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ABSTRACT
The problem of multi-robot patrol in adversarial environ-
ments has been gaining considerable interest during the re-
cent years.In this problem, a team of mobile robots is re-
quired to repeatedly visit some target area in order to detect
penetrations that are controlled by an adversary. Little has
been written so far on the nature of the event of penetration,
and it is commonly assumed that the goal of the robots is to
detect the penetration at any time during its occurrence.In
this paper we offer a new definition of an event, with correla-
tion to a utility function such that the detection of the event
by the robots in different stages of its occurrence grants the
robots a different reward. The goal of the robots is, then, to
maximize their utility from detecting the event.
We provide three different models of events, for which we

describe algorithms for calculating the expected utility from
detecting the event and discuss the how the model influences
the optimality of the patrol algorithm. In the first and basic
model, we assume that there exists a reward function such
that detecting an event at different times grants the robots
with an associated reward. In the second model, the event
might evolve during its occurrence, and this progression cor-
relates to both different rewards and to growing probability
of detection. Finally, we consider a general model, in which
the event can be detected from distance, where the prob-
ability of detection depends both on the distance from the
robot and on the current state of the event. Last, we dis-
cuss how the new event models presented in this paper set
grounds for handling the problem of patrol in heterogeneous
environments, where parts of the perimeter could be more
sensitive to occurrence of events.
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1. INTRODUCTION
The problem of multi-robot patrol in adversarial environ-

ments has been gaining considerable interest during the re-
cent years (e.g. [1, 2, 13, 4, 5]). In this problem, a team
of mobile robots is required to repeatedly visit some target
area in order to detect penetrations. These penetrations are
controlled by an adversary, that is assumed to use the infor-
mation it obtained on the patrolling robots in order to pass
through the patrol path undetected. This problem is of in-
terest mainly due to its immediate applicability in various
security settings.
Little has been written so far on the nature of the event

of penetration. Previous work only assumed that the time
it takes the adversary to penetrate through the patrol path
is not instantaneous. Specifically, Agmon et al. [2] denoted
this penetration time by t. Basilico et al. [5] assume the
intruder passes through the area in some possible paths. The
goal of the robots, in all cases, is to detect the penetration
during the t time units the adversary is along the patrol
path, with no reference to the relative time of detection,
i.e., detecting the adversary at any time rewards the robots
in “success”, and if it was undetected during t time units,
the robots have failed.
It is often the case that the relative time of detection has

high implication on the success or failure of the patrol task,
i.e., the robots should be motivated to detect events as soon
as possible. In addition, the event might evolve and effect
the probability of detecting it. To our knowledge, these
problems remained open challenges, and this paper aims to
solving them.
Therefore in this paper we offer a new definition of an

event (rather than a simple penetration), in which the robots
gain a different utility value (reward) according to the rela-
tive time the event was detected. The goal of the robots is,
then, to maximize their utility from detecting the event.
This new perspective of the event makes the problem suit-

able for additional scenarios such as detection of fire and
leaks of hazardous substances. Such events tend to have an
evolving nature, thus the behavior of the robots, namely the
choice of patrol algorithm, should be defined appropriately.
Here, the nature of the adversary is to model the behavior
of the system in various environments (similar to adversarial
existence in distributed systems [9]). For example, making
guarantees for the performance of the system in a strong
adversarial environment corresponds to modeling the worst
case behavior of the system. Similarly, performing against a
weak adversary correlates to maximizing the expected utility
of the robots under no predicted special threats.
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The main contribution of this paper is threefold. First, it
defines the new event model, and describes possible imple-
mentations of this model. Second, it shows how it is possible
to determine in polynomial time the probability of detecting
an event in these implementations. Finally, it describes the
influence of this new event model and its applications on the
choice of optimal patrol algorithm.
We provide three different models of events, for which we

describe algorithms for calculating the expected utility from
detecting the event. In the first and basic model, we assume
that there exists a reward function such that detecting an
event at time 1 ≤ i ≤ t grants the robots with an associated
reward rwdi. The resulted expected utility is a function
of the chosen patrol algorithm. We then show that when
working in a strong adversarial model, in which the goal
is to maximize the minimal expected utility, in some cases
the optimal patrol algorithm remains the same for all non-
increasing reward function. In addition, we prove that in
a weak adversarial model, in which an event can occur at
any point at random with uniform distribution, a simple
deterministic algorithm is optimal for all possible reward
functions.
We then describe a second model, in which the event

might evolve during the t time units of its occurrence, and
this progression correlates to growing probability of detec-
tion as well as decreasing reward function. Specifically, we
assume that the probability of detecting an event initially
is not 1, and it increases as it evolves. An example for
such events are gas leaks and fires, that are usually initially
spatially limited, thus it is more difficult to detect them.
We describe a polynomial time algorithm for calculating the
expected utility in such cases, and prove that the simple de-
terministic algorithm remains optimal for a weak, random,
adversarial environment.
Finally, we consider a general model, in which the event

can be detected from distance, where the probability of de-
tection depends both on the distance from the robot (proba-
bility decreases as the distance from the root increases), and
on the current state of the event (probability of detection
increases as the event progresses). Also here we describe a
polynomial-time algorithm for calculating the expected util-
ity from detecting the event, and show that in some cases
the deterministic algorithm is no longer optimal in the weak
adversarial model.
Last, we discuss possible implications of the new event

models presented here. Mainly, we discuss how the new
event models set grounds for handling the problem of patrol
in heterogenous environments. In such environments, parts
of the patrol path could be more sensitive to occurrence of
events such as areas that are easier to penetrate or fields
that are more likely to catch fire.

2. RELATED WORK
Systems of multiple robots working together to patrol in

some target area, have been studied in various contexts,
where researches usually concentrate either on optimizing
some frequency criteria by the patrol algorithm [3, 7] or op-
timizing probability of adversarial detection [1, 2, 13].
Agmon et. al. [1, 2] introduced the multi-robot adversar-

ial perimeter patrol along with the robotic model we base
our work upon. They describe an algorithm for finding the
optimal patrol when working in different adversarial mod-
els, mainly the full knowledge adversarial model [1] and the

zero-knowledge adversarial model [2]. They consider also
the case of imperfect sensing, however in their work they
relate to the imperfect sensing capabilities of the robots,
and do not refer to probability of detection that changes as
the event evolves, and their solution to imperfect sensing is
strictly limited to patrolling along an open fence, and does
not refer to perimeters.
This work can be considered as an extension of the work

by Agmon et al. from Markov chains to Markov Decision
Process (MDP) by adding utilities to the system. However
this work does not make use of MDP’s in in a classical man-
ner, but incorporate the Markovian assumptions in dynamic
programming inspired algorithms. Uncertainty in sensing,
as handled in this paper, can lead to comparing this work to
Partially Observable MDP’s (POMDP), such as the work of
Koenig et al. [8] for robot navigation. However, the robots
are not uncertain about their state, and their level of uncer-
tainty (probability of detection) is considered analytically
and solved exactly optimally.
Sak et al. [13] considered multi-agent patrol in general

graphs rather than perimeters, as is our focus here. In con-
trast to our work, they concentrated on an empirical evalu-
ation using a simulation, of several non-deterministic patrol
algorithms, and they do not prove optimality analytically.
Also, they do not make any reference to evolving events or
various probabilities of detecting events as we do here.
Other closely related work is the work by Paruchuri et al.

[11, 10] and Pita et al. [12], which considered the problem
of placing security checkpoints in adversarial environments.
They use policy randomization for the agents’ behavior in
order to maximize their rewards. In their work, the adver-
sary has full knowledge of the agents’ behavior, therefore it
can use it in order to minimize its probability of being caught
in some checkpoint. They again do not consider events that
may evolve, nor do they provide optimal polynomial-time
solutions, as presented herein.
Amigoni et al. [4] and Basilico et al. [6, 5] also used a

game-theoretic approach for determining the optimal strat-
egy for patrolling agents, using leader-follower games. In
their work they consider an environment in which a robot
can move between any two nodes in a graph, with possible
levels of information obtained by the adversary and with
possible paths traveled by the intruder along the graph.
Their solution is suitable for a single robot, and since the
computation of the optimal strategy is exponential, they de-
scribed a heuristic approach for finding a solution.

3. THE ROBOTIC MODEL, ENVIRONMENT
AND THE NEW EVENT MODEL

In the perimeter-patrol problem in adversarial environ-
ments, we are given k homogenous robots that are required
to patrol around a closed polygon, where their goal is to de-
tect penetrations that are controlled by an adversary. The
perimeter of the polygon is divided into N segments, each
of uniform time distance, i.e., the robots travel through one
segment per time cycle.
We base our patrol algorithm on the nondeterministic

framework set by Agmon et al. [2], as follows. At each
time step the robots have two options as to their next move:

Probability of next move =

{
p Go straight;

1− p Turn around
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We assume a realistic movement model of robots in which
turning around is a costly operation (similar to differential
drive robots commonly used in research labs), and model
this cost in time, i.e., when turning around a robot resides in
its current segment for τ time units. For simplicity reasons
we assume herein that τ = 1.
In [2] it was proven that an optimal patrol in both strong

and weak adversarial model requires the robots to maintain
uniform distribution between every two consecutive robots
throughout the execution of the patrol. The optimality proof
of this requirement is based on the fact that the probabil-
ity of detecting penetrations decreases as the distance from
the robot increases, thus by assuring that all robots are uni-
formly placed along the perimeter, it is guaranteed that the
maximal distance between any two robots is minimized. Mo-
tivated by this optimality proof, and also proven later on in
this paper, we require that the robots will be coordinated
in the sense that if decided to turn around, then it is done
simultaneously by all robots. In addition, the robots are re-
quired to be initially spread uniformly along the perimeter
with uniform time distance between every two consecutive
robots along the path. We denote the distance between ev-
ery two consecutive robots by d = N/k.
In the new event-oriented multi-robot patrol problem, we

are given a reward function rwd : {1, . . . , t} → N such that
the robots are rewarded the utility rwdi if the event is de-
tected at time i, 1 ≤ i ≤ t. Generally, we assume that rwdi
is monotonically non-increasing, i.e., rwdi ≥ rwdi+1. This
is a realistic assumption for event detection, as usually we
would prefer detecting events sooner rather than later.
In order to find the optimal patrol algorithm for the robots,

we need to perform the following two steps:

1. Calculate the expected utility for detecting an event at
each segment. This depends on the executed patrol
algorithm, thus is a function of p (probability of going
straight at each time cycle).

2. Calculate the optimal patrol algorithm (characterized
by p), which depends on the adversarial model.

In this paper we will refer to each of these steps, i.e.,
we will describe algorithms for determining the expected
utility for detecting events, and show the influence of the
adversarial model on the optimal choice of p.

3.1 The adversarial model
In previous work in multi-robot patrol in adversarial en-

vironments (e.g. [2, 6]), the nature of the adversary was
well defined. The robots are instructed to patrol along a
path and detect penetrations that are controlled by the ad-
versary. Therefore if assuming a rational adversary, it will
take advantage of the knowledge it obtained on the patrol to
try and penetrate successfully, i.e., without being detected.
Therefore the optimality of the patrol was examined in dif-
ferent adversarial models, where the model vary in the level
of adversarial knowledge of the patrol, mainly zero knowl-
edge or full knowledge.
When discussing events that are not necessarily security-

related, the existence of the adversary takes a new perspec-
tive. In this case, the means of adversary is used to con-
veniently model the behavior of the system (similar to the
classical Byzantine fault model in distributed systems [9]).
A strong adversarial model (similar to the full-knowledge

adversary) corresponds to the worst case behavior of the
system, and an optimal patrol algorithm maximizes the min-
imal expected reward. For example, when considering the
case of fire-detection, the question asked is what is the worst
possible expected utility from fire detection, and the objec-
tive is to maximize this lowest utility as much a possible.
On the other hand, a weak adversarial model (similar to the
zero-knowledge adversary) corresponds to the behavior of
the system when there is no known special threat, thus the
goal is to maximize the total expected utility.
We will therefore discuss the implication of the adversarial

model on the optimal patrol algorithm in the two adversarial
environments: strong and weak.

4. DETERMINING THE EXPECTED UTIL-
ITY - BASIC CASE

In this section we describe a method for determining the
expected utility of the robots from detecting the event during
its occurrence. This value depends on the probability that
some robot will visit the segment during the t time units of
the duration of the event, thus will detect it.
Formally, the expected utility from detecting the event in

section si, 1 ≤ 1 ≤ N , is defined as the probability of de-
tecting the event in segment si at some time j, 1 ≤ j ≤ t
multiplied by the utility (reward) that is gained by the detec-
tion at that stage, i.e., rwdj . We denote the expected utility
from detection at segment si by eudi, and the probability of
visiting si at time j in the segment by pvji .

Initially, we assume the robots have perfect detection ca-
pabilities, i.e., if the event occurs while under the sensorial
range of the robot it will surely detect it. Therefore the
probability of detecting the event during its occurrence in
time j, pvji , is exactly the probability that some robot will
visit segment si at time j of the event.

Therefore eudi =
∑t

j=1 pv
j
i × rwdj .

One of the building blocks upon which the algorithmic
framework described in [2] is based upon, is the fact that
the probability of detection decreases or remains the same
as the distance from a robot decreases, i.e., it is a monotonic
non-increasing function. This fact was used in [1] in prov-
ing that in order to achieve optimal probability of detection
the robots should be uniformly placed (in time) around the
perimeter throughout the execution of the patrol. In order
to use this framework, we are therefore required to show that
the expected utility from detecting events also decreases as
the distance from the a robot increases.

Lemma 1. Given the monotonically non-increasing reward
function rwd : {1, . . . , t} → N , the expected utility from de-
tecting an event decreases or remains the same as the dis-
tance from a robot increases.

Proof. Assume the robot R resides in segment s0, hence
we consider segments s1, . . . st to its right, and segments
s−1, . . . , s−t+1 to its left. Let us consider first the segments
to its right (with positive indexes). It is necessary to show
that eudi > eudi+1. Following [1] that have proven that
as the distance of a segment from the current location of
R increases the probability of arriving there in t time units
decreases, then pvji ≥ pvji+1, ∀j ≤ t. It is possible to arrive
for the first time at segment si at times i, i+2, i+4, . . . and
in segment si+1 at times i + 1, i + 3, . . ., thus since rwd is
monotonically non-increasing, the rewards of the first visits
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at sj+1 are necessarily not larger than the rewards from
first visiting si. The expected utility is, therefore, eudi =∑t

j=1 pv
j
i rwdj ≥ ∑t

j=1 pv
j
i+1rwdj = eudi+1. The segments

to the left are a reflecting image of the segments to the right,
thus the proof follows directly.

In Algorithm 1, we describe the algorithm DetExpectedUtility
for determining the expected utility from detecting an event
at a segment si. The algorithm receives as input the segment
si and the reward function rwd = {rwd1, . . . rwdt}, and calcu-
lates the probability of visiting the segment si at all times.
This algorithm is based on the dynamic-programming in-
spired algorithm described in [1], and works as follows. It
initializes a zero table M with a value 1 in location si. Then
it fills in the rows, one by one, using the Markov chain de-
termining the transitions between states (lines 6− 13 in the
algorithm).
Note that since the robots maintain uniform distance be-

tween them throughout the execution, the entire setting is
symmetric, thus it is not necessary to compute the expected
utility of all segments si, 1 ≤ i ≤ N , but only for d = N/k
segments between every two consecutive robots. The time
complexity of DetExpectedUtility is the time complexity of
filling in the matrix of size O(dt), and as it takes O(i) to fill
in each entry in row i, so altogether the time complexity is
O(d2t2) for each segment, thus O(d3t2) for all d segments.

Algorithm 1 Algorithm DetExpectedUtility(loc, d, t, rwd =
{rwd1, . . . , rwdt})
1: Create matrix Y of size (2d+2)×(t+1), initialized with

0s
2: Set Y [0, sloc] ← 1
3: Fill in all entries in Y gradually using the following rules.
4: for r ← 1 to t do
5: for i ← 1 to d do
6: For each entry Y [r, scwi ], set value to p · Y [r −

1, scwi+1] + (1− p) · Y [r − 1, scci ]
7: For each entry Y[r, s

cc
i ], set value to p·Y [r−1, scci−1]+

(1− p) · Y [r − 1, scwi ]
8: end for
9: For result states, set entry Y [r, sres] = Y [r−1, sres]+

p · rwdi · {Y [r − 1, scw1 ] + Y [r − 1, sccd ]}
10: end for
11: Return Y[t, sres]

5. WHEN EVENTS EVOLVE AND CORRE-
LATE TO SENSING ABILITY

In many cases such as fire spreading and leaks of haz-
ardous substances, it might be very difficult to detect the
event in its early stages, and as the event evolves the proba-
bility of detection increases. In this section we introduce
an algorithm for determining the expected utility of the
robots as a function of the chosen patrol algorithm (p) in
such cases. The input to the problem is the reward function
as well as the probability of detecting the event at every
time i, 1 ≤ i ≤ t. We denote the probability of detection by
pdt = {p1d, . . . , ptd}, where pid is the probability of detecting
the event at time i.
The probability of detecting the event in a segment si in

cases of imperfect detection does not correlate to the prob-
ability of only the first visit at some time j, 1 ≤ j ≤ t (as

seen previously), but to the probability of any visit to si
(since the event is not necessarily detected in the first visit).
Denote by pvji (l) the probability that some robot will visit
segment si at time j of the event for the l’th time. Therefore
the probability of detecting the event is defined as follows.

eudi =
t∑

j=1

(pvji (1) · pjd · rwdj) +
t∑

j=1

{pvji (1) · (1− pjd)}× (1)

{∑t
j=1 pv

j
i (2) · pjd · rwdj + · · · {∑t

j=1 pv
j
i (t) · pjd · rwdj}}

In words, the expected reward is the probability of de-
tecting the event in the first visit—at any possible time
i, 1 ≤ i ≤ t—multiplied by the reward for detection at that
time, plus the probability that it was not detected at the
first visit but later on (second, third, etc.).
As shown in the model in the previous section, a basic

requirement for using the algorithmic framework of multi-
robot patrol is that the expected utility is monotonically
non-increasing. Therefore also in the case of imperfect sens-
ing due to event progression we need to prove that the ex-
pected utility from detecting an event in segment si de-
creases of remains the same as the distance of si from the
robot increases. This will ratify the optimality of maintain-
ing uniform distribution of the robots along the perimeter
throughout the execution also in this model.

Lemma 2. Let S = {s−t+τ , . . . , s−1, s0, s1, . . . , st} be a
sequence of 2t segments, where robot R resides in s0 at time
0. Then ∀i ≥ 0, eudi ≥ eudi+1, and ∀i ≤ 0, eudi ≥ eudi−1.

Proof. First, assume that i > 0 (positive indexes). If
we show that pvji (l) ≥ pvji+1(l) for all j, l, then we are done,
since the reward from visiting segment i and segment i + 1
at time j is the same. We prove that by induction on l.
As the base case, consider l = 1, i.e., we need to show that
pvji (l) ≥ pvji+1(1). This is exactly proven in Lemma 1 in
[1], based on the fact that the movement of the robots is
continuous, therefore in order to get to a segment you must
visit the segments in between (the formal proof uses also the
conditional probability law).
We now assume correctness for l′ < l, and prove that

pvji (l) ≥ pvji+1(l). Denote the probability that a robot
placed at a segment si returns to si within r time units
by xi(r). In our symmetric environment, for every i, j and
l, xi(r) = xj(r). Moreover, ∀r, xi(r) ≥ xi(r − 1). There-
fore pvji (l) can be described as

∑
r+u≤j pv

u
i (l) × xi(r), and

similarly pvli+1 =
∑

r+u≤j pv
u
i+1(l) × xi+1(r). By the in-

duction assumption, pvji (l − 1) ≥ pvji+1(l − 1), and since

xi(r) = xi+1(r), it follows that pvji (l) ≥ pvji+1(l), proving
the lemma for positive indexes.
The negative indexes are a reflecting image of the positive

indexes, but with t− τ time units. Since the induction was
proven for all t values, the proof for the negative indexes
follows directly.

We now describe Algorithm FindUtilityWProb that finds
the expected utility from event detection at segment si.
The algorithm computes the probability of all visits to a
segment during t time units. The algorithm, similar to algo-
rithm DetExpectedUtility, is inspired by dynamic program-
ming. As stated previously, the main difference between
the algorithms is that DetExpectedUtility considers only the
first visit to a segment, where FindUtilityWProb considers
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all visits to a segments and the probability of detecting the
event at that time. Figure 1 describes a representation of
transition between segments as a Markov chain. This is
later translated into constructing gradually a table using the
dynamic programming-inspired rules, as described in Algo-
rithm FindUtilityWProb. The time complexity of the algo-
rithm is similar to the time complexity of DetExpectedUtility
plus the complexity of substituting the pv values in Equation
1, therefore altogether time complexity of O(d3t2)
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Figure 1: Representation of the system as a Markov

chain along with state transition. The robots are initially

placed at the external segments, heading right. State s0
represents the segment currently occupied by a robot.

Algorithm 2 FindUtilityWProb(loc, d, t, rwd =
{rwd1, . . . , rwdt}, pdt = {p1d, . . . , ptd})
1: Create a 0 matrix M of size (2d+ 2)× (t+ 1).
2: Set M [0, loccw] ← 1.
3: Fill all entries in M gradually using the following rules.
4: for r ← 1 to t do
5: for i ← 1 to d (all other states) do
6: For each entry M [r, scwi ] set value to

p ·M [r − 1, scw(i+1 mod d)] + (1− p) ·M [r − 1, scci ].
7: For each entry M [r, scci ] set value to

p ·M [r − 1, scc(i−1 mod d)] + (1− p) ·M [r − 1, scwi ].
8: end for
9: for scw0 and scc0 do
10: Set M [r, scw0 ] ← f × {p · M [r − 1, scw1 ] + (1 − p) ·

M [r − 1, scc0 ]}
11: Set M [r, scc0 ] ← f×{p ·M [r−1, sccd ]+(1−p) ·M [r−

1, scw0 ]}
12: end for
13: pviloc(r) ← polynomial coefficients of f i from sum of

M [r, scw0 ] +M [r, scc0 ], for 1 ≤ i ≤ t.
14: end for
15: Return the result obtained by substituting the pvjloc(r)

values in Equation 1.

6. DETECTING EVOLVING EVENTS FROM
A DISTANCE WITH DIFFERENT PROB-
ABILITIES OF DETECTION

In this section, we introduce an additional generalization
of the event detection model: Detecting events from a dis-
tance, where the probability of detection changes both as the
distance from the event changes, and as the event evolves.
We assume that the probability of detection monotonically
non-increases as the distance from the robot increases.
We assume a robot can sense D − 1 segments beyond its

current segment with some probability greater than 0. The

input to the problem is, therefore, a matrix Md of size D ×
t, such that entry [i, j] ∈ Md is the probability that the
event is detected from distance i at time j of the event. In
addition, the algorithm receives as input the vector rwd =
{rwd1, . . . , rwdt} corresponding to the rewards given to the
robots for detecting the event at tim i, 1 ≤ i ≤ t.

The probability of detecting the event at time i equals
the probability that it did not detect it earlier, multiplied
by the probability that it is detected at this stage. The
probability of being detected at this stage is the probability
of being detected in distance 1, . . . , D from the robot for
the 1st, 2nd, i′th time. Denote the probability of the l’th
occurrence (1 ≤ l ≤ t) of segment si in time j in distance m
(1 ≤ m ≤ D) from some robot by pvji (l,m). Therefore the
equation for determining the expected utility from detecting
the event is as follows.

eudi =
D∑

m=1

(pv1i (1,m) ·Md[m, 1]) · rwd1+ (2)

D∑
m=1

(pv1i (1,m)·(1−Md[m, 1]))×
2∑

l=1

D∑
m=1

(pv2i (l,m)·Md[m, 2]·rwd2)+. . .

. The total number of components is d ·∑t
i=1 i(t− i+ 1) =

O(Dt2)
In order to find the expected utility from detecting an

event at a segment sloc, it is left to calculate pvjloc(l,m), i.e.,
the probability of sloc being under the sensorial range of
some robot at distance m in time j for the l’th time. This is
done using Algorithm FindRangeReward, where the output is
a function of p, after all values of pvjloc(l,m) are substituted
in Equation 2. The time complexity of FindRangeReward is
O(d(d2t2 +Dt2)) = O(d3t2)

7. OPTIMALITY OF THE PATROL ALGO-
RITHM FOR DIFFERENT ADVERSAR-
IAL MODELS

We have presented algorithms for determining the ex-
pected utility from event detection at every segment si,
1 ≤ i ≤ N in various event models. The output of these
algorithms is the expected utility as a function of p, i.e.,
it depends on the choice of the patrol algorithm. Previous
work has shown that the optimality of the patrol algorithm
depends on the level of adversarial knowledge. Specifically,
it was shown that the algorithm MaxiMin [2] maximizes the
minimal probability of penetration detection, hence is op-
timal for strong adversarial models. On the other hand, it
was proven that the simple deterministic algorithm in which
p = 1 maximizes the expected probability of penetration de-
tection throughout the perimeter, thus optimal for a weak
adversarial model in which the adversary chooses its pene-
tration spot at random with uniform distribution. We would
therefore like to examine the optimality of the patrol algo-
rithm in these two extreme adversarial environments: ex-
tremely weak and extremely strong.

7.1 Basic event model - Implication of reward
function on optimality of patrol

Weak adversarial model:
In the weak adversarial model, we assume the events have

a complete random nature, i.e., an event can happen at any
segment with uniform probability. In this case we prove that
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Algorithm 3 FindRangeReward(loc, d, t, L, rwd =
{rwd1, . . . , rwdt},Md)

1: Create matrix X of size (2d+2)×(t+1), initialized with
0s.

2: Set X[0, loccw] ← 1.
3: Initialize the vector Res of size t with 0s.
4: Fill all entries in X gradually using the following rules.
5: for r ← 1 to t do
6: for each entry X[r, scwi ], 1 ≤ i ≤ d do
7: Set u ← p·X[r−1, scwi+1 mod d]+(1−p)·X[r−1, scci ]
8: if i+ L ≥ d then
9: u ← u× fd−i

10: Res[t] ← Res[t] + u
11: end if
12: Set X[r, scwi ] ← u
13: end for
14: for each entry X[r, scci ], 1 ≤ i ≤ d do
15: Set u ← p·X[r−1, scwi+1 mod d]+(1−p)·X[r−1, scci ].
16: if i− L ≤ 0 then
17: u ← u× fi
18: Res[t] ← Res[t] + u
19: end if
20: Set X[r, scci ] ← u
21: end for
22: pvjloc(l,m) ← polynomial coefficient of f l

m of Res[j],
for all 1 ≤ l ≤ t, 0 ≤ m ≤ L (while substituting all
other f l

m′ with 1, m′ 	= m in the equation).
23: end for
24: Return the result obtained by substituting the

pvjloc(l,m) values in Equation 2.

the deterministic algorithm in which p = 1 is optimal when
using any reward function (not necessarily only a monoton-
ically non-decreasing function).

Theorem 3. The optimal patrol algorithm that maximizes
the total expected utility of the robots is the deterministic al-
gorithm (p = 1) for any possible reward function.

Proof. In [2] it was proven that the expected probability
of detection, corresponding to the sum of expected proba-
bilities of first arrival at all segments during t time units,
is maximized for p = 1, i.e., the total expected probability
of arrival is t/d ∀t. Therefore we can conclude that the to-
tal expected probability of first arrival at time t′, for every
t′ ≤ t is highest when p = 1 and equals t′/d, hence the
maximal expected utility can be of value 1/d(rwd1 + rwd2 +
. . .+ rwdt). The total expected utility when p = 1 is defined

as 1/d
∑d

i=1

∑t
j=1 pv

j
i · rwdj = 1 · rwdj , which is exactly the

maximal value for every reward function.

Strong adversarial model:
In case we model the worst-case behavior of the system,

similar to facing a full-knowledge adversary that uses its
knowledge of the patrol to create an event on the weakest
spot of the patrol, we use the MaxiMin algorithm described
in [1]. That algorithm calculates the maximal point in the
lower envelope (integral intersection) of the d curves repre-
senting the functions of probability of penetration detection.
It was shown there that this point is either an intersection
of two or more curves, or a local maxima.
The same algorithm can be used here as well for determin-

ing the point p that corresponds to the maximin point. We

show that in some cases the optimal p remains the same for
any reward function that is monotonically non-increasing.
Specifically, this happens when the duration of the event is
very short relative to the distance between the robots. The
significance of this result is in showing the limitation of the
system in such cases—no matter how the reward function
acts, it cannot influence the final outcome.

Theorem 4. The optimal patrol remains indifferent for
all monotonically non-increasing reward function if t = 
 d

2
�+

1 and t > 2.

Proof. We will show that in case t = 
 d
2
�+ 1, the point

that maximizes the minimal expected utility is obtained in
the local maxima of the curve corresponding to eudt+1. We
then show that this point remains smaller than all other
curves for every non-increasing reward function. By Lemma
1 it follows that eudt+1 ≤ eudt+i∀i > 1. Similarly, eudt ≤
eudj∀j < i, since the expected utility in all d segments cor-
relate to the expected visit of only one robot. Therefore it
suffices to show that eudt+1 is smaller than eudt in the point
of local maxima of eudt+1.

First, assume that d is odd. The probability of first arriv-
ing at segment st+1 is exactly (1 − p)pt−1, hence eudt+1 =
rwdt(1 − p)pt−1. To find the local maxima, we derive this

function and compare to 0, i.e.,
deudt+1

dp
= (t−1)rwdtp

t−2−
trwdtp

t−1 = 0, resulting in a local maxima when p = t−1
t
,

regardless of the value of rwdt+1. Now it is left to show that
when p = t−1

t
, eudt+1 = rwdt(1 − t−1

t
)( t−1

t
)t−1 ≤ eudt =

rwdtp
t = rwdt(

t−1
t
)t, which is true for every t > 1.

If d is even, then the expected utility from detecting an
event in segment st+1 is eudt+1 = (1−p)pt−2rwdt−1. In order
to use Lemma 1 we need first to show that eudt−1 ≥ eudt.
eudt = rwdtp

t−1 ≤ rwdt−1p
t−1 = eudt−1, since we assume

that rwd is monotonically non-increasing. It is left to show
that in the point of local maxima eudt ≥ eudt+ 1. Similar
to the previous derivative, the local maxima is obtained here
when p = t−2

t−1
. Obtaining the value of eudt and eudt+1 at

this point we get that this is true for all t > 2.

Figure 2 demonstrates how different rewards correspond
to different values of p. The curves represent the expected
reward of each of the d segments, and the bold line marks
the lower envelope, i.e., the integral intersection of all curves.
The maximal point in the lower envelope is the value that
maximizes the minimal expected utility of the robots. It
is interesting to see that as we give high weight to the first
several time units relative to the last ones, the optimal prob-
ability p grows closer to 1. However, when given high weight
to too few time units (here rwd1 = 9 and all other rwdi = 1)
or too many of them (in the example rwdi = 9, 1 ≤ i ≤ 8
and rwd9 = 1) the result is closer to the uniform-reward
case. In the example illustrated in Figure 2, d = 12 and
t = 9. In the uniform reward case, the maximin point is
obtained in p = 0.7741, when rwdi = 9, 1 ≤ i ≤ 5 and
rwdj = 1, 6 ≤ j ≤ 9 the optimal p equals 0.925, and when
rwdi = 9, 1 ≤ i ≤ 8 and rwd9 = 1, the optimal p is 0.8577.

7.2 Imperfect detection and weak adversarial
model

When the nature of the event correlates to different proba-
bilities of detection as the event evolves, we would again like
to examine how the expected utility functions correlate to
different adversarial models. In a strong adversarial model,
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Figure 2: Examples of the influence of different re-
wards on the lower envelope and the MaxiMin point.
The curves represent the expected utility as a func-
tion of p, the bold line draws the lower envelope of
the curves, and the arrows points to the maximal
point in the lower envelope (the MaxiMin value).

in which our goal is to maximize the minimal expected util-
ity from event detection, it is possible to use the MaxiMin
algorithm, as described in [1].
A more interesting case is the weak, random, adversarial

model. In Theorem 3 it was shown that in the case of perfect
sensing the simple deterministic algorithm (p = 1) is optimal
regardless of the reward function. The rational behind the
optimality proof of the deterministic algorithm lies in the
fact that it is not worthwhile to go back and revisit segments.
However, in case the probability of detecting the event

is imperfect this argument does not necessarily hold, i.e.,
revisiting a segment does have added value. Moreover, this
is more evident in case the probability of detecting the event
grows as the event evolves, i.e., pi+1

d > pid.
In the following, we show the surprising result that even if

pid < 1, if the event occurs at a random location with uniform
distribution, then it is still best to patrol deterministically
around the perimeter. Moreover, we strengthen our result
by showing that even if the robot makes a post analysis of
its decision to go straight or turn around, it will also decide
to keep on going straight.

Lemma 5. Assume an event occurs at random with uni-
form distribution in any possible segment of the d unoccupied
segments between two robots. Therefore the gain to the util-
ity from event detection by the robots from revisiting a seg-
ment is smaller than the gain from initially visiting a new
segment, for every pjd > 0.

Proof. The gain from revisiting a segment at time j, de-
noted by Gj

r is the probability that the robot did not detect
the event during its first visit multiplied by the probability
that the event indeed occurs at that segment, multiplied by
the reward from detecting the event at time j. Formally,
Gj

r = 1
d
× (1− pld)× pjd × rwdj for some l < j. On the other

hand, the gain from initially visiting a new segment at time
j, denoted by Gj

i is 1
d
× pjd × rwdj . Since pld > 0, it follows

that Gj
r < Gj

i .

Theorem 6 follows directly from Lemma 5.

Theorem 6. In case the probability of detecting an event
increases as the event evolves, and the event may occur at
any spot at random with uniform distribution, the determin-
istic algorithm maximizes the expected utility throughout the
perimeter for all possible values of pdt.

We strengthen this result by showing that it is beneficial
for the robot to keep visiting new segments in case the events
location is determined at random with uniform distribution
(with probability 1/d) even if the robot calculates its ben-
efit post factum, i.e., after visiting a segment. Denote the
probability that the event indeed occurred in segment si by
PNi, and the probability that the robot visited si without
detecting it by NDi. Therefore, by conditional probability
law, if NDi > 0, P (PNi | NDi) =

PNi

⋂
NDi

NDi
=

1/d(1− pjd)

(d− 1)/d+ 1/d(1− pjd)
=

1− pjd
d− pjd

On the other hand, the probability that the event occurred
in segment si+1 knowing that the robot did not detect it in
segment si is

1− 1−p
j
d

d−p
j
d

d− 1
=

1

d− pjd
>

1− pd
d− pd

In other words, the probability of revealing new informa-
tion in visiting a new segment is greater than the probability
of revealing new information from revisiting a segment that
was already visited at least once, even after knowing that
the event was not detected in the revisited segment. The
intuition is that by visiting a new segment, the probability
of event detection grows by pjd, where if the robots revisits
a segment, it carries along with it the probability of arriv-
ing there again, multiplied by pjd. Since the probability of
arriving again is smaller than 1, the gain from revisiting a
segment is smaller.

7.3 Detection from a distance - determinism
not necessarily optimal

An interesting result in the weak adversarial model is seen
in the case where robots can detect an event from ahead
with some probability. Here, the optimality of the deter-
ministic algorithm is no longer absolute. The logic behind
this statement is that if the cost of turning around (in num-
ber of cycles) is smaller than the profit of what the robots
gain (number of new visible segments), then it might be
worthwhile to turn around. Therefore it is possible to prove
optimality of the deterministic algorithm for maximizing the
expected utility only if L ≤ τ , where τ is the time it takes
the robot to turn around.
As an example that demonstrates the fact that the deter-

ministic algorithm is no longer optimal if L > τ , consider
the case in which L = 3, d = 4 , t = 2 and τ = 1. Assume
that the reward function is uniform and that the probability
of detection is uniform and equals 1.The maximal expected
utility is 0.85 and it is obtained for p = 0.5, whereas if p = 1
(deterministic algorithm) the expected utility is only 0.8.

Theorem 7. If the robots can sense ahead with some prob-
ability that can change as the event evolves, the determin-
istic algorithm guarantees the maximal expected utility for
random-uniform events if L− 1 ≤ τ .

The proof of this theorem resembles the proof of Theorem 6
and is omitted due to lack of space.
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8. ON DIFFERENT REWARDS IN DIFFER-
ENT LOCATIONS - A DISCUSSION

Previous work in adversarial planning using game theo-
retic approaches such as the work by Amigoni et al. [6] and
Pita et al. [12] are based on the fact that the adversary
has different utilities that depends on where it decides to
act. On the other hand, the robots have their own utility,
and their solutions try to optimize the utility of the robots.
Their solutions are exponential, thus they provide heuristics
and approximations in order to be able to provide reasonable
solutions in polynomial time. To this point, solutions that
provide optimal patrols computed in polynomial time such
as the work by Agmon et al. [2] do not take into account
possible utilities of the robots nor of the adversary. This
work, therefore, sets important grounds for considering the
utility of the robots.
Consider the case of heterogenous environments, in which

the perimeter has areas that are more vulnerable for a pos-
sibility of events, for example areas that are more likely to
be penetrated through or fields that might catch fire more
easily. If these locations are static, then one might decide
to place cameras for surveillance. However, if this is im-
possible, or the vulnerability might change its location in
time, another solution should be found. In this case, we
suggest using a variation of the basic solution presented in
this paper: adding rewards to the robots for early detection
of events at different locations. It is possible to define dif-
ferent rewards to different segments. However, this breaks
the symmetry of the system, thus it requires to consider all
N segments in the calculation of the expected utility (rather
than d = N/k segments). We intend to further investigate
this aspect and try to improve the time complexity in future
work.

9. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a new approach for han-

dling events in multi-robot perimeter patrol in adversarial
environments. In this new approach, the detection of an
event is associated with reward that depends on the relative
time of detection. We described polynomial-time algorithms
for determining the expected utility from detecting the event
at each point along the perimeter in three different models.
(1) Utility from detection is correlated to the time of detec-
tion. (2) The events’ progression correlates to both different
rewards and to growing probability of detection. (3) The
event can be detected from distance, where the probability
of detection depends both on the distance from the robot
and on the current state of the event. We show how these
models influence on the choice of optimal patrol algorithm in
different adversarial settings, namely, the strong adversarial
model (equivalent to modeling the worst case behavior of
the system) and the weak adversarial model (correlates to
modeling the system when no particular threat is predicted).
Several points are of our interest for future work. First

and foremost, we plan on further developing solutions for
heterogenous environment by exploiting the framework of
rewards presented in this paper. We would also like to ex-
amine the problem of patrol in various graph environments
(trees, grids, general graphs) rather than in linear graphs,
and handling events in patrol in different adversarial envi-
ronments (rather than facing only strong and weak adver-
saries).
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