
Ann Math Artif Intell (2008) 52:143–168
DOI 10.1007/s10472-009-9121-1

The giving tree: constructing trees for efficient offline
and online multi-robot coverage

Noa Agmon · Noam Hazon · Gal A. Kaminka ·
The MAVERICK Group

Published online: 18 March 2009
© Springer Science + Business Media B.V. 2009

Abstract This paper discusses the problem of building efficient coverage paths for
a team of robots. An efficient multi-robot coverage algorithm should result in a
coverage path for every robot, such that the union of all paths generates a full cov-
erage of the terrain and the total coverage time is minimized. A method underlying
several coverage algorithms, suggests the use of spanning trees as base for creating
coverage paths. However, overall performance of the coverage is heavily dependent
on the given spanning tree. This paper focuses on the challenge of constructing a
coverage spanning tree for both online and offline coverage that minimizes the time
to complete coverage. Our general approach involves building a spanning tree by
growing sub-trees from the initial location of the robots. This paper first describes
a polynomial time tree-construction algorithm for offline coverage. The use of this
algorithm is shown by extensive simulations to significantly improve the coverage
time of the terrain even when used as a basis for a simple, inefficient, coverage
algorithm. Second, this paper provides an algorithm for online coverage of a finite
terrain based on spanning-trees, that is complete and guarantees linear time coverage
with no redundancy in the coverage. In addition, the solutions proposed by this paper
guarantee robustness to failing robots: the offline trees are used as base for robust
multi-robot coverage algorithms, and the online algorithm is proven to be robust.

Keywords Efficient multi-robot coverage · Coverage algorithm

This work was funded in part by Israel’s Ministry of Science and Technology.

N. Agmon (B) · N. Hazon · G. A. Kaminka · The MAVERICK Group
Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
e-mail: segaln@cs.biu.ac.il

N. Hazon
e-mail: hazonn@cs.biu.ac.il

G. A. Kaminka
e-mail: galk@cs.biu.ac.il

144 N. Agmon et al.

Mathematics Subject Classification (2000) 68T40 Robotics

“And the tree was happy...” (Shel Silverstein, The Giving Tree)

1 Introduction

The general problem of covering an area by single or multi robot systems is a
fundamental problem in robotics. It has applications in various domains, from
humanitarian missions such as search and rescue and de-mining, to agriculture
applications such as seeding or harvesting, to, recently, household cleaning. The
problem was extensively investigated in both single-robot domains (e.g. [6, 15, 16])
and multi-robot systems (e.g. [13, 20, 21, 24]).

This paper discusses the problem of building efficient coverage paths for a team of
robots. In this problem, a team of robots, each equipped with some tool, for example
a sensor, are required to jointly sweep the entire given terrain while minimizing the
total coverage time. In our work, we assume that the area is divided into cells, and
the robots travel through all cells of the terrain. Following the taxonomy presented in
[5], the division of the area is an approximate cellular decomposition, and we handle
both online and offline coverage. In offline coverage, the map of the area is given
in advance, therefore the coverage paths of the robots can be determined prior to
the execution of the coverage algorithm. In online coverage, the coverage has to be
completed without the use of a map or any a-priori knowledge of the area, and the
coverage paths of the robots are constructed during the execution.

Previous work has often pointed out that one advantage of using multiple robots
for coverage is the potential for more efficient coverage [5]. Another potential
advantage of using multiple robots is that they may offer greater robustness: Even if
one robot fails catastrophically, others may take over its coverage subtask. In other
words, as long as there exists one non-faulty robot, the coverage mission will be
completed successfully. Unfortunately, this important capability has been neglected
in most existing work on on-line algorithms.

Several methods are found in the literature for coverage by single and multi-robot
systems. One basic method that has received considerable attention is the method
presented by Gabriely and Rimon [10], where the authors describe a polynomial
time Spanning Tree Coverage algorithm, better known as the STC algorithm. In this
method, Gabriely and Rimon offer a method for finding a hamiltonian cycle covering
a terrain that satisfies some assumptions. In particular, it is assumed that the robot is
equipped with a square shaped tool of size D, hence the area was divided into N cells
of size D placed on a grid. The grid was then made coarse such that each new cell
is of size 2D X 2D, and a spanning tree was built according to this new grid. After
such a tree was built, the robot follows the tree around, creating a hamiltonian cycle
visiting all cells of the original grid. The idea was first broadened for a multi-robot
system in [13], by the family of MSTC algorithms. A different variation on this idea
was introduced in [24].

When building the tree in a single robot system, the influence of the structure of
the tree is theoretically irrelevant for the coverage time. Clearly, one might want to
construct spanning trees with special characterizations, for example minimizing the
number of turns of choosing some preferred directionality. Yet, the coverage time

The giving tree: constructing trees for efficient offline and online multi-robot coverage 145

guaranteed by the STC algorithms is linear in the size of the grid, since each cell
except for the boundary cells is covered once, hence the total coverage time is N.

On the other hand, in multi-robot systems, the structure of the tree can have
crucial consequences on the coverage time of the terrain. The choice of the spanning
tree can change the robots’ initial positions with respect to each other from being
concentrated, i.e., placed as a bundle, to being scattered along the spanning tree
path—all without actually changing the physical initial position of the robots. The
structure of the tree itself can therefore substantially decrease the coverage time
obtained by algorithms based upon it. Hence we concentrate on building appropriate
coverage spanning trees. The general method we follow when building such trees in
both scenarios—online and offline coverage, is to gradually grow subtrees from the
initial position of the robots.

Hence, the first part of this paper specifically deals with constructing spanning
trees for offline coverage that reduces the total coverage time of algorithms using
these spanning trees as base for coverage. The coverage time of a terrain is deter-
mined by the robot traveling through the longest period of time. In a system with
homogenous robots, this time corresponds to the longest distance traversed by a
single robot. We try to minimize this distance by creating trees where the robots
are placed as uniformly as possible around it. Therefore, when constructing the trees
we try to minimize the maximal distance between every two consecutive robots along
the spanning tree path. If such tree is obtained, we show that all versions of theMSTC
algorithm ran on these trees achieves substantially better coverage time compared to
their coverage time on other randomly generated trees. Note that these trees, along
with decreasing the coverage time of the algorithms which use them as base for
coverage, also enjoy the benefits of the algorithms themselves. Specifically, if used
as base for the family of MSTC algorithms, it promises robustness. The algorithm
we propose has a polynomial time complexity in the number of cells to be covered.
This results in the surprising conclusion that as we add obstacles to the terrain, the
complexity of the tree construction algorithm reduces, since the number of covered
cells diminishes.

The second part of the paper deals with online coverage. We present a guaranteed
robust multi-robot on-line coverage algorithm. The algorithm is based on the use of
spanning tree coverage paths. It runs in a distributed fashion, using communications
to alert robots to the positions of their peers. Each robot works within a dynamically-
growing portion of the work-area, constructing a local spanning-tree covering this
portion, as it moves. It maintains knowledge of where this spanning-tree can connect
with those of others, and selects connections that will allow it to take over the local
spanning trees of others, should they fail. We also address the challenge of using the
robust on-line multi-robot coverage algorithm with physical vacuum cleaning robots.
We present techniques useful in approximating the assumptions required by STC
algorithms (e.g., known positions, within an agreed-upon coordinate system). We
show the effectiveness of our implemented algorithm in extensive experiments.

2 Background

The challenge of covering a terrain by a team of mobile robots has received
considerable attention in the literature. The growing interest in this area is first and
foremost due to the fact that the coverage task is implementable in various domains.

146 N. Agmon et al.

Moreover, the concentration in multi-robot systems comes from the two key fea-
tures made possible by using multiple robots: (i) robustness in face of single-robot
catastrophic failures, and (ii) enhanced productivity, thanks to the parallelization of
sub-tasks. Many approaches can be found in the literature for multi-robot coverage.

Choset [5] provides a survey of coverage algorithms, which distinguishes between
offline algorithms, in which a map of the work-area is given to the robots in advance,
and online algorithms, in which no map is given. The survey further distinguishes
between Approximate cellular decomposition, where the free space is approximately
covered by a grid of equally-shaped cells, and exact decomposition, where the free
space is decomposed to a set of regions, whose union fills the entire area exactly.
Following Choset’s terminology, in this paper we focus on both online and offline
coverage, based on approximate cell decomposition of the area.

We focus on spanning tree based coverage, first proposed by Gabriely and Rimon
in [10]. They proposed the basic method of dividing the terrain into 2D X 2D cells,
and described the polynomial time spanning tree coverage algorithm (STC) for
complete offline and online coverage of the terrain by a single robot. In [11], they
suggest two different algorithms for building an on-line tree, but the motivation
comes from the desire to create a spanning tree with a specific scanning direction.

The generalization of the single-robot STC algorithm to offline multi-robot sys-
tems was first introduced by Hazon and Kaminka in [13]. They presented several
offline algorithms for multi-robot coverage of a terrain by the MSTC algorithm,
which guarantee robust, time-efficient and complete coverage. They describe two
versions of the MSTC algorithm: non-backtracking MSTC, and backtracking MSTC,
herein referred to as NB_MSTC and B_MSTC, respectively. In the NB_MSTC
algorithm the robots simply move in counterclockwise direction along the spanning
tree path until reaching the initial position of the following robot if no faults occur,
or take over the coverage path of the consecutive robot otherwise. In the B_MSTC
the robots can backtrack over parts of their coverage path, i.e., they can go both
clockwise and counterclockwise. They have shown that if the robots backtrack, the
worst case performs up to twice as faster as in the non-backtracking case, despite
the redundancy. Other results by Hazon and Kaminka, described in [14], provide
an optimal polynomial time coverage algorithm, herein referred to as Opt_MSTC.
The algorithm is similar to the B_MSTC algorithm with modifications that assure the
optimal coverage time given the initial locations of the robots and an initial spanning
tree. The optimality is guaranteed only for the backtracking method, i.e., if the robots
go back and forth along the given spanning tree. Hence they promise to make the
most (optimal) out of the given tree and initial locations of the robots if the robots
do not deviate from the path dictated by the structure of the tree. We focus here on
generating good trees for such algorithms.

Work by Zheng et al. [24] proposed an additional offline multi-robot coverage
algorithm, where their solution is based on dividing the given spanning tree into k
subtrees, where there might exist path overlapping between robots. Their algorithm
performs better compared to both NB_MSTC and B_MSTC algorithms, however
their solution is not robust. In addition, they note that different choices of trees may
result is different coverage time, but did not further discuss the issue.

There have been additional investigations of online multi-robot coverage, for
example in the world of ant robotics. Wagner at. al. [23] propose a series of theoreti-
cal multi-robot ant-based algorithms which use approximate cellular decomposition.

The giving tree: constructing trees for efficient offline and online multi-robot coverage 147

The algorithms involve little or no direct communications, instead using simulated
pheromones for communications or traces of robots. Some of these algorithms solve
only the discrete coverage problem and some offer complete robust coverage, but not
necessarily efficient. Recent work by Osherovich et al. [18] offer a robust coverage
algorithm for ants in continuous domains. Svennebring and Koenig [22] offer a
feasibility study for ant coverage. They perform experiments with real ant-robots and
large-scale simulations. They show robustness, but provide no analytic guarantees for
completeness or efficiency.

Acar and Choset [1] presented a robust on-line single robot coverage algorithm
while their robustness quality is the ability to filter bad sensors readings.

Rekleitis et al. [19] uses two robots in online settings, using a visibility graph-like
decomposition (sort of exact cellular decomposition). The algorithm uses the robots
as beacons to eliminate odometry errors, but does not address catastrophic failures
(i.e., when a robot dies). In a more recent article, Rekleitis et al. [21] extends the
Boustrophedon approach [5] to a multi-robot version. Their algorithm also operates
under the restriction that communication between two robots is available only when
they are within line of sight of each other. Their solution, though, is not robust to
failures, i.e., it could stop functioning if one of the key robots fails. In [17], Kong
et al. provide an improved algorithm for multi-robot coverage with unbounded
communication, where the algorithm is demonstrated to be robust to failures (yet
this property is not theoretically proven to be complete).

Butler et al. [4] proposed a sensor-based multi-robot coverage, in a rectilinear
environment, which based on the exact cellular decomposition. They do not prove
their robustness, and the robots could cover the same area many times.

The recent Brick & Mortar algorithm suggested by Ferranti et al. [8] is an online
coverage algorithm that assumes the robots communicate using miniature storage
devices that are placed along the entire area, such that one device is placed in
each cell. The use of these devices is their solution to the extensive communication
assumption, made by other online coverage algorithm, which is partially made also
in our work. Their work does not refer to the robustness of the coverage. In addition,
their solution might result in redundancy of the coverage.

Other approaches, other than ones based on cellular decomposition of the terrain,
can be found in the literature for multi-robot coverage. For example, in [3], Batalin
and Sukhatme offer two coverage algorithms by a multi-robot system in which the
robots spread out in the terrain, and move away from each other while covering
the area and minimizing the interaction between the robots. In their work, they aim
to achieve optimal coverage area, and do not prove any formal statement regarding
optimality of coverage time. Yet, similarly to their work, our offline tree construction
algorithm uses the “spreading out” principle in building the coverage tree.

3 Constructing trees for offline coverage

In this section we describe our method for improving offline coverage by a team
of robots. First, we show that the initial choice of the spanning tree has significant
impact on the coverage time. We then describe our scheme for tree construction
and some variants of the general method. Finally, we describe results from extensive
simulations showing significant improvement in coverage time even when the trees

148 N. Agmon et al.

are used as base for the simplest NB_MSTC algorithm. Note that by combining our
tree construction algorithm with the family of MSTC algorithms, we ensure efficient
and robust multi robot coverage.

3.1 Motivation for building new spanning trees

In this section we describe the motivation behind our construction scheme of the
trees. First, we show that the structure of the spanning tree has crucial role in the
coverage time obtained by algorithms that use the tree as base for coverage. We
prove that any coverage algorithm, even an optimal one, cannot achieve low coverage
time as can be achieved by using a different tree. Second, we show that a spanning
tree, which by itself obtains the optimal coverage time, does not necessarily exist,
hence the theoretical optimal coverage time might remain unreachable in some cases.
Last, we describe our definition of optimal spanning trees and explain the rationale
behind this definition.

3.1.1 Importance of the spanning tree structure

An optimal time coverage algorithm for a system with k robots will (theoretically)
result in total coverage time of � N

k �. Even the most basic multi-robot coverage
algorithm will result in such a coverage time if the robots are uniformly placed along
the spanning tree path, i.e., within distance of at most � N

k � from one another.
We argue that the choice of spanning tree has crucial consequences on the

coverage time obtained by algorithms using the spanning tree as base for coverage.
This is more evidently seen in algorithms that do not diverge from the spanning
tree path, such as the MSTC algorithms. Consider, for example, the Opt_MSTC
algorithm. These algorithms create optimal paths along the spanning tree for the
k robots, not allowing (nonfaulty) robots to bypass one another during the execution
of the coverage algorithm. There, even in the worst initial distribution case in which
all robots are bundled in their initial position, the best possible improvement will
result in an improvement factor of approximately 2: from N − k + 1 to N−k

2 + 1. On
the other hand, the improvement by spreading the robots along the spanning tree
can reach nearly a factor of k : from N − k + 1 to N

k .
An illustration of the importance of the right choice of spanning tree is given in

Fig. 1. The figure presents an example for a terrain in which N = 36, k = 3 and two
different trees are suggested as base for coverage. The spanning tree is described by
the bold lines, and we use the different kinds of dashed lines to describe the spanning
tree path, each dashed line represents the distance between two adjacent robots
along the path. In order to clarify the example, the section between each two adjacent
robots is given a different background as well. Note that in both grids the robots are
initially located in the same positions. The tree in Fig. 1a places the robots uniformly
along the tree path, thus a coverage time of � N

k � is easily obtained if the robots simply
follow the tree path in a counterclockwise direction. However, in Fig. 1b. the robots
are placed arbitrarily along the tree path, thus any multi-robot coverage algorithm,
based on the spanning tree, will find it hard to result in such coverage time.

A formal statement regarding the possible improvement in coverage time ob-
tained by algorithms vs. improvement obtained by changing the tree is given by
Theorem 1. First, let us introduce the following definition. Note that we distinguish

The giving tree: constructing trees for efficient offline and online multi-robot coverage 149

Dist. between R2 and R3:

Dist. between R3 and R1:
28 spanning tree path cells

4 spanning tree path cells
Dist. between R1 and R2:

12 spanning tree path cells
Dist. between R3 and R1:

12 spanning tree path cells
Dist. between R2 and R3:

12 spanning tree path cells
Dist. between R1 and R2:

4 spanning tree path cells

a. b.

R1

R2 R3 R2 R3

R1

Fig. 1 Illustrating how different trees can influence coverage time (a, b)

between a procedure that is executed on the input to generate the tree, and algorithm
which is the coverage algorithm executed given the input tree.

Definition Given the initial positions of k robots on a terrain with N cells, let M
be the coverage time of the terrain obtained by the basic NB_MSTC algorithm. A
procedure P or an algorithm A are said to ensure an improvement factor t, if the
coverage time obtained by NB_MSTC after applying P on the input, or the coverage
time obtained by A on the same input is M

t .

Theorem 1 Any multi-robot coverage algorithm for homogenous robots based on a
spanning tree which does not divert from the spanning tree path will result in a maximal
improvement factor of at most 2.

Proof Denote the distance between the initial location of robot Ri and Ri+1 on
the spanning tree path by Di (also known as the segment Di), and let Dmax =
max1≤i≤N{Di}. Clearly, the coverage time obtained by NB_MSTC is exactly Dmax.
Also, Dmax determines the coverage time of any coverage algorithm A that does
not divert from the spanning tree path. As the robots are homogenous and cannot
bypass one another (assuming they are nonfaulty), an improvement in the coverage
algorithm can reduce from Dmax to � Dmax

2 � if robots on the extremity of Dmax should
simply walk towards one another while covering the terrain. If there is some other
segment Dj which requires coverage time of some t′ > � Dmax

2 �, then the new coverage
time is t′. Note that t′ can be smaller than the distance Dj if an algorithm allowing
backtracking is permitted. In other words, the improvement factor is

Dmax

max{� Dmax
2 �, t′} ≤ 2 ��

While the change of the coverage algorithm can result in an improvement factor of
at most 2, the example described in Fig. 2 leads us to the conjecture that improvement
factor due to a change in the tree can reach almost the value of k. As seen in Fig. 2b,
the coverage time obtained byNB_MSTC is N − k = 56 − 3 = 53, while the coverage
time obtained by the same algorithm on a spanning tree constructed in a way that
places the robots in an equally scattered way along the tree (Fig. 2a.) is � N−k

k � = 19,
hence the improvement factor obtained by changing the tree is 53

19 ≈ 2.8, which is
almost k.

150 N. Agmon et al.

Fig. 2 An example of a
case in which the improvement
factor is almost k if the tree is
appropriately constructed
(a, b)

a.

53 cells

1 cell

2 cells

18 cells

19 cells

19 cells

Length: Length:

b.

We have established the fact that the choice of a spanning tree can have far
reaching consequences on the coverage time of the terrain, possibly more than the
choice of the coverage algorithm. Moreover, a spanning tree that places all robots
within distance of at most � N

k � will, by itself, result in the optimal coverage time.
Unfortunately, such a tree does not necessarily exist. For example, in Fig. 3, N = 16,
k = 2 and all possible spanning trees are described. The minimal maximal distance
between two consecutive robots over all possible spanning trees is 10 cells, where
� N

k � = � 16
2 � = 8.

In our tree construction scheme we will try to approximate this optimal dispersion
of robots along the spanning tree. We will do that by trying to satisfy the following
objective, as much as possible. First, let G̃ be a grid with N/4 cells, possibly containing
obstacles (the obstacles are not counted as cells). Let G be G̃’s fine grid after dividing
each cell into four cells of size D.

Objective Given the initial locations of k robots on cells of G, find a spanning tree
of G̃ that minimizes the maximal distance between every two consecutive robots
along the spanning tree path.

The idea behind this objective is that it spreads the robots as uniformly as possible
along the spanning tree path. The construction of an optimal tree, that will achieve
exactly the objective, is believed to be NP-hard [24]. Hence our tree construction
algorithm can be considered as a heuristic algorithm for the problem of finding the
optimal tree for the coverage task.

Fig. 3 An example of a case in
which there is no spanning tree
that has maximal distance of
� N

k � = � 16
2 � = 8 between

consecutive robots along the
spanning tree path. The
numbers in parenthesis
describe the distance between
two robots along the spanning
tree path

(14,2) (14,2)

(14,2)(10,6)

The giving tree: constructing trees for efficient offline and online multi-robot coverage 151

3.2 Tree construction algorithm

In this subsection we describe a spanning tree construction algorithm, Create_Tree.
This algorithm creates spanning trees while considering the initial location of all
robots in the team and the objective described above, i.e., it tries to minimize the
maximal distance between any two adjacent robots on the tree.

The general algorithm, described in Algorithm 1, is composed of two stages. In
the first stage, a subtree is created gradually for each robot starting from the initial
position of the robot, such that in each cycle either one or two cells are added to each
subtree. Denote the subtree originated in Ri by TRi . The cells are chosen in a way
that maximizes the distance from current expansion of all other trees. The algorithm
tries to find the longest possible path for the tree. When it fails to continue, it tries
to perform Hilling, in which it looks for ways to “stretch” the path as follows. It looks
for two joint unoccupied cells adjacent to the path. If it found such cells, then it adds
them to the path as demonstrated in Fig. 4. If the algorithm failed to find more hills,
then it expands the tree, from both sides of the path, in a BFS (breadth-first-search)
manner. It first attempts to add one cell near the origin of the tree (initial position of
the robot), then it checks for a possible free adjacent cell of its sons, and so on, until
the entire grid is covered by all k disjoint subtrees.

In the second stage of the algorithm, after such k subtrees are generated, it is
only left to connect them (second stage). Denote an edge connecting two different
trees TRi and TR j by br(TRi , TR j). As we are given k subtrees to be connected
to one tree covering the entire grid, it is required to find k − 1 bridges. These
bridges should be chosen in a way that the resulting tree does not contain cycles
or, equivalently, cover the entire grid. For example, if k = 4 then possible valid
choice of bridges are {br(TR1 , TR2), br(TR1 , TR3), br(TR3 , TR4)}, where {br(TR1 , TR2),

br(TR2 , TR3), br(TR1 , TR3)} is invalid, as TR4 remains disconnected. Create_Tree
picks randomly a valid choice of k − 1 bridges, and calculates the maximal distance
between two adjacent robots on the tree according to the fine grid. It repeats the
process kα times, and reports the best tree it observed, according to the above
criterion. The value of α is chosen empirically.

Clearly, the algorithm provides complete coverage of the terrain, as the first stage
of constructing subtrees does not end before every cell is occupied by some subtree.
The first stage terminates, as in each cycle at least one cell is added to at least

Fig. 4 Illustration of the
Hilling procedure

perform hilling in these cells

occupied cell

cell from current subtree

unoccupied cell

152 N. Agmon et al.

one subtree, hence given a finite terrain the algorithm halts. A formal proof of the
completeness of Create_Tree is given in Lemma 2.

Algorithm 1 Procedure Create_Tree
1: Build k subtrees as follows.
2: for every robot Ri, 1 ≤ i ≤ k do
3: for each possible next cell (up, down, right, left) do
4: Compute the Manhattan distance from the current location of all other

robots.
5: if more than one possible next move exists then
6: pick the one whose minimal distance to any other robot is maximized.
7: if there is no next possible move then
8: perform Procedure Hilling from the last main branch.
9: if failed to find an unoccupied cell in Hilling then

10: Branch-out in a BFS manner from the main branch
11: Find all possible bridges between the k trees.
12: for i = 0 to max{kα, N} do
13: At random, find a valid set of bridges Bi between trees such that they create

one tree with all N vertices.
14: Compute the set Si of distances between every two consecutive robots on the

tree.
15: Best_Result is initialized with S0.
16: if the maximal value in Si is lower than the maximal value in Best_Result then
17: Best_Result ← Si.
18: Return the tree associated with Best_Result.

Lemma 2 Procedure Create_Tree generates a tree that spans the entire graph G.

Proof Assume, towards contradiction, that there exists one cell C that is not covered
by any subtree Ti, 1 ≤ i ≤ k. Since the map is finite, then there exists some cell C‘
adjacent to C that is connected to a sub-tree originated in the initial location of some
robot Ra. If C was not covered by the algorithm, then Ta has necessarily finished all
its phases - initial phase, Hilling and branching out. But if, while branching out, C′
was passed through and C was empty, then it would have added C to Ta, leading to a
contradiction. If both C and C′ are empty, then there exists some C′′ ∈ Tb , such that
C is adjacent to C′′. Similarly, either we get a contradiction, or C′′ also is not in Tb .
This continues until we get that either all cells are not in any tree, or all cells are (by
contradiction). The former case is impossible, as at least the initial location of a robot
belongs to its subtree, hence we are done. ��

Theorem 3 The time complexity of Create_Tree algorithm is O(N2 + kα N).

Proof In the stage where k subtrees are created, in the worst case when adding
one cell to a subtree the algorithm runs over all current cells in the subtree (during
Hilling or while branching out), hence the complexity is at most O(N2). In the second
stage, where the trees are connected, kα different choices of trees are examined, each
time the entire tree is traversed, thus the complexity of this stage is O(kα N). Hence

The giving tree: constructing trees for efficient offline and online multi-robot coverage 153

the entire complexity of the algorithm is O(N2 + kα N). If the distance measure is
shortest paths, then calculating all-pairs shortest paths is O(N3) [7] ��

3.2.1 Using different distance measures

ProcedureCreate_Tree, creates first k subtrees, and then connects them. The process
of constructing the k subtrees is done while spreading each tree away from the other
trees. The distance measure used to determine how distant the trees are was initially
simply the Manhattan distance [2]. In this work, we have used three different distance
measures: Manhattan distance, Euclidean distance and Shortest paths (following
Floyd’s all-pairs shortest paths algorithm [7]). Note that the time complexity of the
shortest paths algorithm is O(N3), where the other distance measures are calculated
in O(1).

The theoretical advantage of using shortest paths is enormous: As shown in Fig. 5,
using the shortest paths measure can decrease the coverage time from N to N/2.
The tree in Fig. 5a was generated using the shortest paths measure, and the tree
in Fig. 5b was generated using the Manhattan distance measure. Initially, there are
twice as many cells below the horizontal corridor compared to the number of cells
above this corridor. Note that when generating the subtrees using the shortest paths
measure (Fig. 5a) there are two possible bridges between the trees—one near the
initial positions of the robots and one at the endpoint of the subtree. The latter bridge
will be chosen with high probability. In the second tree there is only one possible
bridge connecting between the two subtrees. The distance between the two robots
along the first spanning tree path (Fig. 5a) is N/2. The distance between the two
robots along the second spanning tree (Fig. 5b, generated using Manhattan distance)
is 8 fine grid cells. Therefore the distance changed from 8 to N/2 just by using a the
shortest paths distance measure.

Yet, in the average case using this measure did not make a difference—the
results of running MSTC algorithms on the trees generated using the three distance

a.

T2 T2

b.

subtree by R2

tour along the tree

possible bridge

subtree by R1

T1

chosen bridge

2

R1

T1

R

1R

2 R

Fig. 5 Illustrating the trees created using different distance measures by Procedure Create_Tree:
a Manhattan distance and b Shortest paths

154 N. Agmon et al.

measures converge. The reason, in our opinion, is that it requires a very specific
structure of the terrain in order for the shortest paths measure to make a significant
change. One terrain that will gain from using this measure is one with many corridors
(see example in Fig. 5). In such a terrain, the difference between the Manhattan
distance and the shortest path is significant. Hence we conclude that Create_Tree is
adaptable in the sense that the distance measure can be changed in order to fit the
terrain.

3.3 Evaluation

We have evaluated the effect of the tree construction algorithm Create_Tree on
the coverage time obtained by NB_MSTC, B_MSTC and Opt_MSTC. First, we
determine the α used by the algorithm. Then we describe extensive simulations of
Create_Tree with our chosen α.

3.3.1 Determining α

When connecting the k subtrees, procedure Create_Tree chooses at random max{kα,

N} times a set of bridges yielding a tree, and chooses the best option between them.
We have chosen the value α empirically to be 2. We have seen that if α = 2, then
the coverage time obtained by the MSTC family of algorithms has decreased sub-
stantially. A further improvement was seen in case α = 3, but the intensity of the im-
provement diminished, more evidently with the results of the Opt_MSTC algorithm
(see Fig. 6).

Note that the time complexity is substantially higher if α = 3 and rises from Nk2

to Nk3, i.e., an addition of Nk2(k − 1) operations. This becomes critical for large N
and k’s.

3.3.2 Experimental results, α = 2

The evaluation ofCreate_Tree on the coverage time obtained by the family ofMSTC
algorithms was done while taking two other parameters under consideration. First,
the number of robots - from 3 to 30 robots. The second parameter is the density of
obstacles in the terrain, i.e., the ratio between the number of obstacles and the area
size.

Fig. 6 Comparing α = 2 to
α = 3 for 1 to 30 robots, with
13% of the area contains
obstacles (not disconnecting
the area)

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

NB_MSTC using alpha =1
NB_MSTC using alpha =2
NB_MSTC using alpha =3
Opt_MSTC using alpha =1
Opt_MSTC using alpha =2
Opt_MSTC using alpha =3

The giving tree: constructing trees for efficient offline and online multi-robot coverage 155

The coverage time obtained by the above algorithms on the trees constructed
by all three variants of Create_Tree was compared against coverage time obtained
by the algorithms running on randomly generated spanning trees. The terrain over
which the experiment was ran was a 20X30 coarse grid (600 coarse cells, or 2400 fine
cells). We have first performed the experiment on a grid with no obstacles (“clean”
grid), then added at random 40 (6.6 %), 80 (13.3 %), 100 (16.7 %) and 160 (26.7 %)
obstacles to the coarse grid.

Each trial was run for every number of robots (from 3 to 30) and for every den-
sity of obstacles in the terrain. First, we have created 300 input lines by each tree
construction method: randomly generated trees and Create_Tree generated trees,
where each input line represents a random initial distribution of the robots. These
input lines were later given to the NB_MSTC, B_MSTC and Opt_MSTC algorithms
and the coverage times obtained by these algorithms were compared.

The average coverage times obtained by the algorithms NB_MSTC and Opt_
MSTC for are brought in Fig. 7. The results show clearly that the average cover-
age time obtained by running algorithms NB_MSTC and Opt_MSTC on trees con-
structed by algorithm Create_Tree are statistically significantly better (using paired
two-tailed t-test, the p-value always less than 10−12) than the average coverage time
obtained by those algorithms when ran on randomly generated trees. Moreover, the
coverage time obtained by running the simplest non-backtracking MSTC algorithm
on the trees generated by Create_Tree is, in most cases, even lower than the optimal
MSTC algorithm ran on randomly generated trees. These results repeated in both
dimensions in which the experiment was conducted: number of robots and density
of obstacles. The results from running the experiment on B_MSTC are omitted for
clarity reasons of the display, but they are compatible with all other results.

An interesting result follows from comparing the improvement in coverage time
obtained by the algorithms after performing Create_Tree with different density of
obstacles in the terrain. While the improvement in the coverage time obtained by
the algorithms after running Create_Tree remains statistically significant compared
to randomly generated trees, as the obstacles become more dense the improvement
lessens. For instance, the improvement ratio for 30 robots with no obstacles for
the NB_MSTC and Opt_MSTC algorithms are 58% and 38% respectively. When
the density of obstacles is 26% the improvement ratio decreases to 48% and 28%
(respectively).

Figure 8 presents as an example the improvement ratio in coverage time between
Create_Tree generated trees vs. randomly generated trees followed by the execution
NB_MSTC algorithm. Note that the repetitiveness of the phenomenon is not absolute
over all number of robots, but the trend is clear. Our initial explanation for the
reason of this phenomenon was that the Manhattan distance does not capture the
real distance between the robots when more and more obstacles are added to the
terrain. However, as stated previously, even when changing the distance measure to
shortest paths the results were not improved. We then deduce that as more and more
robots are added and as more obstacles are added to the terrain, there is less freedom
in constructing the k spanning trees, i.e., the possibility to spread the subtrees away
from each other is limited.

An additional interesting results follows from comparing between the ratio of im-
provement of the results obtained by the Opt_MSTC and the NB_MSTC algorithms
(Fig. 8). In both cases the improvement ratio from using the Create_Tree generated

156 N. Agmon et al.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

Coverage time with no obstacles

NB_MSTC on random trees
NB_MSTC on heuristic trees
Opt_MSTC on random trees

Opt_MSTC on heuristic trees
theoretical best case

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

Coverage time with obstacle density 6.7%

NB_MSTC on random trees
NB_MSTC on heuristic trees
Opt_MSTC on random trees

Opt_MSTC on heuristic trees
theoretical best case

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

Coverage time with obstacle density 13.3%

NB_MSTC on random trees
NB_MSTC on heuristic trees
Opt_MSTC on random trees

Opt_MSTC on heuristic trees
theoretical best case

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

Coverage time with obstacle density 16.7%

NB_MSTC on random trees
NB_MSTC on heuristic trees
Opt_MSTC on random trees

Opt_MSTC on heuristic trees
theoretical best case

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

Coverage time with obstacle density 26.7%

NB_MSTC on random trees
NB_MSTC on heuristic trees
Opt_MSTC on random trees

Opt_MSTC on heuristic trees
theoretical best case

Fig. 7 Results from comparing coverage time when using random trees vs. trees generated using
Create_Tree algorithm

trees is relatively high, although using the NB_MSTC coverage algorithm results in
much higher improvement ratio. This change is originated in the fact that if using
the simple NB_MSTC algorithm the change in coverage time is much more evident.
The Opt_MSTC algorithm by itself performs some improvement in coverage time,
so there is less to improve from that point.

4 Online spanning-tree based coverage

In this section we re-use the approach of growing and connecting local subtrees in
the online coverage case. Here, the robots do not have a-priori knowledge of the

The giving tree: constructing trees for efficient offline and online multi-robot coverage 157

 0.4

 0.45

 0.5

 0.55

 0.6

 5 10 15 20 25 30

Im
pr

ov
em

en
t:

R
an

do
m

 v
s.

 S
m

ar
t

Number of Robots

 5 10 15 20 25 30

Number of Robots

No holes
6.7% obstacle density

13.3% obstacle density
16.7% obstacle density
26.7% obstacle density 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Im
pr

ov
em

en
t:

R
an

do
m

 v
s.

 C
re

at
e

T
re

e

No holes
6.7% obstacle density

13.3% obstacle density
16.7% obstacle density
26.7% obstacle density

Fig. 8 Comparison between the improvement ratio in coverage time obtained by algorithm
NB_MSTC (left) and Opt_MSTC (right) after generating trees randomly vs. using Create_Tree
algorithm with different density of obstacles in the terrain

work-area, i.e., the exact work-area boundaries and all the obstacles locations (which
are assumed to be static). We assume the robots know only their absolute initial
positions, and that they are able to communicate explicitly with one another.

4.1 Description of the on-line MSTC algorithm

We herein describe in details the online spanning tree based coverage algorithm, and
prove it is complete, non-redundant and robust to robot failures.

As mentioned previously, we divide the area into square cells of size 4D, each
one consists of four sub-cells of size D. Denote the number of cells in the grid by
N, and denote the number of sub-cells by n, i.e., n = 4N. The area occupancy in the
beginning is unknown so every cell is initially considered to be empty.

The starting point of the algorithm is the work-area and k robots with their ab-
solute initial positions: A0, . . . , Ak−1. The initial position of every robot is assumed
to be in an obstacle-free cell, and the robot should know its position. One assumption
the algorithm makes (similar to assumptions made previously in [10, 13]) is that
robots can locate themselves within an agreed-upon grid decomposition of the work
area. In practice, of course, this assumption is not necessarily satisfied. Section 4.2
below discusses methods for approximating this assumption in practice, which we
utilize in our work with physical robots.

We seek algorithms that are complete, non-redundant, and robust. An algorithm is
complete if, for k robots, it produces paths for each robot, such that the union of all
k paths complete covers the work area. By work area we mean to all the cells which
are not occupied by obstacles, and are accessible from at least one of the robots’
initial positions. An algorithm is non-redundant if it does not cover the same place
more than one time. The robustness criteria ensures that as long as one robot is still
alive, the coverage will be completed. Another advantage of this algorithm is that
the robots return to their initial positions when the coverage is completed which can
facilitate their collection or storage.

The algorithms below are run in a distributed fashion, and generate on-line cov-
erage that is complete, non-redundant, and robust. Each robot runs the initialization
algorithm first (Algorithm OMSTC_INIT), and then executes (in parallel to its peers)

158 N. Agmon et al.

an instance of the On-line Robust Multi-robot STC — ORMSTC (Algorithm 3).
Each ORMSTC instance generates a path for its controlled robot on-line, one step at
a time. It is the union of these paths by the execution sequence of the algorithm that
guarantees to be complete, non-redundant, and robust.

We begin by describing Algorithm OMSTC_INIT (2). The initialization procedure
constructs the agreed-upon coordinate system underlying the grid work area. It then
allows each robot to locate itself within the grid, and update its peers on the initial
position of each robot.

Algorithm 2 OMSTC_INIT()
1: Decompose the working area into 2D × 2D cells (grid), agreed among all the

robots.
2: Decompose each 2D × 2D cell into 4 sub-cells (size D)
3: i ← my robot ID
4: if Ai �= the middle of a sub-cell then
5: si ← the closest sub-cell
6: Move to si

7: else
8: si ← Ai

9: Si ← the cell that contains si

10: Announce Si as your starting location to the other robots
11: Receive S j, where j �= i, starting cells of other robots
12: Update map with S0, . . . , Sk−1

13: Initialize connection[0 . . . k − 1][0, 1] ← null

Once the grid is constructed and robots know their initial positions, Algorithm
ORMSTC (executed in a distributed fashion by all robots) carries out the coverage.
This recursive algorithm receives two parameters: X, the new cell that the robot just
entered, and W, the old cell from which the robot has arrived. We denote a cell with
an obstacle in one or more of its four sub-cells, or one that contains the robot’s own
spanning tree edge, as a blocking cell. In the first recursive call to the algorithm, the
argument X is the robot’s starting cell Si. W is chosen such that it is consistent with
future calls to the algorithm—closest to si (Fig. 9).

The idea behind Algorithm ORMSTC is that each robot gradually builds a local
spanning tree of uncovered cells that it discovers, while tracking the state of any
of its peers whose path it has met. The spanning tree is built by a depth-first-like
procedure: Scan for a non-occupied neighboring cell (Lines 1–2), build a tree edge
to it (Line 15), enter it (Line 16) and continue recursively with this cell (Line 17). If
there is no free cell, the robot goes back along its local spanning tree to the previous
covered cell, exiting the recursion (Lines 18–20). See Fig. 10 for an illustration of an
execution of ORMSTC.

Fig. 9 The 4 possible initial
positions (marked with a dot),
and their respective
recommended W W

W

W

W

The giving tree: constructing trees for efficient offline and online multi-robot coverage 159

Algorithm 3 ORMSTC(W, X)
1: N1..4 ← X’s neighboring cells in clockwise order, ending with W = N4

2: for i ← 1 to 3 do
3: if Ni = blocking cell then
4: continue to the next i
5: if Ni has a tree edge of robot j �= i then
6: check whether robot j is alive
7: if robot j is alive then
8: if connection[j][0] = null then
9: connection[j][0] ← the edge from X to Ni

10: connection[j][1] ← the edge from X to Ni

11: continue to the next i
12: else {robot j is not alive}
13: remove robot j from connections array and broadcast it
14: mark j ’s cells as empty on the map and broadcast it
15: construct a tree edge from X to Ni and broadcast it
16: move to a sub-cell of Ni by following the right side of the tree edge
17: execute ORMSTC(X, Ni)
18: if X �= Si then
19: move back from X to W along the right side of the tree edge
20: return from recursive call
21: if W �= blocking cell then
22: execute ORMSTC(X, W)
23: move to sub-cell si along the right side of the tree edge
24: broadcast completion of work
25: while not all the robots announced completion do
26: if ∃ j, s.t. connection[j][0] �= null and robot j is not alive then
27: mark j ’s cells as empty on the map and broadcast it
28: broadcast withdrawal of completion
29: decide which connection: connection[j][0] or connection[j][1] is closer to si

when moving in clockwise or counter-clockwise direction along your tree
edges

30: move to this connection in the appropriate direction
31: X ← your connection cell
32: Y ← robot j ’s connection cell
33: remove robot j from connections array and broadcast it
34: construct a tree edge from X to Y and broadcast it
35: move to a sub-cell of Y by following the right-side of the tree edges
36: execute ORMSTC(X, Y)

During this gradually-expanding coverage process, the first time a robot i meets a
cell with robot j ’s tree-edge (i �= j), it examines its peer’s state (Lines 5–6). If robot
j is still alive, robot i saves the edge which connects its tree to robot j ’s tree as
connection[j][0] (Lines 7–9). From this point on, robot i will update connection[j][1]
to save the last edge which connects its tree to robot j ’s tree, i.e., whenever robot i
meets a cell with robot j ’s tree edge (Lines 10–11).

160 N. Agmon et al.

W

N1

N2

N3

(a) scan for a non-
occupied neighbor-
ing cell

(b) build a tree edge
and enter the new
cell

(c) return from cell X to par-
ent cell W

(d) robot 1 meets robot 2 and
updates its connection array

1 1

2

1

1

Fig. 10 Illustration of an execution of ORMSTC (a–d)

If, during this phase, robot i discovers that robot j is not alive anymore, it an-
nounces to the other robots that robot j is dead. Then all robots delete the entries
for robot j from their connection arrays, and the cells which robot j was responsible
for are marked empty (Lines 12–14). Robot i and the other robots can now build
their spanning tree edges to these cells and cover them (see below for a discussion of
the case where two robots want to enter the same cell).

When a robot has no neighboring cells to cover, and it is back in its initial position,
it makes sure that W (this is the initial W given as input) is covered (Lines 21–22).
Then the robot finishes covering its starting cell and announces to the other robots
that it has completed its work (Lines 23–24).

However, the coverage process is not completed until all the robots announce
completion of their work. Until then, a robot who finishes its work monitors the state
of all the robots for whom it has a non-empty connection entry (Lines 25–26). If
such a robot j is not alive, the robot sets all cells assigned to j in the map to empty,
and updates the other robots (Line 27). It then turns to cover robot j ’s cells, thus
withdrawing its previously-declared completion of its work (Line 28). The robot has

The giving tree: constructing trees for efficient offline and online multi-robot coverage 161

two possibilities to reach robot j ’s cells: Along the left side of its spanning tree edges,
till it reaches connection[j][0], the first connection edge between it and robot j ’s
path; or in an opposite direction along the right side of the spanning tree edges, till it
reaches connection[j][1], the last connection edge between it and robot j. The robot
chooses the best option and moves to the chosen connection edge (Lines 29–30). Now
it can delete robot j from the connection array (line 31), and continue to construct
the spanning tree edges for the new cells by recursively calling the algorithm (Lines
32–36).

Algorithm ORMSTC makes several assumptions about the robots’ capabilities.
First, in lines 1–2, each robot explores its three neighboring cells. To do this, each
robot must have the ability to sense and determine if its three neighboring cells
are free from obstacles. If the cell is partially occupied by an obstacle it will not be
covered. Second, the algorithm requires reliable communication. Each informative
message that a robot receives (a cell that is now occupied with a tree edge, a dead
robot, etc.) updates the map and overall world state (in the memory of its peers).
Obviously, there is also an assumption here that robots are cooperative, in that when
a robot is asked if it is alive, it broadcasts truthfully if it can.

In lines 15 and 34 the robot constructs a spanning-tree edge. A synchronization
problem could occur if more than one robot wants to construct a tree edge in the
same cell. This can be solved by any synchronization protocol. For instance, we can
require robots to notify the others whenever they wish to construct an edge to a
cell Q. If a conflict over Q is detected, robots can use their distinct IDs to select
who will construct the edge (e.g., highest ID), or they may allow the robot with the
smallest number of covered cells to go first (intuitively, this is the most underutilized
robot). The other robots treat Q as a cell with another robot’s spanning tree edge
and continue with the algorithm.

We prove the completeness of the ORMSTC algorithm (Theorem 4). Each robot
constructs its own spanning tree and circumnavigates it to produce a closed curve
which visits all the sub-cells of the tree cells. Completeness is achieved by ensuring
that every cell (which is not occupied by obstacles and is accessible from at least one
of the robots’ initial positions) will have a tree edge connection from one of the trees.

Theorem 4 (Completeness) Given a grid work-area W A, and k robots, Algorithm
ORMSTC generates k paths ki, such that

⋃
i ki = W A, i.e., the paths cover every cell

within the the work-area.

Proof By induction on the number of robots k.

Induction Base (k = 1) with only one robot,ORMSTC operates exactly like the On-
line STC Algorithm which was proven to be complete for every work-area
(Lemma 3.3 in [10]).

Induction Step Suppose it is known that k − 1 robots completely cover every work-
area. We will prove it for k robots. Without loss of generality, let us consider robot
i. Executing ORMSTC, i will build its local spanning tree edges, and generate a path
to cover some cells. The other robots treat these cells as occupied, exactly as if they
were filled with obstacles. Therefore all the other cells will be part of k − 1 paths and
covered by the k − 1 robots, according the induction relaxation. Robot i treats all the

162 N. Agmon et al.

cells of the other k − 1 robots as occupied cells, so it will completely cover its cells
according to the induction assumption. ��

We now turn to examining ORMSTC with respect to coverage optimality. Previ-
ous work has discussed several optimization criteria [13], one of which is redundancy,
the number of times a sub-cell is visited.
ORMSTC can be shown to be non-redundant. Theorem 5 below guarantees that

the robots visit all the cells only once (if no failure has occurred—see below for a
discussion of robustness). This guarantee is in fact a feature of many spanning-tree
coverage algorithms, as circumnavigating a tree produce a closed curve which visits
all the sub-cells exactly one time [10]. The non-backtracking algorithm in [10], which
is an off-line algorithm, divides this curve between the robots to achieve a complete
non-redundant coverage.

Theorem 5 (Non-Redundancy) If all robots use Algorithm ORMSTC, and no robot
fails, no cell is visited more than once.

Proof If no robot fails, then each robot only covers the cells for which it builds a tree
edge. If there is already a tree edge to a cell, the robot will not enter it (Line 5). Thus
every cell is covered only by a single robot. Since robots never backtrack, every point
is only covered once. ��

As key motivation for using multiple robots comes from robustness concerns, we
prove that AlgorithmORMSTC above is robust to catastrophic failures, where robots
fail and can no longer move. Lines 12–14 and 25–36 guarantee the robustness. If one
robot fails, there is always at least one robot that will detect it and will take the
responsibility to cover its section (see below for formal proof). Conflicts over empty
cells are handled as described above.

Theorem 6 (Robustness) Algorithm ORMSTC guarantees that the coverage will be
completed in finite time even with up to k − 1 robots failing.

Proof Based on the completeness theorem (Theorem 4), any number of robots can
cover the work area. Thus if one or more robots fail, all the cells that were not
occupied by tree edges of the failing robots and are accessible to other live robots
will be covered. So all we have to prove is that cells with tree edges of a dead robot,
or cells which are accessible only to a robot that has died will be covered by another
robot. Such cells may exist due to the structure of the work area, or because the dead
robot covered a group of cells which blocks the access of other robots to free cells.

Cells with existing tree edges of a robot are treated by the other robots as cells
with obstacles. According the completeness theorem, there is at least one robot that
will cover a neighboring cell of one of these cells, thus will have a connection to this
cell. There are two possible cases:

1. A robot failed before a robot that has a connection with it reached the connec-
tion. In this case, lines 13–14 ensures that the dead robot’s covered cells will be
declared free so they will be covered by other robots.

The giving tree: constructing trees for efficient offline and online multi-robot coverage 163

2. A robot fails after all the robots that have a connection with it reached the
connection. In this case, lines 27 and 33 apply, to ensure that the robot’s covered
cells will be declared free so they will be covered by other robots.

In both possible cases, the freeing of cells previously-covered by the dead robot also
makes any cell which was only accessible to the dead robot accessible to others.
Based on the completeness theorem, at least one other robot is guaranteed to reach
all these cells. Thus the algorithm is proved robust. ��

4.2 From Theory to Practice

In real-world settings, some of the assumptions underlying ORMSTC can not be sat-
isfied with certainty, and can only be approximated. This section examines methods
useful for such approximations, and their instantiations with physical robots.

In particular, we have implemented the ORMSTC algorithm for controlling mul-
tiple vacuum cleaning robots, the RV-400 manufactured by Friendly Robotics [9].
Each commercial robot was modified to be controlled by an small Linux-running
computer, sitting on top of it. A generic interface driver for the RV-400 robot was
built in Player[12], and a client program was built to control it. Each robot has several
forward-looking sonar distance sensors, as well as sideways sonars. One robot is
shown Fig. 11.

The ORMSTC algorithm (indeed, many of the STC algorithms) make several
assumptions. First, there are assumptions as to the work area being provided as input.
ORMSTC assumes, for instance, that the work-area has known bounds, and that it is
divided into a grid that is known by all robots (i.e., all robots have the same division).
ORMSTC assumes robots can communicate reliably, and locate themselves within a
global coordinate system. Finally, ORMSTC makes assumptions about the sensory
information available to the robots. In particular, ORMSTC makes the assumption
that each robot can sense obstacles within the front, left, and right 4D cells.

One challenging assumption is that of a global coordinate system that all robots
can locate themselves within. In outdoor environments, a GPS signal may in principle
be used for such purposes (note that the position only has to be known within the
resolution of a sub-cell). However, in circumstances where a global location sensor
(such as the GPS) is unavailable, a different approach is needed. In particular, this is
true in the indoor environments in which the vacuum cleaning RV-400 is to operate.

Fig. 11 RV-400 robot used in
initial experiments

164 N. Agmon et al.

For the purposes of the experiments, we have settled on letting the robots know
their initial location on an arbitrary global coordinate system. Once the robots began
to move, however, they relied solely on their odometry measurements to position
themselves. In the future, we hope to experiments with alternative approaches.

One advantage of ORMSTC in this regard is that its movements are limited to
turns of 90◦ left or right, and to moving forward a fixed distance. This offers an
opportunity for both reducing errors by calibration for odometry errors specific to
this limited range of movements, and by resetting after each step, thus avoiding
accumulative errors. Indeed, this was the approach taken in the experiments (see
next section).

Given a global coordinate system, ORMSTC also requires robots to agree on how
to divide up the work-area into a grid. This agreement is critical: Differences in the
division may cause grids created by different robots to be mis-aligned, or overlap. To
do this, the bounds of the grid have to be known, in principle. Once the bounds are
known, the robots only have to decide on the origin point for the approximate cell
decomposition.

Here again a number of approximating solutions were found to be useful. First,
one can have the robots use a dynamic work-area. During the initialization phase,
the robots determines the maximal distances, Xmax and Ymax (along the X- and Y-
axes, respectively), over all pairs of robots. They then build a temporary rectangular
work-area around them, with sides greater or equal to Xmax, Ymax. As the robots
move about, they will push the boundaries of the work-area into newly discovered
empty cells that lie beyond the bounds, or they will encounter the real bounds of the
work area, which will be regarded as obstacles. A related approximation is to provide
the robots with an initial work-area that is known to be too big, and allow the robots
to discover the actual bounds. This was the technique we utilized.

Robustness against collisions is an additional concern in real-world situations.
Normally, as each robot only covers the path along its own tree, Theorem 5 guar-
antees that no collisions take place. This separation between the paths of different
robots decreases the chance of collisions. In practice, localization, movement errors,
and the way the grid is constructed may cause the robot to move away from its
assigned path, and thus risk collision. We utilized our bumps sensors to cope with
this problem as they are often used as a key signal in vacuum-cleaning robots. Our
heuristic is to simply respond to a bump by moving back a little, waiting for a random
(short) period of time trying again. If bumps occur three times in a row in the same
location, the location is marked as a bound or obstacle. A more complicated solution
which requires more communication is to coordinate between the robots that have
adjacent tree edges when a collision is likely to occur.

A final challenge was offered by the robots’ limited sensor range. The robot is
equipped with ten sonar sensors which are not capable of sensing all three neigh-
boring cells of the robot cell at the same time as described in the algorithm require-
ments before. We solved this problem by dividing the original sensing and movement
phases to three steps. The robot first senses its first cell by turning its sensors towards
it. If it is empty, it continues with the regular algorithm flow. If not, in moves forward
to be as close as possible to the border of the next require-sensing cell and only then it
turns to sense it and continues with the algorithm. The same procedure is performed
to the third neighboring cell. Although it slowed down the algorithm performance
this fix enabled us to run the algorithm in the simulation with the robots constraints,

The giving tree: constructing trees for efficient offline and online multi-robot coverage 165

so it can be applied also to run the algorithm on different real robots with limited
sensors.

4.3 Experimental results

We conducted systematic experiments with our implementation of the ORMSTC
algorithm, to measure its effectiveness in practice with the RV400 robot. The ex-
periments were conducted using the Player/Stage software package [12], a popular
and practical development tool for real robots. Initial experiments were carried out
with physical RV400 robots, to test the accuracy of the simulation environment used.
However, to measure the coverage results accurately, the experiments below were
run in the simulation environment. Figure 12 shows a screen shot of running example
with six robots in one of the simulated environments used in the experiments.

In the experiment, we focused on demonstrating that the ORMSTC algorithm—
and our implementation of it for real robots—indeed manages to effectively use mul-
tiple robots in coverage. We ran our algorithm with 2,4,6,8 and 10 robots. Each team
was tested on two different environments. The Cave environment had irregularly-
shaped obstacles, but was relative open. The Room environment had many rectan-
gular obstacles, and represents a typical indoor office room. For each team size and
environment type, 10 trials were run. The initial positions were randomly selected.

The results are shown in Fig. 13. The X-axis measures the number of robots in
the group. The Y-axis measures the coverage time. The two curves represent the two
different environments. Every data point represents the average ten trials, and the
horizontal line at each point shows the standard deviation in each direction.

Fig. 12 Simulation screen shot
of six robots covering the Cave
environment

166 N. Agmon et al.

Fig. 13 Overall coverage time

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 2 4 6 8 10

A
ve

ra
ge

 c
ov

er
ag

e
tim

e
(s

ec
on

ds
)

Number of Robots

Cave
Room

The results show that in both environments, coverage time decreases in general
when increasing the group size. However, we can also see that the marginal coverage
decreases with the addition of new members. This is a well-known phenomenon (in
economics, but also in robotics). It is due to the overhead imposed on a bigger group
of robots, in collisions avoidance and communication load. The overhead cost can be
also seen when comparing the two coverage times of the two environments. Although
the indoor environment is smaller, the coverage time is almost the same because
there are more obstacles and doors to pass and there is a greater chance of collision
with walls or other robots.

5 Conclusions

Many real-world coverage applications require multiple robots to completely cover
a given work-area, either with a given map of the area (offline coverage) or with
no a-priori knowledge of the area (online coverage). A popular approach for such
coverage rely on the spanning tree coverage method (initially introduced for single
robot coverage by Gabrieli and Rimon in [10]). All of the spanning tree coverage
algorithms initially depend on the selection of a spanning tree.

In this work we have discussed the importance of the structure of the spanning tree
on the coverage time obtained by algorithms that use this tree as base for coverage.
We used the same basic idea for tree generation in both online and offline scenarios:
constructing local subtrees, and from them generating a spanning tree.

First, we have focused on offline coverage. We have shown that the structure of
the tree can have crucial consequence on the coverage time. We have presented
an algorithm for constructing trees that is motivated by the objective similar to the
one defining an optimal tree, a problem that is thought to be NP-hard. We have
extensively tested the influence of the spanning tree structure on the coverage time
obtained by existing algorithms while taking several parameters under consideration.
In these simulations, we compared coverage time obtained by the family of MSTC
algorithms on trees constructed by our heuristic procedure against random trees.
Simulation results show that when using heuristic trees, then the resulted coverage
time obtained by all algorithms were statistically significantly better than the results
obtained by running the algorithms on randomly generated trees. Moreover, the
average coverage time obtained by the simplest algorithm on spanning trees created

The giving tree: constructing trees for efficient offline and online multi-robot coverage 167

by our procedure were, in most cases, better than the average coverage time obtained
by the best algorithm on randomly generated trees.

We then focused on online coverage. We reused the approach we took, to de-
velop an online robust coverage algorithm, the ORMSTC, a multi-robot coverage
algorithm which is able to cover an unknown environment. We analytically showed
thatORMSTC algorithm is complete and robust in face of catastrophic robot failures.
As there is always a gap between theory and practice, we analyzed the assumptions
underlying the algorithmic requirements. We discuss various approximation tech-
niques for these requirements, to allow the algorithm to work in real world situations.
Based on early trials with real-robots, we conducted systematic experiments with
our implementation, to measure the ORMSTC’s effectiveness in practice. The results
show that the algorithm works well in different environments and group sizes.

References

1. Acar, E.U., Choset, H.: Robust sensor-based coverage of unstructured environments. In: Interna-
tional Conference on Intelligent Robots and Systems, pp. 61–68, Maui, 29 October–3 November
2001

2. Agmon, N., Hazon, N., Kaminka, G.A.: Constructing spanning trees for efficient multi-robot
coverage. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Orlando, 15–19 May 2006

3. Batalin, M.A., Sukhatme, G.S.: Spreading out: a local approach to multirobot coverage. In:
Proc. of the 6th Internat. Symposium on Distributed Autonomous Robotic Systems, pp. 373–
382, Fukuoka, 25–27 June 2002

4. Butler, Z.J., Rizzi, A., Hollis, R.L.: Complete distributed coverage of rectilinear environments.
In: Workshop on the Algorithmic Foundations of Robotics, Hanover, March 2000

5. Choset, H.: Coverage for robotics—a survey of recent results. Ann. Math. Artif. Intell. 31(1–4),
113–126 (2001)

6. Colegrave, J., Branch, A.: A case study of autonomous household vacuum cleaner. In:
AIAA/NASA CIRFFSS Conference on Intelligent Robots for Factory Field, Service, and Space,
Houston, 20–24 March 1994

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT, Cambridge (1990)
8. Ferranti, E., Trigoni, N., Levene, M.: Brick & mortar: an on-line multiagent exploration al-

gorithm. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Rome, 10–14 April 2007

9. Friendly Robotics� , Ltd.: Friendly robotics vacuum cleaner. http://www.friendlyrobotics.com/
friendly vac/ (2009)

10. Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot.
Ann. Math. Artif. Intell. 31(1–4), 77–98 (2001)

11. Gabriely, Y., Rimon, E.: Competitive on-line coverage of grid environments by a mobile robot.
Comput. Geom. 24, 197–224 (2003)

12. Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and
distributed sensor systems. In: Proceedings of the International Conference on Advanced Ro-
botics, pp. 317–323, Coimbra, July 2003

13. Hazon, N., Kaminka, G.A.: Redundancy, efficiency and robustness in multi-robot coverage.
In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Barcelona, 18–22 April 2005

14. Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple
robots. Robot. Autonom. Syst. 56(12), 1102–1114 (2008)

15. Hedberg, S.: Robots cleaning up hazardous waste. AI Expert 5, 20–24 (1995)
16. Huang, Y.Y., Cao, Z.L., Hall, E.L.: Region filling operations for mobile robot using computer

graphics. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1607–1614,
San Francisco, April 1986

http://www.friendlyrobotics.com/friendly vac/
http://www.friendlyrobotics.com/friendly vac/

168 N. Agmon et al.

17. Kong, C.S., New, A.P., Rekleitis, I.: Distributed coverage with multi-robot system. In: Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, 15–
19 May 2006

18. Osherovich, E., Yanovski, V., Wagner I.A., Bruckstein, A.M.: Robust and efficient covering of
unknown continuous domains with simple, ant-like a(ge)nts. Technical report, Technion, Israel
(2007)

19. Rekleitis, I., Dudek, G., Milios, E.: Multi-robot exploration of an unknown environment, effi-
ciently reducing the odometry error. In: International Joint Conference in Artificial Intelligence
(IJCAI), vol 2, pp. 1340–1345. Morgan Kaufmann, Nagoya (1997)

20. Rekleitis, I., Dudek, G., Milios, E.: Multi-robot collaboration for robust exploration. Ann. Math.
Artif. Intell. 31, 7–40 (2001)

21. Rekleitis, I., Lee-Shue V., Peng New, A., Choset, H.: Limited communication, multi-robot team
based coverage. InL IEEE International Conference on Robotics and Automation, pp. 3462–
3468. IEEE, Piscataway (2004)

22. Svennebring, J., Koenig, S.: Building terrain-covering ant robots: a feasibility study. Auton.
Robots 16(3), 313–332 (2004)

23. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Mac vs. pc determinism and randomness as
complementary approaches to robotic exploration of continuous unknown domains. Int. J. Rob.
Res. 19(1), 12–31 (2000)

24. Zheng, X., Jain, S., Koenig, S., Kempe, D.: Multi-robot forest coverage. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, 2–6
August 2005

	The giving tree: constructing trees for efficient offline and online multi-robot coverage
	Abstract
	Introduction
	Background
	Constructing trees for offline coverage
	Motivation for building new spanning trees
	Importance of the spanning tree structure

	Tree construction algorithm
	Using different distance measures

	Evaluation
	Determining
	Experimental results, =2

	Online spanning-tree based coverage
	Description of the on-line MSTC algorithm
	From Theory to Practice
	Experimental results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

