2 after moving a
distance S′ towards pG, and let d1 = dist(p1, p2), d2 = dist(p′1, p

′
2), a = dist(p′1, pG),

and b = dist(p′1, pG) (see Figure 17).

By the cosine theorem on the triangles �p1pGp2 and �p′1pGp
′
2, it follows that

d2
1 = (a + S′)2 + (b + S′)2 − 2(a + S′)(b + S′) cosα,

d2
2 = a2 + b2 − 2ab cosα.

Therefore

d1 − d2 =
2a + 2b + S′

d1 + d2
· S′(1 − cosα).

By the triangle inequality on triangles �p1pGp2 and �p′1pGp
′
2 it follows that a+ b+

2S′ > d1 and a + b > d2. Therefore 2a+2b+S′

d1+d2
> 1, so d1 − d2 > S′(1 − cosα). In

the range (0, π/2] this value is always greater than 0 and is equal to 0 if and only if
α = 0.

5.2. Gathering on a (3, 1)-Byzantine system in the FSYNC model.
Let us next describe a gathering algorithm for three robots in an FSYNC model
with at most one Byzantine fault. The input to this procedure is a configuration
P = {p1, p2, p3}.

Procedure 3-GatherByz(P )

1. State [Collinear]: p1, p2, p3 are collinear with p2 in the middle:
Set pG ← p2.

2. State [Triangle]: The three points form a triangle:
Set pG to be the intersection point of the three angle bisectors of the
triangle �p1p2p3.
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Fig. 18. Illustration of H1
int.

Observe that the case of two robots residing at the same point, say p1 = p2, is
handled by step 1 of the procedure. In this case, pG = p1; thus R1 and R2 stay in
place and R3 is required to move towards them.

Analysis.
Theorem 5.3. Algorithm 3-GatherByz solves the gathering problem in a (3, 1)-

Byzantine system under the FSYNC model.
Proof. Let us first consider the case when R1, R2, and R3 are collinear, say, with

R2 in the middle. Since both extreme robots are instructed to move towards R2, and
R2 is instructed to stay in place, it is clear that the instructions of the algorithm
ensure that dist(R1, R3) decreases in each cycle by at least S (or they meet), and also
that dist(R1, R2) and dist(R2, R3) decrease by at least S (or they meet). Hence the
algorithm dictates triple convergence in each cycle.

Next, suppose that R1, R2, and R3 are not collinear. By Lemma 3.2, the angle
between every two robots and pG is greater than π/2. Therefore, by Lemma 3.3, we
again have triple convergence.

Therefore in each cycle, whether the robots are collinear or not, triple convergence
is ensured. Since for N = 3 triple convergence implies nondivergence as well, the
algorithm achieves gathering by Lemma 5.1.

5.3. Gathering for f ≥ 1 and N ≥ 3f + 1 in the FSYNC model. In
this section we propose an algorithm for solving the gathering problem in an (N, f)-
Byzantine system, where N ≥ 3f + 1 in the FSYNC model. The main idea of the
algorithm is to ensure that the goal point selected in each cycle falls in the convex
hull of the nonfaulty robot locations. As shown later, this ensures that the geometric
span of the set of locations of the nonfaulty robots decreases by at least 0.25S; thus
the robots will meet within a finite number of cycles. Due to its high complexity, this
algorithm is only of theoretical merit, except for small values of f .

Definition. The hull intersection Hk
int(P ) is the convex set created as the inter-

section of all
(
N
k

)
sets H(P \ {pi1 , . . . , pik}) for 1 ≤ k ≤ N , pij ∈ P . (See Figure 18

for k = 1.)

The algorithm. Consider the following Procedure GatherByz for determining
the goal point pG in each cycle. The input to this procedure is a configuration P =
{p1, . . . , pN}, and f is the maximum number of faulty robots.

Procedure GatherByz(P )

1. Compute Q ← VH(Hf
int(P )).

2. Set pG ← Cgrav(Q).
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Fig. 19. Illustration of Procedure GatherByz in a (5, 1)-Byzantine system.

To illustrate the algorithm, let us consider a number of possible configurations of
a (5, 1)-Byzantine system (see Figure 19).

(a) p1 = p2, and p3 = p4 = p5. Then H1
int(P ) is the segment p1p3, and pG is its

midpoint.
(b) p1 = p2 = p3 = p4 �= p5. Then H1

int(P ) = {p1}, and pG = p1.
(c) p1 = p2, p3 = p4, and p5 is distinct. Then H1

int(P ) is the segment p1p3, and
pG is its midpoint.

(d) p1 = p2, and p3, p4, p5 are distinct. Then H1
int(P ) is some segment qp1, and

pG is its midpoint.

Analysis. Let us first prove that the algorithm is well defined. For this we have
to show that the set Q is nonempty.

Helly’s theorem for d = 2 (cf. [28, Theorem 4.1.1]). Let S be a finite family of at
least three convex sets in R

2. If every three members of S have a point in common,
then there is a point common to all members of S.

Lemma 5.4. For a multiset P = {p1, . . . , pN}, N ≥ 3k + 1, Hk
int(P ) is convex

and nonempty.

Proof. Hk
int(P ) is convex as it is the intersection of

(
N
k

)
convex sets. We prove that

it is nonempty by Helly’s theorem. Consider three arbitrary sets P l = {pl1, . . . , plk} ⊆
P, 1 ≤ l ≤ 3, and let Ql = H(P \P l), 1 ≤ l ≤ 3. Then Q1 ∩Q2 ∩Q3 contains at least
P ′ = P \ (P 1 ∪P 2 ∪P 3). As |P | ≥ 3k+ 1, |P ′| ≥ 1. It follows that the intersection of
every three such sets is nonempty, and by Helly’s theorem VH(Hk

int(P )) is nonempty
as well.

The analysis of Procedure GatherByz is based on showing that if a set of K robots
R1, . . . , RK initially located at the points P = {p1, . . . , pK} move towards a point pG
in their convex hull H(P ) and their new positions are at the points P ′ = {p′1, . . . , p′K},
then their geometric span decreases by at least cS for some constant c ≥ 1/4; i.e.,
Span(P ′) ≤ Span(P )− cS. Consequently, the robots will meet within a finite number
of cycles.

Lemma 5.5. Let P = {p1, . . . , pk} be a set of points in the plane.

1. Span(P ) ≥ dist(p, p′) for every two points p, p′ in the convex hull H(P ).
2. The geometric span is attained by two points pa, pb ∈ P that occur as vertices

in H(P ).
3. Moreover, for every point pG in H(P ), ∠papGpb ≥ π/4.

Proof. Consider two arbitrary points p, p′ inside H(P ). By the definition of the
convex hull, it is clear that the segment pp′ falls entirely within the convex hull of P .
Therefore this segment can be extended in both directions towards the circumference
of H(P ), hitting it at the points q, q′. Hence dist(p, p′) ≤ dist(q, q′). If the points
q and q′ are vertices of the convex hull, then q, q′ ∈ P , and we are done. So now
suppose this is not the case. If q is not a vertex of H(P ), then it occurs on an edge
pipi+1. In this case, at least one of the two adjacent vertices of the convex hull,
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without loss of generality pi, satisfies that dist(q′, pi) > dist(q′, q). Similarly, if q′ is
not a vertex, then it occurs on an edge pjpj+1, and again without loss of generality
dist(pj , pi) > dist(q′, pi). Hence combined, Span(P ) ≥ dist(p, p′). Therefore for each
such segment pp′ there exists a segment pipj , pi, pj ∈ P , whose length is greater than
or equal to dist(q, q′).

The proof used to establish the first claim of the lemma also yields the second
claim, as it shows that for any two points q, q′ that are not both vertices of H(P ),
there exist two vertices pi, pj ∈ P of H(P ) satisfying dist(pi, pj) > dist(q, q′); hence
Span(P ) cannot be attained by those points q, q′.

The third claim of the lemma is proved as follows. Let pa, pb be the two vertices
of H(P ) attaining Span(P ), and suppose, towards contradiction, that there exists a
point pG in H(P ) such that α = ∠papGpb < π/4. Consider the triangle �papGpb. Let
β = ∠papbpG and γ = ∠pbpapG. Without loss of generality assume that β ≥ γ. Then

α < π/4 < 3π/8 < (π − α)/2 = (β + γ)/2 < β < β + γ = π − α.

Hence sinβ > sinα. Also, by the sine theorem on the triangle �papGpb,

dist(pa, pb)

dist(pa, pG)
=

sinα

sinβ
.

It follows that dist(pa, pG) > dist(pa, pb). By part 1 of the lemma, Span(P ) ≥
dist(pa, pG) > dist(pa, pb), contradicting the assumption.

Lemma 5.6. For every two sets of points P and Q, if H(P ) ⊆ H(Q), then
Span(P ) ≤ Span(Q).

Proof. Let pa, pb ∈ P be the vertices attaining the geometric span of P . As P ⊆
H(P ) ⊆ H(Q), also pa, pb ∈ H(Q). Thus by Lemma 5.5, Span(P ) = dist(pa, pb) ≤
Span(Q).

Lemma 5.7. If a set of K robots R1, . . . , RK initially located at the points P =
{p1, . . . , pK} traverse the same distance S towards a point pG in the convex hull H(P )
and their new positions are at the points P ′ = {p′1, . . . , p′K}, then their geometric span
decreases by at least cS for some constant c ≥ 1/4; i.e., Span(P ′) ≤ Span(P ) − cS.

Proof. Let pa, pb be the two vertices of H(P ) attaining Span(P ), and let p′i, p
′
j be

the two vertices of H(P ′) attaining Span(P ′). Note that pG is internal also to H(P ′).
Hence, by part 3 of Lemma 5.5, it follows that α = ∠papGpb ≥ π/4. If π/4 ≤ α < π/2,
then according to Lemma 5.2, dist(p′a, p

′
b) ≤ dist(pa, pb)− (1− cosα) ≤ dist(pa, pb)−

0.25S. Also, if α ≥ π/2, then by Lemma 3.3, dist(p′a, p
′
b) ≤ dist(pa, pb) − 0.7S.

Therefore, in any case dist(p′a, p
′
b) ≤ dist(pa, pb) − 0.25S. Also, since pa, pb attains

Span(P ), it follows that dist(pa, pb) ≥ dist(pi, pj); therefore

Span(P ′) = dist(p′i, p
′
j) ≤ dist(pi, pj) − S/4 ≤ dist(pa, pb) − S/4

= Span(P ) − S/4.

Corollary 5.8. If a set of K robots R1, . . . , RK initially located at the points
P = {p1, . . . , pK} move towards a point pG in the convex hull H(P ) and their new
positions are at the points P ′ = {p′1, . . . , p′K}, then their geometric span decreases by
at least cS for some constant c ≥ 1/4; i.e., Span(P ′) ≤ Span(P ) − cS.

Proof. By the model assumption, each robot traverses a distance of at least S
towards pG. Let p′′i denote the point at a distance exactly S from pi in the direction of
pG, and let P ′′ = {p′′1 , . . . , p′′K}. Clearly H(P ′) ⊆ H(P ′′). By Lemma 5.6, Span(P ′) ≤
Span(P ′′). By Lemma 5.7, Span(P ′′) ≤ Span(P ) − cS. The claim follows.
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Lemma 5.9. If a set of K robots R1, . . . , RK move in every cycle t towards a
point pG in their convex hull, then the robots will meet within a finite number of cycles.

Proof. For t ≥ 1, denote by Ht the convex hull of the robot configuration at the
beginning of cycle t. In each cycle, the robots move a distance of at least S towards a
point pG in the convex hull. Thus, by Corollary 5.8, Span(Ht+1) ≤ Span(Ht)− 0.25S
for every t. Therefore within at most 4 · Span(H1)/S cycles, the geometric span of
the robot configuration will be 0; thus all robots meet.

Theorem 5.10. Algorithm GatherByz solves the gathering problem in an (N, f)-
Byzantine system under the FSYNC model for any N ≥ 3f + 1.

Proof. By Lemma 5.9 it is sufficient to show that the goal point pG selected in
the cycle falls in H(RNF ), the convex hull of the nonfaulty robots. To prove this, we
check the goal point pG determined in each cycle.

By definition, the set Hf
int(P ) is contained in its entirety in H(P ) as well as in

the convex hull of every N − f points of P ; thus, in particular, it falls in H(RNF ).
Since the center of gravity of a set of points is inside its convex hull, it follows that pG
is in H(RNF ). By Lemma 5.4, it follows that Hf

int(P ) is nonempty; thus the center

of gravity of the set VH(Hf
int(P )) is well defined.

6. Open problems. The design of fault-tolerant distributed control algorithms
for multiple robot systems is still far from being fully explored. Directions for future
research include the following. To begin with, it may be useful to study other kinds
of fault models in addition to the crash and Byzantine models, such as a model in
which the robots might lose some of their movement control (for instance, lose control
of their movement length), or a model in which robots might diverge from their
original movement direction up to a certain percentage of error. It is also necessary
to develop fault-tolerant algorithms for tasks other than gathering (e.g., formation
of geometric patterns). The maximum number of faults under which a solution is
still feasible, for gathering and other tasks, has yet to be established. Finally, it
would be interesting to examine the effect of changes in some initial assumptions on
the model’s fault tolerance properties. Examples for possible model changes include
partial nonobliviousness of the robots (e.g., robots equipped with a small amount of
memory, say, allowing them to remember the subsequence of X most recent cycles),
robots capable of partial agreement on their orientation, or robots capable of explicit
communication (perhaps under certain limitations, e.g., only with nearby robots).
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