
Constructing Spanning Trees for Efficient Multi-Robot Coverage

Noa Agmon Noam Hazon and Gal A Kaminka
The MAVERICK Group

Department of Computer Science
Bar Ilan University, Israel

{segaln, haoznn, galk}@cs.biu.ac.il

Abstract— This paper discusses the problem of building effi-
cient coverage paths for a team of robots. An efficient multi-
robot coverage algorithm should result in a coverage path for
every robot, such that the union of all paths generates a full
coverage of the terrain and the total coverage time is minimized.
A method, underlying several coverage algorithms, suggests the
use of spanning trees as base for creating coverage paths.
Current studies assume that the spanning tree is given, and
try to make the most out of the given configuration. However,
overall performance of the coverage is heavily dependent on
the given spanning tree. This paper tackles the open challenge
of constructing a coverage spanning tree that minimizes the
time to complete coverage. We argue that the choice of the
initial spanning tree has far reaching consequences concerning
the coverage time, and if the tree is constructed appropriately,
it could considerably reduce the coverage time of the terrain.
Therefore the problem studied here is finding spanning trees that
will decrease the coverage time of the terrain when used as base
for multi-robot coverage algorithms. The main contributions of
this paper are twofold. First, it provides initial sound discussion
and results concerning the construction of the tree as a crucial
base for any efficient coverage algorithm. Second, it describes a
polynomial-time tree construction algorithm that, as shown in
extensive simulations, dramatically improves the coverage time
even when used as a basis for a simple, inefficient, coverage
algorithm.

I. INTRODUCTION

The general problem of multi-robot coverage is a funda-
mental problem in robotic systems with applications in various
domains, from humanitarian missions such as search and res-
cue operations through military operations such as de mining
to agriculture applications such as seeding or harvesting (e.g.
[7], [10], [5], [8]).

This paper discusses the problem of building efficient cov-
erage paths for a team of robots. In this problem, a team of
robots each equipped with some tool, for example a sensor,
are required to jointly sweep the entire given terrain while
minimizing the total coverage time. Following the taxonomy
presented in [2], we deal with offline coverage of the terrain,
where the terrain is represented by an approximate cellular
decomposition.

Several methods are found in the literature for coverage
by single and multi-robot systems. One basic method that
has received considerable attention is the method presented
by Gabriely and Rimon [3], where the authors describe a
polynomial time Spanning Tree Coverage algorithm, better

This work was funded in part by Israel’s Ministry of Science and Technol-
ogy

known as the STC algorithm. In this method, Gabriely and
Rimon assume that the robot is equipped with a square shaped
tool of size D, hence the area was divided into N cells of
size D placed on a grid. The grid was then coarsen such
that each new cell is of size 2D X 2D, and a spanning tree
was built according to this new grid. After such a tree was
built, the robot follows the tree around, creating a hamiltonian
cycle visiting all cells of the original grid. The idea was
first broadened for a multi-robot system in [5], by the family
of MSTC algorithms. A different variation on this idea was
introduced in [10].

When building the tree in a single robot system, the influ-
ence of the structure of the tree is theoretically irrelevant for
the coverage time1. This results from the fact that coverage
time is linear in the size of the grid, since each cell except for
the boundary cells is covered once, hence the total coverage
time is N . On the other hand, in multi-robot systems, the
structure of the tree can have crucial consequences on the
coverage time of the terrain. The choice of the spanning
tree can change the robots’ initial positions from being con-
centrated, i.e., placed as a bundle, to being scattered along
the spanning tree path - all without actually changing the
physical initial position of the robots. In general, we show
that if the tree is appropriately built, the structure of the tree
itself can substantially decrease the coverage time obtained by
algorithms based upon it.

Hence, this paper specifically deals with constructing span-
ning trees for offline coverage that reduces the total coverage
time of algorithms using these spanning trees as base for
coverage. When constructing the trees we try to minimize the
maximal distance between every two consecutive robots along
the spanning tree path. If such tree is obtained, we show that
all versions of the MSTC algorithm ran on these trees achieves
substantially better coverage time compared to their coverage
time on other randomly generated trees. Note that these trees,
along with decreasing the coverage time of the algorithms
which use them as base for coverage, also enjoy the benefits
of the algorithms themselves. Specifically, if used as base for
the family of MSTC algorithms, it promises robustness.

The tree construction algorithm we propose herein was
tested both in a “clean” terrain, i.e., without obstacles, and also
terrains with obstacles, where the obstacles are assumed to oc-

1In practice, it may affect efficiency due to the number of turns it requires,
and other similar issues

cupy a full cell (or cells) of the coarse grid. The improvement
results remained similar in all cases. This is despite the fact
that when obstacles are added to a terrain, the task of coverage
usually becomes more complicated. The algorithm we propose
has a polynomial time complexity in the number of cells to
be covered. This results in the surprising conclusion that as
we add obstacles to the terrain, the complexity of the tree
construction algorithm reduces, since the number of covered
cells diminishes.

II. BACKGROUND

The challenge of covering a terrain by a team of mobile
robots has received considerable attention in the literature.
Many approaches can be found in the literature for multi-robot
coverage.

Coverage of terrains based on spanning trees is the approach
which our research is based upon. As mentioned previously,
this approach was first proposed by Gabriely and Rimon in [3].
They proposed the basic method of dividing the terrain into
2D X 2D cells, and described the polynomial time spanning
tree coverage algorithm (STC) for complete offline and online
coverage of the terrain. In [4], they suggest two different
algorithms for building an online tree, but the motivation
comes from the desire to create a spanning tree with a specific
scanning direction.

The generalization of the single-robot STC algorithm
to multi-robot systems was first introduced by Hazon and
Kaminka in [5]. They have shown a simple offline algorithm
for multi-robot coverage of a terrain by the MSTC algorithm,
which guarantees robust, time efficient as well as complete
coverage. They describe two versions of the MSTC algorithm:
non-backtracking MSTC, and backtracking MSTC, herein
referred to as NB MSTC and B MSTC, respectively. In the
NB MSTC algorithm the robots simply move in counterclock-
wise direction along the spanning tree path until reaching
the initial position of the following robot if no faults occur,
or take over the coverage path of the consecutive robot
otherwise. In the B MSTC the robots can backtrack over
parts of their coverage path, i.e., they can go both clockwise
and counterclockwise. They have shown that if the robots
backtrack, the worst case performs up to twice as faster as
in the non-backtracking case, even though re-covering was
considered wasteful until then.

Later work by Zheng et. al. [10] proposed an additional
multi-robot coverage algorithm, where their solution is based
on dividing the spanning tree into k subtrees, not necessarily
based on their initial location on the original tree. Their algo-
rithm performs better compared to both MSTC algorithms, but
their solution is not guaranteed to be robust. In addition, they
note that different choices of trees result is different coverage
time, but did not further discuss the issue.

Recent results by Hazon and Kaminka, described in [6], pro-
vide an optimal polynomial time coverage algorithm, herein
referred to as Opt MSTC. The algorithm is similar to the
B MSTC algorithm with modifications that assure the optimal
coverage time given the initial locations of the robots and an

initial spanning tree. The optimality is guaranteed only for
the backtracking method, i.e., if the robots go back and forth
along the given spanning tree. If the tree was to be constructed
differently, perhaps suitable for the coverage problem, the
results could substantially improve.

As mentioned previously, a survey of coverage in [2]
proposes the notion of cellular decomposition in the coverage
problem, which the basic approach of [3] belongs to. Another
multi-robot coverage algorithm based on cellular decompo-
sition is described in [9] by Wagner and Bruckstein. They
explore the problem of room cleaning by a group of robots,
and propose a robust algorithm for complete coverage of a
terrain. In their case, the robots have limited capabilities and
communicate with each other mainly using pheromones (in
their case, dirt along the floor).

Many other approaches, other than ones based on cellular
decomposition of the terrain, can be found in the literature
for multi-robot coverage. For example, in [1], Batalin and
Sukhatme offer two coverage algorithms by a multi-robot
system in which the robots spread out in the terrain, and move
away from each other while covering the area and minimizing
the interaction between the robots. In their work, they aim to
achieve optimal coverage area, and do not prove any formal
statement regarding optimality of coverage time. Yet, similarly
to their work, our algorithm uses the “spreading out” principle
in building the coverage tree.

III. MOTIVATION FOR BUILDING NEW SPANNING TREES

In this section we describe the motivation behind our
construction scheme of the trees. First, we show that the
structure of the spanning tree has crucial role in the coverage
time obtained by algorithms that use the tree as base for
coverage. We prove that any algorithm that follows exactly
the spanning tree path without having the robots bypass one
another, does not come close to the possible improvement
achieved by a different tree. Second, we show that a spanning
tree which alone obtains the optimal coverage time does not
necessarily exist, hence the theoretical optimal coverage time
might remain unreachable in some cases. Last, we describe our
definition of optimal spanning trees and explain the rational
behind this definition.

As mentioned previously, an optimal time coverage algo-
rithm for a system with k robots will (theoretically) result
in total coverage time of �N

k �. The most basic multi-robot
coverage algorithm will result in such a coverage time if the
robots are uniformly placed along the spanning tree path, i.e.,
within distance of at most �N

k � from one another.
We argue that the choice of spanning tree has crucial con-

sequences on the coverage time obtained by algorithms using
the spanning tree as base for coverage. This is more evidently
seen in algorithms that do not diverge from the spanning tree
path, such as the MSTC algorithms. An illustration of the
importance of the right choice of spanning tree is given in
Figure 1. The figure presents an example for a terrain in which
N = 36, k = 3 and two different trees are suggested as base
for coverage. The spanning tree is described by the bold lines,

and we use the different kinds of dashed lines to describe the
spanning tree path, each dashed line represents the distance
between two adjacent robots along the path. In order to clarify
the example, the section between each two adjacent robots is
given a different background as well. Note that in both grids
the robots are initially located in the same positions. The tree
in Figure 1a. places the robots uniformly along the tree path,
thus a coverage time of �N

k � is easily obtained if the robots
simply follow the tree path in a counterclockwise direction.
However, in Figure 1b. the robots are placed arbitrarily along
the tree path, thus any multi-robot coverage algorithm, based
on the spanning tree, will find it hard to result in such coverage
time.

�
�
�
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����������

��
��
������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

Dist. between R2 and R3:

Dist. between R3 and R1:

28 spanning tree path cells

4 spanning tree path cells

Dist. between R1 and R2:

12 spanning tree path cells

Dist. between R3 and R1:

12 spanning tree path cells

Dist. between R2 and R3:

12 spanning tree path cells

Dist. between R1 and R2:

4 spanning tree path cells

a. b.

R1

R2 R3 R2 R3

R1

����

��

����

����

��

����

Fig. 1. Illustrating how different trees can influence coverage time.

A formal statement regarding the possible improvement
in coverage time obtained by algorithms vs. improvement
obtained by changing the tree is given by Theorem 1. First,
let us introduce the following definition.

Definition: Given the initial positions of k robots on a terrain
with N cells, let M be the coverage time of the terrain
obtained by the basic NB MSTC algorithm. A procedure P
or an algorithm A are said to ensure an improvement factor t,
if the coverage time obtained by NB MSTC after applying P
on the input, or the coverage time obtained by A on the same
input is M

t .
Theorem 1: Any multi-robot coverage algorithm for ho-

mogenous robots based on a spanning tree which does not
divert from the spanning tree path will result in a maximal
improvement factor of at most 2.

Proof: Denote the distance between the initial location
of robot Ri and Ri+1 on the spanning tree path by Di (also
known as the segment Di), and let Dmax = max1≤j≤N{Dj}.
Clearly, the coverage time obtained by NB MSTC is exactly
Dmax. Also, Dmax determines the coverage time of any
coverage algorithm A that does not divert from the spanning
tree path. As the robots are homogenous and cannot bypass
one another (assuming they are nonfaulty), an improvement
in the coverage algorithm can reduce from Dmax to �Dmax

2 �
if robots on the extremity of Dmax should simply walk
towards one another while covering the terrain. If there is
some other segment Dj which requires coverage time of some
t′ > �Dmax

2 �, then the new coverage time is t′. Note that t′

can be smaller than the distance Dj if an algorithm allowing
backtracking is permitted. In other words, the improvement
factor is

Dmax

max{�Dmax

2 �, t′} ≤ 2

While the change of the coverage algorithm can result in
an improvement factor of at most 2, the example described in
Figure 2 leads us to the conjecture that improvement factor
can reach almost the value of k just by changing the spanning
tree. As seen in Figure 2b., the coverage time obtained by
NB MSTC is N − k = 56 − 3 = 53, while the coverage
time obtained by the same algorithm on a spanning tree
constructed in a way that places the robots in an equally
scattered way along the tree (Figure 2a.) is �N−k

k � = 19,
hence the improvement factor obtained by changing the tree
is 53

19 ≈ 2.8, which is almost k.

b.

����

����

��

��

��

a.

����

Fig. 2. An example of a case in which the improvement factor is almost k
if the tree is appropriately constructed.

We have established the fact that the choice of a spanning
tree can have far reaching consequences on the coverage time
of the terrain, possibly more than the choice of the coverage
algorithm. Moreover, a spanning tree that places all robots
within distance of at most �N

k � will, by itself, result in the
optimal coverage time. Unfortunately, such a tree does not
necessarily exist. For example, in Figure 3, N = 16, k = 2
and all possible spanning trees are described. The minimal
maximal distance between two consecutive robots over all
possible spanning trees is 10 cells, where �N

k � = � 16
2 � = 8.

(14,2) (14,2)

(14,2)(10,6)

Fig. 3. An example of a case in which there is no spanning tree that have
maximal distance of �N

k
� = � 16

2
� = 8 between consecutive robots along the

spanning tree path. The numbers in parenthesis describe the distance between
two robots along the spanning tree path.

In our tree construction scheme we will try to approximate
this optimal dispersion of robots along the spanning tree. We
will do that by trying to satisfy the following objective, as
much as possible. First, let G̃ be a grid with N/4 cells,
possibly containing obstacles (the obstacles are not counted
as cells). Let G be G̃’s fine grid after dividing each cell into
four cells of size D.

Objective: Given the initial locations of k robots on cells
of G, find a spanning tree of G̃ that minimizes the maximal
distance between every two consecutive robots along the
spanning tree path.

The idea behind this objective is that it spreads the robots as
uniformly as possible along the spanning tree path. Consider,
for example, the Opt MSTC algorithm. They create optimal
paths along the spanning tree for the k robots, not allowing
nonfaulty robots to bypass one another. There, even in the
worst initial distribution case in which all robots are bundled in
their initial position, the best possible improvement will result
in an improvement factor of approximately 2 : from N −k+1
to N−k

2 +1. On the other hand, the improvement by spreading
the robots along the spanning tree can reach nearly a factor
of k : from N − k + 1 to N

k .
The construction of an optimal tree, that will achieve exactly

the objective, is believed to be NP-hard [10]. Hence our
tree construction algorithm can be considered as a heuristic
algorithm for the problem of finding the optimal tree for the
coverage task.

IV. TREE CONSTRUCTION ALGORITHM

In this section we describe the algorithm Create Tree. This
algorithm creates spanning trees while considering the initial
location of all robots in the team and the objective described
above, i.e., it tries to minimize the maximal distance between
any two adjacent robots on the tree.

perform hilling in these cells

occupied cell

cell from current subtree

unoccupied cell

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

Fig. 4. Illustration of the Hilling procedure.

The algorithm, described in Figure 5, is composed of two
stages. First, a subtree is created gradually for each robot
starting from the initial position of the robot, such that in each
cycle either one or two cells are added to each subtree. Denote
the subtree originated in Ri by TRi

. The cells are chosen in
a way that maximizes the distance from current expansion of
all other trees. First, the algorithm tries to find the longest
possible path for the tree. When it fails to continue, it tries
to perform Hilling, in which it looks for two joint unoccupied
cells adjacent to the path. If it found such cells, then it adds
them to the path as demonstrated in Figure 4. If the algorithm
failed to find more hills, then it expands the tree, from both
sides of the path, as symmetrically as possible. First it attempts
to add one cell to its right, then one cell to its left, and so on,
until the entire grid is covered by all k disjoint subtrees.

After such k subtrees are generated, it is only left to
connect them (second stage). Denote an edge connecting
two different trees TRi

and TRj
by br(TRi

, TRj
). As we

are given k subtrees to be connected to one tree covering
the entire grid, it is required to find k − 1 bridges. These
bridges should be chosen in a way that the resulting tree
does not contain cycles or, equivalently, cover the entire
grid. For example, if k = 4 then possible valid choice

of bridges are {br(TR1 , TR2),br(TR1 , TR3),br(TR3 , TR4)},
where {br(TR1 , TR2),br(TR2 , TR3),br(TR1 , TR3)} is invalid,
as TR4 remains disconnected. Create Tree picks randomly
a valid choice of k − 1 bridges, and calculates the maximal
distance between two adjacent robots on the tree according to
the fine grid. It repeats the process k2 times, and reports the
best tree it observed, according to the above criterion.

Clearly, the algorithm provides complete coverage of the
terrain, as the first stage of constructing subtrees does not end
before every cell is occupied by some subtree. The first stage
terminates, as in each cycle at least one cell is added to at least
one subtree, hence given a finite terrain the algorithm halts.

Procedure Create Tree
1) Build k subtrees as follows.

For every robot Ri, 1 ≤ i ≤ k Do:
a) For each possible next cell (up, down, right,

left), compute the Manhattan distance from the
current location of all other robots.

b) If more than one possible next move exists,
then pick the one whose minimal distance to
any other robot is maximized.

c) If there is no next possible move, then perform
Procedure Hilling from the last main branch.

d) If failed to find an unoccupied cell in Hilling,
then branch out, as symmetric as possible, from
the main branch to all possible directions.

2) Find all possible bridges between the k trees.
3) For i = 0 to k2 Do:

a) At random, find a valid set of bridges Bi

between trees such that they create one tree
with all N vertices.

b) Compute the set Si of distances between every
two consecutive robots on the tree.

c) Best Result is initialized with S0.
d) If the maximal value in Si is lower than

the maximal value in Best Result, then
Best Result← Si.

4) Return the tree associated with Best Result.

Fig. 5. Description of Create Tree algorithm.

Theorem 2: The time complexity of Create Tree algorithm
is O(N2 + k2N).

Proof: In the stage where k subtrees are created, in the
worst case when adding one cell to a subtree the algorithm runs
over all current cells in the subtree (during Hilling or while
branching out), hence the complexity is at most O(N2). In
the second stage, where the trees are connected, k2 different
choices of trees are examined, each time the entire tree is
traversed, thus the complexity of this stage is O(k2N). Hence
the entire complexity of the algorithm is O(N2 +k2N).

V. EXPERIMENTAL RESULTS

We have evaluated the effect of the tree construction
algorithm Create Tree on the coverage time obtained by
NB MSTC, B MSTC and Opt MSTC while taking two other
parameters under consideration. First, the number of robots -
from 3 to 30 robots. The second parameter was the density
of obstacles in the terrain. The coverage time obtained by the

above algorithms on the trees constructed by Create Tree was
compared against coverage time obtained by the algorithms
running on randomly generated spanning trees. The terrain
over which the experiment was ran was a 20X30 coarse grid
(600 coarse cells, or 2400 fine cells). We have first performed
the experiment on a grid with no obstacles (“clean” grid),
then added at random 40 (6.6%), 80 (13.3%), 100 (16.7%) and
160 (26.7%) obstacles to the coarse grid.

Each trial was run for every number of robots (from 3 to
30) and for every density of obstacles in the terrain. First, we
have created 200 input lines by each tree construction method:
randomly generated trees and Create Tree generated trees,
where each input line represents a random initial distribution
of the robots (altogether 400 experiments for each basic
setting). These input lines were later given to the NB MSTC,
B MSTC and Opt MSTC algorithms and the coverage times
obtained by these algorithms were compared.

The average coverage times obtained by algorithms
NB MSTC and Opt MSTC are brought in Figures 6, 7, 8, 9
and 10. The results show clearly that the average coverage time
obtained by running algorithms NB MSTC and Opt MSTC
on trees constructed by algorithm Create Tree are statisti-
cally significantly better (using paired two-tailed t-test, where
the p-value is less than 10−12) than the average coverage
time obtained by those algorithms when ran on randomly
generated trees. Moreover, the coverage time obtained by
running the simplest non-backtracking MSTC algorithm on
the trees generated by Create Tree is, in most cases, even
lower than the optimal MSTC algorithm ran on randomly
generated trees. These results repeated in both dimensions in
which the experiment was conducted: number of robots and
density of obstacles. The results from running the experiment
on B MSTC are omitted for clarity reasons of the display, but
they are compatible with all other results.

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

NB_MSTC on random trees
NB_MSTC on smart trees

Opt_MSTC on random trees
Opt_MSTC on smart trees

Fig. 6. Results from comparing random trees with trees generated using
Create Tree algorithm on a grid with no obstacles.

An interesting result follows from comparing the improve-
ment in coverage time obtained by the algorithms after per-
forming Create Tree with different density of obstacles in
the terrain. While the improvement in the coverage time
obtained by the algorithms after running Create Tree remains
statistically significant compared to randomly generated trees,
as the obstacles become more dense the improvement lessens.
For instance, the improvement percentage for 30 robots with

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

NB_MSTC on random trees
NB_MSTC on smart trees

Opt_MSTC on random trees
Opt_MSTC on smart trees

Fig. 7. Results from comparing random trees with trees generated using
Create Tree algorithm on a grid with 6.7% of the cells blocked by obstacles.

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

NB_MSTC on random trees
NB_MSTC on smart trees

Opt_MSTC on random trees
Opt_MSTC on smart trees

Fig. 8. Results from comparing random trees with trees generated using
Create Tree algorithm on a grid with 13.3% of the cells blocked by
obstacles.

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

NB_MSTC on random trees
NB_MSTC on smart trees

Opt_MSTC on random trees
Opt_MSTC on smart trees

Fig. 9. Results from comparing random trees with trees generated using
Create Tree algorithm on a grid with 16.7% of the cells blocked by
obstacles.

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

NB_MSTC on random trees
NB_MSTC on smart trees

Opt_MSTC on random trees
Opt_MSTC on smart trees

Fig. 10. Results from comparing random trees with trees generated using
Create Tree algorithm on a grid with 26.7% of the cells blocked by
obstacles.

no obstacles for the NB MSTC and Opt MSTC algorithms
are 58% and 38%, respectively. When the density of obstacles
is 26% the improvement percentage decreases to 48% and 28%
(respectively).

Figure 11 presents as an example the improvement per-
centage in coverage time between Create Tree generated
trees vs. randomly generated trees followed by the execution
NB MSTC algorithm. Note that the repetitiveness of the
phenomenon is not absolute over all number of robots, to
our opinion most likely due to the structure of the terrain,
but the trend is clear. The reason for this phenomenon is
simple: the Manhattan distance computed in the first step of
the algorithm does not take into account obstacles along the
way. Hence, if obstacles are added, the algorithm might create
the subtrees based on a distorted conception of the terrain thus
the improvement, while still significant, lessens.

An additional interesting results follows from comparing
between the percentage of improvement of the results obtained
by the Opt MSTC algorithm (Figure 12) and the NB MSTC
algorithm (Figure 11). In both cases the improvement percent-
age from using the Create Tree generated trees is relatively
high, although using the NB MSTC coverage algorithm results
in much higher improvement percentage. This change is origi-
nated in the fact that if using the simple NB MSTC algorithm
the change in coverage time is much more evident. The
Opt MSTC algorithm by itself performs some improvement
in coverage time, so there is less to improve from that point.

 0.4

 0.45

 0.5

 0.55

 0.6

 5 10 15 20 25 30

Im
pr

ov
em

en
t:

R
an

do
m

 v
s.

 C
re

at
e T

re
e

Number of Robots

No holes
6.7% obstacle density

13.3% obstacle density
16.7% obstacle density
26.7% obstacle density

Fig. 11. Comparison between the improvement percentage in coverage time
obtained by algorithm NB MSTC after generating trees randomly vs. using
Create Tree algorithm with different density of obstacles in the terrain.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10 15 20 25 30

Im
pr

ov
em

en
t:

R
an

do
m

 v
s.

 C
re

at
e T

re
e

Number of Robots

No holes
6.7% obstacle density

13.3% obstacle density
16.7% obstacle density
26.7% obstacle density

Fig. 12. Comparison between the improvement percentage in coverage time
obtained by algorithm Opt MSTC after generating trees randomly vs. using
Create Tree algorithm with different density of obstacles in the terrain.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have discussed the importance of the
structure of the spanning tree on the coverage time obtained
by algorithms that use this tree as base for coverage. First,
we have shown that the structure of the tree can have crucial
consequence on the coverage time. We have presented an
algorithm for constructing trees that is motivated by the
objective similar to the one defining an optimal tree, a problem
that is thought to be NP-hard. We have extensively tested the
influence of the spanning tree structure on the coverage time
obtained by NB MSTC, B MSTC and Opt MSTC while tak-
ing several parameters under consideration. Simulation results
show that when using trees generated by Create Tree the
resulted coverage time obtained by all algorithms were statis-
tically significantly better than the results obtained by running
the algorithms on randomly generated trees. Moreover, the
average coverage time obtained by the simplest NB MSTC
algorithm on spanning trees created by Create Tree were, in
most cases, better than the average coverage time obtained by
Opt MSTC on randomly generated trees.

There are still several areas we plan to pursue in future
work. First, we would like to examine by simulation the
compatibility of the trees created by algorithm Create Tree
to coverage algorithms that use the spanning tree as base for
coverage, but divert from the spanning tree path from time to
time (for example, the algorithm described in [10]). Second,
we would like to establish the complexity class which the
problem of building optimal trees belongs to. It is believed
(strengthened by [10]) that this problem is NP-hard, although
it is not proven yet. In addition, we would like to expand our
algorithm to dealing with complete cellular decomposition of
the terrain, i.e., include also cells that do not exist completely
in the coarse grid. Finally, we would like to find a way to
improve our treatment of obstacle in the terrain.

REFERENCES

[1] M.A. Batalin and G.S. Sukhatme. Spreading out: A local approach
to multi-robot coverage. In Proc. of the 6th Internat. Symposium on
Distributed Autonomous Robotic Systems, page 373382, 2002.

[2] H. Choset. Coverage for robotics a survey of recent results. Annals of
Mathematics and Artificial Intelligence, 31(1-4):113–126, 2001.

[3] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. Ann. Math. Artif. Intell., 31(1-4):77–98, 2001.

[4] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid
environments by a mobile robot. Comp. Geometry, 24:197–224, 2003.

[5] N. Hazon and G. A. Kaminka. Redundancy, efficiency and robustness
in multi-robot coverage. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2005.

[6] N. Hazon and G. A. Kaminka. Redundancy, efficiency and robustness
in multi-robot coverage. Technical report, MAVERICK Group, Bar-Ilan
Univ., 2005.

[7] I. Rekleitis, G. Dudek, and E. Milios. Multi-robot collaboration for
robust exploration. Annals of Mathematics and Artificial Intelligence,
31:7–40, 2001.

[8] I. Rekleitis, V. Lee-Shue, A. Peng New, and H. Choset. Limited
communication, multi-robot team based coverage. In IEEE International
Conference on Robotics and Automation, pages 3462–3468, 2004.

[9] I. A. Wagner and A. M. Bruckstein. Cooperative cleaners - a study in
ant robotics. In Communications, Computation, Control, and Signal
Processing: A Tribute to Thomas Kailath, pages 289–308. Kluwer
Academic Publishers, 1997.

[10] X. Zheng, S. Jain, S. Koenig, and D. Kempe. Multi-robot forest
coverage. In Proc. IROS, 2005.

