
Recurrent Neural
Networks

(part 2 -- technical things)
Yoav Goldberg

Concrete RNN
Functions

Recurrent Neural Networks

• Very strong models of sequential data.

• Trainable function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)

Recurrent Neural Networks

• There are different variants (implementations).

• So far, we focused on the interface level.

Recurrent Neural Networks

RNN(s0,x1:n) = sn,yn

xi 2 Rdin , yi 2 Rdout , si 2 Rf(dout)

RNN(s0,x1:n) = sn,yn

si = R(si�1,xi)

yi = O(si)

• Recursively defined.

• There's a vector for every prefix x1:iyi

RNN(s0,x1:n) =s1:n, y1:n

si = R(si�1,xi)

yi = O(si)

xi 2 Rdin , yi 2 Rdout , si 2 Rf(dout)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

xi

yi

sisi�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s0 R,O

x1

y1

R,O

x2

y2

s1
R,O

x3

y3

s2

✓

R,O

x4

y4

s3
R,O

x5

y5

s4
s5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

for every finite input sequence,

can unroll the recursion.

Recurrent Neural Networks
• What do the RNN function look like?

RNN(s0,x1:n) =s1:n, y1:n

si = R(si�1,xi)

yi = O(si)

xi 2 Rdin , yi 2 Rdout , si 2 Rf(dout)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

xi

yi

sisi�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s0 R,O

x1

y1

R,O

x2

y2

s1
R,O

x3

y3

s2

✓

R,O

x4

y4

s3
R,O

x5

y5

s4
s5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• But we can train them.

trained parameters.

define function form
define loss

RCBOW (si�1,xi) = si�1 + xi

(what are the parameters?)

CBOW as an RNN

RCBOW (si�1,xi) = si�1 + xi

(what are the parameters?)

RCBOW (si�1, xi) = si�1 +E[xi]

CBOW as an RNN

RCBOW (si�1,xi) = si�1 + xi

RCBOW (si�1, xi) = si�1 +E[xi]

CBOW as an RNN

Is this a good parameterization?

RCBOW (si�1,xi) = si�1 + xi

CBOW as an RNN

how about this modification?

RCBOW (si�1, xi) = tanh(si�1 +E[xi])

Simple RNN (Elman RNN)

RSRNN (si�1,xi) = tanh(Ws · si�1 +Wx · xi)

Simple RNN (Elman RNN)

RSRNN (si�1,xi) = tanh(Ws · si�1 +Wx · xi)

• Looks very simple.

• Theoretically very powerful.

• In practice not so much (hard to train).

• Why? Vanishing gradients.

Simple RNN (Elman RNN)

RSRNN (si�1,xi) = tanh(Ws · si�1 +Wx · xi)

• RNN as a "computer":  
input xi arrives, memory s is updated.

• In the Elman RNN, entire memory is written at
each time-step.

Another view on behavior:

Simple RNN (Elman RNN)

RSRNN (si�1,xi) = tanh(Ws · si�1 +Wx · xi)

• RNN as a "computer":  
input xi arrives, memory s is updated.

• In the Elman RNN, entire memory is written at
each time-step.

Another view on behavior:

read previous state memory write new input

LSTM RNN
RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

OLSTM (sj) = OLSTM ([cj;hj]) = hj

LSTM RNN

better controlled memory access

continuous gates

Differentiable "Gates"
• The main idea behind the LSTM is that you want to

somehow control the "memory access".

• In a SimpleRNN:

• All the memory gets overwritten

RSRNN (si�1,xi) = tanh(Ws · si�1 +Wx · xi)

read previous state memory write new input

Vector "Gates"
• We'd like to: 

* Selectively read from some memory "cells". 
* Selectively write to some memory "cells".

• A gate function:

•
vector of valuesgate controls access

15.3. GATED ARCHITECTURES 163

and a gate g 2 0, 1d. The computation s0 g � x + (1� g)� (s) “reads” the entries in x
that correspond to the 1 values in g, and writes them to the new memory s0. Then, locations
that weren’t read to are copied from the memory s to the new memory s0 through the use
of the gate (1� g). Figure 15.1 shows this process for updating the memory with positions
2 and 5 from the input:

2

66666664

8
11
3
7
5
15

3

77777775

2

66666664

0
1
0
0
0
1

3

77777775

�

2

66666664

10
11
12
13
14
15

3

77777775

+

2

66666664

1
0
1
1
1
0

3

77777775

�

2

66666664

8
9
3
7
5
8

3

77777775

s0 g x (1� g) s

Figure 15.1: Using binary gate vector g to control access to memory s0.

The gating mechanism described above can serve as a building block in our RNN: gate
vectors can be used to control access to the memory state si. However, we are still missing
two important (and related) components: the gates should not be static, but be controlled
by the current memory state and the input, and their behavior should be learned. This
introduced an obstacle, as learning in our framework entails being di↵erentiable (because
of the backpropagation algorithm) and the binary 0-1 values used in the gates are not
di↵erentiable.

A solution to the above problem is to approximate the hard gating mechanism with a
soft – but di↵erentiable – gating mechanism. To achieve these di↵erentiable gates, we replace
the requirement that g 2 {0, 1}n and allow arbitrary real numbers, g0 2 Rn, which are then
pass through a sigmoid function �(g0). This bounds the value in the range (0, 1), with
most values near the borders. When using the gate �(g0)� x, indices in x corresponding to
near-one values in �(g0) are allowed to pass, while those corresponding to near-zero values
are blocked. The gate values can then be conditioned on the input and the current memory,
and trained using a gradient-based method to perform a desired behavior.

This is controllable gating mechanism is the basis of the LSTM and the GRU ar-
chitectures, to be defined next: at each time step, di↵erentiable gating mechanisms decide
which parts of the inputs will be written to memory, and which parts of memory will be
overwritten (forgotten). This rather abstract description will be made concrete in the next
sections.

(element-wise multiplication)

Vector "Gates"
• We'd like to: 

* Selectively read from some memory "cells". 
* Selectively write to some memory "cells".

• A gate function:

•
vector of valuesgate controls access

15.3. GATED ARCHITECTURES 163

and a gate g 2 0, 1d. The computation s0 g � x + (1� g)� (s) “reads” the entries in x
that correspond to the 1 values in g, and writes them to the new memory s0. Then, locations
that weren’t read to are copied from the memory s to the new memory s0 through the use
of the gate (1� g). Figure 15.1 shows this process for updating the memory with positions
2 and 5 from the input:

2

66666664

8
11
3
7
5
15

3

77777775

2

66666664

0
1
0
0
0
1

3

77777775

�

2

66666664

10
11
12
13
14
15

3

77777775

+

2

66666664

1
0
1
1
1
0

3

77777775

�

2

66666664

8
9
3
7
5
8

3

77777775

s0 g x (1� g) s

Figure 15.1: Using binary gate vector g to control access to memory s0.

The gating mechanism described above can serve as a building block in our RNN: gate
vectors can be used to control access to the memory state si. However, we are still missing
two important (and related) components: the gates should not be static, but be controlled
by the current memory state and the input, and their behavior should be learned. This
introduced an obstacle, as learning in our framework entails being di↵erentiable (because
of the backpropagation algorithm) and the binary 0-1 values used in the gates are not
di↵erentiable.

A solution to the above problem is to approximate the hard gating mechanism with a
soft – but di↵erentiable – gating mechanism. To achieve these di↵erentiable gates, we replace
the requirement that g 2 {0, 1}n and allow arbitrary real numbers, g0 2 Rn, which are then
pass through a sigmoid function �(g0). This bounds the value in the range (0, 1), with
most values near the borders. When using the gate �(g0)� x, indices in x corresponding to
near-one values in �(g0) are allowed to pass, while those corresponding to near-zero values
are blocked. The gate values can then be conditioned on the input and the current memory,
and trained using a gradient-based method to perform a desired behavior.

This is controllable gating mechanism is the basis of the LSTM and the GRU ar-
chitectures, to be defined next: at each time step, di↵erentiable gating mechanisms decide
which parts of the inputs will be written to memory, and which parts of memory will be
overwritten (forgotten). This rather abstract description will be made concrete in the next
sections.

(element-wise multiplication)

Vector "Gates"
• We'd like to: 

* Selectively read from some memory "cells". 
* Selectively write to some memory "cells".

• A gate function:

•

vector of values gate controls access

g 2 {0, 1}dsi�1 � g

si si�1 � gr + xi � gw

Vector "Gates"

• Using the gate function to control access:

•

which cells to read which cells to write

g 2 {0, 1}d

si si�1 � gr + xi � gw

Vector "Gates"

• Using the gate function to control access:

• (can also tie them:)

g 2 {0, 1}d

gr = 1� gw

which cells to read which cells to write

Vector "Gates"

15.3. GATED ARCHITECTURES 163

and a gate g 2 0, 1d. The computation s0 g � x + (1� g)� (s) “reads” the entries in x
that correspond to the 1 values in g, and writes them to the new memory s0. Then, locations
that weren’t read to are copied from the memory s to the new memory s0 through the use
of the gate (1� g). Figure 15.1 shows this process for updating the memory with positions
2 and 5 from the input:

2

66666664

8
11
3
7
5
15

3

77777775

2

66666664

0
1
0
0
0
1

3

77777775

�

2

66666664

10
11
12
13
14
15

3

77777775

+

2

66666664

1
0
1
1
1
0

3

77777775

�

2

66666664

8
9
3
7
5
8

3

77777775

s0 g x (1� g) s

Figure 15.1: Using binary gate vector g to control access to memory s0.

The gating mechanism described above can serve as a building block in our RNN: gate
vectors can be used to control access to the memory state si. However, we are still missing
two important (and related) components: the gates should not be static, but be controlled
by the current memory state and the input, and their behavior should be learned. This
introduced an obstacle, as learning in our framework entails being di↵erentiable (because
of the backpropagation algorithm) and the binary 0-1 values used in the gates are not
di↵erentiable.

A solution to the above problem is to approximate the hard gating mechanism with a
soft – but di↵erentiable – gating mechanism. To achieve these di↵erentiable gates, we replace
the requirement that g 2 {0, 1}n and allow arbitrary real numbers, g0 2 Rn, which are then
pass through a sigmoid function �(g0). This bounds the value in the range (0, 1), with
most values near the borders. When using the gate �(g0)� x, indices in x corresponding to
near-one values in �(g0) are allowed to pass, while those corresponding to near-zero values
are blocked. The gate values can then be conditioned on the input and the current memory,
and trained using a gradient-based method to perform a desired behavior.

This is controllable gating mechanism is the basis of the LSTM and the GRU ar-
chitectures, to be defined next: at each time step, di↵erentiable gating mechanisms decide
which parts of the inputs will be written to memory, and which parts of memory will be
overwritten (forgotten). This rather abstract description will be made concrete in the next
sections.

• Problem with the gates: 
* they are fixed. 
* they don't depend on the input or the output.

• Solution: make them smooth, input dependent, and
trainable.

•

Differentiable "Gates"

"almost 0" 
or 

"almost 1"
function of input and state

gr = �(W · xi +U · si�1)

• Problem with the gates: 
* they are fixed. 
* they don't depend on the input or the output.

• Solution: make them smooth, input dependent, and
trainable.

•

Differentiable "Gates"

"almost 0" 
or 

"almost 1"
function of input and state

gr = �(W · xi +U · si�1)

• The LSTM is a specific combination of gates.

•

LSTM  
(Long short-term Memory)

RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

OLSTM (sj) = OLSTM ([cj;hj]) = hj

• The GRU is a different combination of gates.

•

GRU

(Gated Recurrent Unit)

166 15. CONCRETE RNN ARCHITECTURES

sj = RGRU(sj�1,xj) =(1 � z)� sj�1 + z � s̃j

z =�(xjW
xz + sj�1W

sz)

r =�(xjW
xr + sj�1W

sr)

s̃j =tanh(xjW
xs + (r � sj�1)W

sg)

yj = OGRU(sj) =sj

(15.5)

sj, s̃j 2 Rds , xi 2 Rdx , z, r 2 Rds , Wx� 2 Rdx⇥ds , Ws� 2 Rds⇥ds ,

One gate (r) is used to control access to the previous state sj�1 and compute a proposed up-
date s̃j. The updated state sj (which also serves as the output yj) is then determined based
on an interpolation of the previous state sj�1 and the proposal s̃j, where the proportions
of the interpolation are controlled using the gate z.6

The GRU was shown to be e↵ective in language modeling and machine translation.
However, the jury is still out between the GRU, the LSTM and possible alternative RNN
architectures, and the subject is actively researched. For an empirical exploration of the
GRU and the LSTM architectures, see [Jozefowicz et al., 2015].

15.4 OTHER VARIANTS

Improvements to non-gated architectures The gated architectures of the LSTM and
the GRU help in alleviating the vanishing gradients problem of the Simple RNN, and allow
these RNNs to capture dependencies that span long time ranges. Some researchers explore
simpler architectures than the LSTM and the GRU for achieving similar benefits.

Mikolov et al. [2014] observed that the matrix multiplication si�1Ws coupled with
the nonlinearity g in the update rule R of the Simple RNN causes the state vector si to
undergo large changes at each time step, prohibiting it from remembering information over
long time periods. They propose to split the state vector si into a slow changing component
ci (“context units”) and a fast changing component hi.7 The slow changing component ci is
updated according to a linear interpolation of the input and the previous component: ci =
(1� ↵)xiWx1 + ↵ci�1, where ↵ 2 (0, 1). This update allows ci to accumulate the previous
inputs. The fast changing component hi is updated similarly to the Simple RNN update
rule, but changed to take ci into account as well:8 hi = �(xiWx2 + hi�1Wh + ciWc).

6The states s are often called h in the GRU literature.
7We depart from the notation in [Mikolov et al., 2014] and reuse the symbols used in the LSTM description.
8The update rule diverges from the S-RNN update rule also by fixing the non-linearity to be a sigmoid function,
and by not using a bias term. However, these changes are not discussed as central to the proposal.

• The GRU and the LSTM are very similar ideas.

• Invented independently of the LSTM, almost two
decades later.

GRU vs LSTM

GRU

(Gated Recurrent Unit)

166 15. CONCRETE RNN ARCHITECTURES

sj = RGRU(sj�1,xj) =(1 � z)� sj�1 + z � s̃j

z =�(xjW
xz + sj�1W

sz)

r =�(xjW
xr + sj�1W

sr)

s̃j =tanh(xjW
xs + (r � sj�1)W

sg)

yj = OGRU(sj) =sj

(15.5)

sj, s̃j 2 Rds , xi 2 Rdx , z, r 2 Rds , Wx� 2 Rdx⇥ds , Ws� 2 Rds⇥ds ,

One gate (r) is used to control access to the previous state sj�1 and compute a proposed up-
date s̃j. The updated state sj (which also serves as the output yj) is then determined based
on an interpolation of the previous state sj�1 and the proposal s̃j, where the proportions
of the interpolation are controlled using the gate z.6

The GRU was shown to be e↵ective in language modeling and machine translation.
However, the jury is still out between the GRU, the LSTM and possible alternative RNN
architectures, and the subject is actively researched. For an empirical exploration of the
GRU and the LSTM architectures, see [Jozefowicz et al., 2015].

15.4 OTHER VARIANTS

Improvements to non-gated architectures The gated architectures of the LSTM and
the GRU help in alleviating the vanishing gradients problem of the Simple RNN, and allow
these RNNs to capture dependencies that span long time ranges. Some researchers explore
simpler architectures than the LSTM and the GRU for achieving similar benefits.

Mikolov et al. [2014] observed that the matrix multiplication si�1Ws coupled with
the nonlinearity g in the update rule R of the Simple RNN causes the state vector si to
undergo large changes at each time step, prohibiting it from remembering information over
long time periods. They propose to split the state vector si into a slow changing component
ci (“context units”) and a fast changing component hi.7 The slow changing component ci is
updated according to a linear interpolation of the input and the previous component: ci =
(1� ↵)xiWx1 + ↵ci�1, where ↵ 2 (0, 1). This update allows ci to accumulate the previous
inputs. The fast changing component hi is updated similarly to the Simple RNN update
rule, but changed to take ci into account as well:8 hi = �(xiWx2 + hi�1Wh + ciWc).

6The states s are often called h in the GRU literature.
7We depart from the notation in [Mikolov et al., 2014] and reuse the symbols used in the LSTM description.
8The update rule diverges from the S-RNN update rule also by fixing the non-linearity to be a sigmoid function,
and by not using a bias term. However, these changes are not discussed as central to the proposal.

Proposal state:

• The GRU formulation:

GRU

(Gated Recurrent Unit)

166 15. CONCRETE RNN ARCHITECTURES

sj = RGRU(sj�1,xj) =(1 � z)� sj�1 + z � s̃j

z =�(xjW
xz + sj�1W

sz)

r =�(xjW
xr + sj�1W

sr)

s̃j =tanh(xjW
xs + (r � sj�1)W

sg)

yj = OGRU(sj) =sj

(15.5)

sj, s̃j 2 Rds , xi 2 Rdx , z, r 2 Rds , Wx� 2 Rdx⇥ds , Ws� 2 Rds⇥ds ,

One gate (r) is used to control access to the previous state sj�1 and compute a proposed up-
date s̃j. The updated state sj (which also serves as the output yj) is then determined based
on an interpolation of the previous state sj�1 and the proposal s̃j, where the proportions
of the interpolation are controlled using the gate z.6

The GRU was shown to be e↵ective in language modeling and machine translation.
However, the jury is still out between the GRU, the LSTM and possible alternative RNN
architectures, and the subject is actively researched. For an empirical exploration of the
GRU and the LSTM architectures, see [Jozefowicz et al., 2015].

15.4 OTHER VARIANTS

Improvements to non-gated architectures The gated architectures of the LSTM and
the GRU help in alleviating the vanishing gradients problem of the Simple RNN, and allow
these RNNs to capture dependencies that span long time ranges. Some researchers explore
simpler architectures than the LSTM and the GRU for achieving similar benefits.

Mikolov et al. [2014] observed that the matrix multiplication si�1Ws coupled with
the nonlinearity g in the update rule R of the Simple RNN causes the state vector si to
undergo large changes at each time step, prohibiting it from remembering information over
long time periods. They propose to split the state vector si into a slow changing component
ci (“context units”) and a fast changing component hi.7 The slow changing component ci is
updated according to a linear interpolation of the input and the previous component: ci =
(1� ↵)xiWx1 + ↵ci�1, where ↵ 2 (0, 1). This update allows ci to accumulate the previous
inputs. The fast changing component hi is updated similarly to the Simple RNN update
rule, but changed to take ci into account as well:8 hi = �(xiWx2 + hi�1Wh + ciWc).

6The states s are often called h in the GRU literature.
7We depart from the notation in [Mikolov et al., 2014] and reuse the symbols used in the LSTM description.
8The update rule diverges from the S-RNN update rule also by fixing the non-linearity to be a sigmoid function,
and by not using a bias term. However, these changes are not discussed as central to the proposal.

gate controlling effect
of prev on proposal:

• The GRU formulation:

GRU

(Gated Recurrent Unit)

166 15. CONCRETE RNN ARCHITECTURES

sj = RGRU(sj�1,xj) =(1 � z)� sj�1 + z � s̃j

z =�(xjW
xz + sj�1W

sz)

r =�(xjW
xr + sj�1W

sr)

s̃j =tanh(xjW
xs + (r � sj�1)W

sg)

yj = OGRU(sj) =sj

(15.5)

sj, s̃j 2 Rds , xi 2 Rdx , z, r 2 Rds , Wx� 2 Rdx⇥ds , Ws� 2 Rds⇥ds ,

One gate (r) is used to control access to the previous state sj�1 and compute a proposed up-
date s̃j. The updated state sj (which also serves as the output yj) is then determined based
on an interpolation of the previous state sj�1 and the proposal s̃j, where the proportions
of the interpolation are controlled using the gate z.6

The GRU was shown to be e↵ective in language modeling and machine translation.
However, the jury is still out between the GRU, the LSTM and possible alternative RNN
architectures, and the subject is actively researched. For an empirical exploration of the
GRU and the LSTM architectures, see [Jozefowicz et al., 2015].

15.4 OTHER VARIANTS

Improvements to non-gated architectures The gated architectures of the LSTM and
the GRU help in alleviating the vanishing gradients problem of the Simple RNN, and allow
these RNNs to capture dependencies that span long time ranges. Some researchers explore
simpler architectures than the LSTM and the GRU for achieving similar benefits.

Mikolov et al. [2014] observed that the matrix multiplication si�1Ws coupled with
the nonlinearity g in the update rule R of the Simple RNN causes the state vector si to
undergo large changes at each time step, prohibiting it from remembering information over
long time periods. They propose to split the state vector si into a slow changing component
ci (“context units”) and a fast changing component hi.7 The slow changing component ci is
updated according to a linear interpolation of the input and the previous component: ci =
(1� ↵)xiWx1 + ↵ci�1, where ↵ 2 (0, 1). This update allows ci to accumulate the previous
inputs. The fast changing component hi is updated similarly to the Simple RNN update
rule, but changed to take ci into account as well:8 hi = �(xiWx2 + hi�1Wh + ciWc).

6The states s are often called h in the GRU literature.
7We depart from the notation in [Mikolov et al., 2014] and reuse the symbols used in the LSTM description.
8The update rule diverges from the S-RNN update rule also by fixing the non-linearity to be a sigmoid function,
and by not using a bias term. However, these changes are not discussed as central to the proposal.

blend of old state and
proposal state

GRU

(Gated Recurrent Unit)

166 15. CONCRETE RNN ARCHITECTURES

sj = RGRU(sj�1,xj) =(1 � z)� sj�1 + z � s̃j

z =�(xjW
xz + sj�1W

sz)

r =�(xjW
xr + sj�1W

sr)

s̃j =tanh(xjW
xs + (r � sj�1)W

sg)

yj = OGRU(sj) =sj

(15.5)

sj, s̃j 2 Rds , xi 2 Rdx , z, r 2 Rds , Wx� 2 Rdx⇥ds , Ws� 2 Rds⇥ds ,

One gate (r) is used to control access to the previous state sj�1 and compute a proposed up-
date s̃j. The updated state sj (which also serves as the output yj) is then determined based
on an interpolation of the previous state sj�1 and the proposal s̃j, where the proportions
of the interpolation are controlled using the gate z.6

The GRU was shown to be e↵ective in language modeling and machine translation.
However, the jury is still out between the GRU, the LSTM and possible alternative RNN
architectures, and the subject is actively researched. For an empirical exploration of the
GRU and the LSTM architectures, see [Jozefowicz et al., 2015].

15.4 OTHER VARIANTS

Improvements to non-gated architectures The gated architectures of the LSTM and
the GRU help in alleviating the vanishing gradients problem of the Simple RNN, and allow
these RNNs to capture dependencies that span long time ranges. Some researchers explore
simpler architectures than the LSTM and the GRU for achieving similar benefits.

Mikolov et al. [2014] observed that the matrix multiplication si�1Ws coupled with
the nonlinearity g in the update rule R of the Simple RNN causes the state vector si to
undergo large changes at each time step, prohibiting it from remembering information over
long time periods. They propose to split the state vector si into a slow changing component
ci (“context units”) and a fast changing component hi.7 The slow changing component ci is
updated according to a linear interpolation of the input and the previous component: ci =
(1� ↵)xiWx1 + ↵ci�1, where ↵ 2 (0, 1). This update allows ci to accumulate the previous
inputs. The fast changing component hi is updated similarly to the Simple RNN update
rule, but changed to take ci into account as well:8 hi = �(xiWx2 + hi�1Wh + ciWc).

6The states s are often called h in the GRU literature.
7We depart from the notation in [Mikolov et al., 2014] and reuse the symbols used in the LSTM description.
8The update rule diverges from the S-RNN update rule also by fixing the non-linearity to be a sigmoid function,
and by not using a bias term. However, these changes are not discussed as central to the proposal.

gate for controlling
 the blend

GRU

(Gated Recurrent Unit)

166 15. CONCRETE RNN ARCHITECTURES

sj = RGRU(sj�1,xj) =(1 � z)� sj�1 + z � s̃j

z =�(xjW
xz + sj�1W

sz)

r =�(xjW
xr + sj�1W

sr)

s̃j =tanh(xjW
xs + (r � sj�1)W

sg)

yj = OGRU(sj) =sj

(15.5)

sj, s̃j 2 Rds , xi 2 Rdx , z, r 2 Rds , Wx� 2 Rdx⇥ds , Ws� 2 Rds⇥ds ,

One gate (r) is used to control access to the previous state sj�1 and compute a proposed up-
date s̃j. The updated state sj (which also serves as the output yj) is then determined based
on an interpolation of the previous state sj�1 and the proposal s̃j, where the proportions
of the interpolation are controlled using the gate z.6

The GRU was shown to be e↵ective in language modeling and machine translation.
However, the jury is still out between the GRU, the LSTM and possible alternative RNN
architectures, and the subject is actively researched. For an empirical exploration of the
GRU and the LSTM architectures, see [Jozefowicz et al., 2015].

15.4 OTHER VARIANTS

Improvements to non-gated architectures The gated architectures of the LSTM and
the GRU help in alleviating the vanishing gradients problem of the Simple RNN, and allow
these RNNs to capture dependencies that span long time ranges. Some researchers explore
simpler architectures than the LSTM and the GRU for achieving similar benefits.

Mikolov et al. [2014] observed that the matrix multiplication si�1Ws coupled with
the nonlinearity g in the update rule R of the Simple RNN causes the state vector si to
undergo large changes at each time step, prohibiting it from remembering information over
long time periods. They propose to split the state vector si into a slow changing component
ci (“context units”) and a fast changing component hi.7 The slow changing component ci is
updated according to a linear interpolation of the input and the previous component: ci =
(1� ↵)xiWx1 + ↵ci�1, where ↵ 2 (0, 1). This update allows ci to accumulate the previous
inputs. The fast changing component hi is updated similarly to the Simple RNN update
rule, but changed to take ci into account as well:8 hi = �(xiWx2 + hi�1Wh + ciWc).

6The states s are often called h in the GRU literature.
7We depart from the notation in [Mikolov et al., 2014] and reuse the symbols used in the LSTM description.
8The update rule diverges from the S-RNN update rule also by fixing the non-linearity to be a sigmoid function,
and by not using a bias term. However, these changes are not discussed as central to the proposal.

• The LSTM is formulation:

•

LSTM  
(Long short-term Memory)

RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

OLSTM (sj) = OLSTM ([cj;hj]) = hj

• The LSTM is formulation:

•

LSTM  
(Long short-term Memory)

RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

"forget"
"output"

"input"
"y"

input repr

OLSTM (sj) = OLSTM ([cj;hj]) = hj

• The gated architecture also helps the vanishing
gradients problems.

• For a good explanation, see Kyunghyun Cho's
notes: 
http://arxiv.org/abs/1511.07916 sections 4.2, 4.3

• Chris Olah's blog post (link in class website)

Read More

http://arxiv.org/abs/1511.07916

• Many other variants exist.

• Mostly perform similarly to each other.

• Different tasks may work better with different
variants.

• The important idea is the differentiable gates.

Other Variants

• There ARE formal difference in power between
the GRU and the LSTM.

• The LSTM can count, the GRU cannot.  
See paper by Weiss, Goldberg and Yahav in
reading material.  
https://arxiv.org/abs/1805.04908

Differences?

https://arxiv.org/abs/1805.04908

Dropout in RNNs

• Still an open question how to perform well.

• One suggestion:

Dropout in RNNs

168 15. CONCRETE RNN ARCHITECTURES

xt

yt

xt�1

yt�1

xt+1

yt+1

(a) Naive dropout RNN

xt

yt

xt�1

yt�1

xt+1

yt+1

(b) Variational RNN

Figure 1: Depiction of the dropout technique following our Bayesian interpretation (right)
compared to the standard technique in the field (left). Each square represents an RNN unit, with
horizontal arrows representing time dependence (recurrent connections). Vertical arrows represent
the input and output to each RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. Dashed lines correspond to standard
connections with no dropout. Current techniques (naive dropout, left) use different masks at different
time steps, with no dropout on the recurrent layers. The proposed technique (Variational RNN, right)
uses the same dropout mask at each time step, including the recurrent layers.

zero and small variances) will lead to a tractable optimisation objective. Optimising this objective is
identical to performing a new variant of dropout in the respective RNNs.

In the new dropout variant, we repeat the same dropout mask at each time step for both inputs,
outputs, and recurrent layers (drop the same network units at each time step). This is in contrast to the
existing ad hoc techniques where different dropout masks are sampled at each time step for the inputs
and outputs alone (the use of different masks with the recurrent connections leads to deteriorated
performance). The method and its relation to existing techniques is depicted in figure 1. When used
with discrete inputs (i.e. words) we place a distribution over the word embeddings as well. Dropout
in the word-based model corresponds then to randomly dropping word types in the sentence, and
might be interpreted as forcing the model not to rely on single words for its task.

We next survey related literature and background material, and then formalise our approximate
inference for the Variational RNN, resulting in the dropout variant proposed above. Experimental
results are presented thereafter.

2 Related Research

In the past few years a considerable body of work has been collected demonstrating the negative
effects of a naive application of dropout in RNNs’ recurrent connections. Pachitariu and Sahani [7],
working with language models, reason that noise added in the recurrent connections of an RNN leads
to model instabilities. Instead, they add noise to the decoding part of the model alone. Bayer et al. [8]
apply a deterministic approximation of dropout (fast dropout) in RNNs. They reason that with dropout,
the RNN’s dynamics change dramatically, and that dropout should be applied to the “non-dynamic”
parts of the model – connections feeding from the hidden layer to the output layer. Pham et al. [9]
assess dropout with handwriting recognition tasks. They conclude that dropout in recurrent layers
disrupts the RNN’s ability to model sequences, and that dropout should be applied to feed-forward
connections and not to recurrent connections. The work by Zaremba, Sutskever, and Vinyals [4] was
developed in parallel to Pham et al. [9]. Zaremba et al. [4] assess the performance of dropout in RNNs
on a wide series of tasks. They show that applying dropout to the non-recurrent connections alone
results in improved performance, and provide (as yet unbeaten) state-of-the-art results in language
modelling on the Penn Treebank. They reason that without dropout only small models were used
in the past in order to avoid overfitting, whereas with the application of dropout larger models can
be used, leading to improved results. This work is considered a reference implementation by many
(and we compare to this as a baseline below). Bluche et al. [10] extend on the previous body of work
and perform exploratory analysis of the performance of dropout before, inside, and after the RNN’s
unit. They provide mixed results, not showing significant improvement on existing techniques. More
recently, Moon et al. [19] suggested a new variant of dropout in RNNs in the speech recognition

2

Figure 15.2: Gal’s proposal for RNN dropout (b), vs the previous suggestion by Zaremba (a).

Figure from Gal [2015], used with permission. Each square represents an RNN unit, with hori-

zontal arrows representing time dependence (recurrent connections). Vertical arrows represent

the input and output to each RNN unit. Coloured connections represent dropped-out inputs,

with di↵erent colours corresponding to di↵erent dropout masks. Dashed lines correspond to

standard connections with no dropout. Previous techniques (naive dropout, left) use di↵erent

masks at di↵erent time steps, with no dropout on the recurrent layers. Gal’s proposed technique

(Variational RNN, right) uses the same dropout mask at each time step, including the recurrent

layers.

The variational-RNN dropout method of Gal is the current best-practice for applying
dropout in RNNs.

Another recent proposal: ZoneOut
each color is a different random dropout mask

• Still an open question how to perform well.

• Yarin Gal's Dropout:

Dropout in RNNs

168 15. CONCRETE RNN ARCHITECTURES

xt

yt

xt�1

yt�1

xt+1

yt+1

(a) Naive dropout RNN

xt

yt

xt�1

yt�1

xt+1

yt+1

(b) Variational RNN

Figure 1: Depiction of the dropout technique following our Bayesian interpretation (right)
compared to the standard technique in the field (left). Each square represents an RNN unit, with
horizontal arrows representing time dependence (recurrent connections). Vertical arrows represent
the input and output to each RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. Dashed lines correspond to standard
connections with no dropout. Current techniques (naive dropout, left) use different masks at different
time steps, with no dropout on the recurrent layers. The proposed technique (Variational RNN, right)
uses the same dropout mask at each time step, including the recurrent layers.

zero and small variances) will lead to a tractable optimisation objective. Optimising this objective is
identical to performing a new variant of dropout in the respective RNNs.

In the new dropout variant, we repeat the same dropout mask at each time step for both inputs,
outputs, and recurrent layers (drop the same network units at each time step). This is in contrast to the
existing ad hoc techniques where different dropout masks are sampled at each time step for the inputs
and outputs alone (the use of different masks with the recurrent connections leads to deteriorated
performance). The method and its relation to existing techniques is depicted in figure 1. When used
with discrete inputs (i.e. words) we place a distribution over the word embeddings as well. Dropout
in the word-based model corresponds then to randomly dropping word types in the sentence, and
might be interpreted as forcing the model not to rely on single words for its task.

We next survey related literature and background material, and then formalise our approximate
inference for the Variational RNN, resulting in the dropout variant proposed above. Experimental
results are presented thereafter.

2 Related Research

In the past few years a considerable body of work has been collected demonstrating the negative
effects of a naive application of dropout in RNNs’ recurrent connections. Pachitariu and Sahani [7],
working with language models, reason that noise added in the recurrent connections of an RNN leads
to model instabilities. Instead, they add noise to the decoding part of the model alone. Bayer et al. [8]
apply a deterministic approximation of dropout (fast dropout) in RNNs. They reason that with dropout,
the RNN’s dynamics change dramatically, and that dropout should be applied to the “non-dynamic”
parts of the model – connections feeding from the hidden layer to the output layer. Pham et al. [9]
assess dropout with handwriting recognition tasks. They conclude that dropout in recurrent layers
disrupts the RNN’s ability to model sequences, and that dropout should be applied to feed-forward
connections and not to recurrent connections. The work by Zaremba, Sutskever, and Vinyals [4] was
developed in parallel to Pham et al. [9]. Zaremba et al. [4] assess the performance of dropout in RNNs
on a wide series of tasks. They show that applying dropout to the non-recurrent connections alone
results in improved performance, and provide (as yet unbeaten) state-of-the-art results in language
modelling on the Penn Treebank. They reason that without dropout only small models were used
in the past in order to avoid overfitting, whereas with the application of dropout larger models can
be used, leading to improved results. This work is considered a reference implementation by many
(and we compare to this as a baseline below). Bluche et al. [10] extend on the previous body of work
and perform exploratory analysis of the performance of dropout before, inside, and after the RNN’s
unit. They provide mixed results, not showing significant improvement on existing techniques. More
recently, Moon et al. [19] suggested a new variant of dropout in RNNs in the speech recognition

2

Figure 15.2: Gal’s proposal for RNN dropout (b), vs the previous suggestion by Zaremba (a).

Figure from Gal [2015], used with permission. Each square represents an RNN unit, with hori-

zontal arrows representing time dependence (recurrent connections). Vertical arrows represent

the input and output to each RNN unit. Coloured connections represent dropped-out inputs,

with di↵erent colours corresponding to di↵erent dropout masks. Dashed lines correspond to

standard connections with no dropout. Previous techniques (naive dropout, left) use di↵erent

masks at di↵erent time steps, with no dropout on the recurrent layers. Gal’s proposed technique

(Variational RNN, right) uses the same dropout mask at each time step, including the recurrent

layers.

The variational-RNN dropout method of Gal is the current best-practice for applying
dropout in RNNs.

Another recent proposal: ZoneOut
each color is a different random dropout mask

• Still an open question how to perform well.

• Yarin Gal's Dropout:

Dropout in RNNs

168 15. CONCRETE RNN ARCHITECTURES

xt

yt

xt�1

yt�1

xt+1

yt+1

(a) Naive dropout RNN

xt

yt

xt�1

yt�1

xt+1

yt+1

(b) Variational RNN

Figure 1: Depiction of the dropout technique following our Bayesian interpretation (right)
compared to the standard technique in the field (left). Each square represents an RNN unit, with
horizontal arrows representing time dependence (recurrent connections). Vertical arrows represent
the input and output to each RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. Dashed lines correspond to standard
connections with no dropout. Current techniques (naive dropout, left) use different masks at different
time steps, with no dropout on the recurrent layers. The proposed technique (Variational RNN, right)
uses the same dropout mask at each time step, including the recurrent layers.

zero and small variances) will lead to a tractable optimisation objective. Optimising this objective is
identical to performing a new variant of dropout in the respective RNNs.

In the new dropout variant, we repeat the same dropout mask at each time step for both inputs,
outputs, and recurrent layers (drop the same network units at each time step). This is in contrast to the
existing ad hoc techniques where different dropout masks are sampled at each time step for the inputs
and outputs alone (the use of different masks with the recurrent connections leads to deteriorated
performance). The method and its relation to existing techniques is depicted in figure 1. When used
with discrete inputs (i.e. words) we place a distribution over the word embeddings as well. Dropout
in the word-based model corresponds then to randomly dropping word types in the sentence, and
might be interpreted as forcing the model not to rely on single words for its task.

We next survey related literature and background material, and then formalise our approximate
inference for the Variational RNN, resulting in the dropout variant proposed above. Experimental
results are presented thereafter.

2 Related Research

In the past few years a considerable body of work has been collected demonstrating the negative
effects of a naive application of dropout in RNNs’ recurrent connections. Pachitariu and Sahani [7],
working with language models, reason that noise added in the recurrent connections of an RNN leads
to model instabilities. Instead, they add noise to the decoding part of the model alone. Bayer et al. [8]
apply a deterministic approximation of dropout (fast dropout) in RNNs. They reason that with dropout,
the RNN’s dynamics change dramatically, and that dropout should be applied to the “non-dynamic”
parts of the model – connections feeding from the hidden layer to the output layer. Pham et al. [9]
assess dropout with handwriting recognition tasks. They conclude that dropout in recurrent layers
disrupts the RNN’s ability to model sequences, and that dropout should be applied to feed-forward
connections and not to recurrent connections. The work by Zaremba, Sutskever, and Vinyals [4] was
developed in parallel to Pham et al. [9]. Zaremba et al. [4] assess the performance of dropout in RNNs
on a wide series of tasks. They show that applying dropout to the non-recurrent connections alone
results in improved performance, and provide (as yet unbeaten) state-of-the-art results in language
modelling on the Penn Treebank. They reason that without dropout only small models were used
in the past in order to avoid overfitting, whereas with the application of dropout larger models can
be used, leading to improved results. This work is considered a reference implementation by many
(and we compare to this as a baseline below). Bluche et al. [10] extend on the previous body of work
and perform exploratory analysis of the performance of dropout before, inside, and after the RNN’s
unit. They provide mixed results, not showing significant improvement on existing techniques. More
recently, Moon et al. [19] suggested a new variant of dropout in RNNs in the speech recognition

2

Figure 15.2: Gal’s proposal for RNN dropout (b), vs the previous suggestion by Zaremba (a).

Figure from Gal [2015], used with permission. Each square represents an RNN unit, with hori-

zontal arrows representing time dependence (recurrent connections). Vertical arrows represent

the input and output to each RNN unit. Coloured connections represent dropped-out inputs,

with di↵erent colours corresponding to di↵erent dropout masks. Dashed lines correspond to

standard connections with no dropout. Previous techniques (naive dropout, left) use di↵erent

masks at di↵erent time steps, with no dropout on the recurrent layers. Gal’s proposed technique

(Variational RNN, right) uses the same dropout mask at each time step, including the recurrent

layers.

The variational-RNN dropout method of Gal is the current best-practice for applying
dropout in RNNs.

Another recent proposal: ZoneOut
each color is a different random dropout mask

• Most toolkits require a fixed computation graph
for all examples.

• But RNNs have different input lengths. What do
we do?

• Option 1:  
Use a tool that does not pose this limitation.

• Option 2: 
Enforce max length + 0 padding for shorter
sequences.

Practicalities

Bi-Directional RNNs

Transducers

Transducers for POS tagging?
Can predict the tag of word i based on words 1,...,i-1, but...

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

Bidirectional RNNs

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

Each state encodes the entire history up to that state.

This is not bad. But what about the future?

Bidirectional RNNs

One RNN runs left to right. 
Another runs right to left.

Encode both future and history of a word.

R
f
,O

f

xthe

concat

y
f
1

s
f
0

R
f
,O

f

xbrown

concat

y
f
2

s
f
1

R
f
,O

f

xfox

concat

y
f
3

s
f
2

R
f
,O

f

xjumped

concat

y
f
4

s
f
3

R
f
,O

f

x⇤

concat

y
f
5

s
f
4 s

f
5

R
b
,O

b
s0s
b
0

y
b
1

R
b
,O

b
s1s
b
1

y
b
2

R
b
,O

b
s2s
b
2

y
b
3

R
b
,O

b
s3s
b
3

y
b
4

R
b
,O

b
s4s
b
4

y
b
5

s
b
5

ythe ybrown yfox yjumped y⇤

Figure 11: BI-RNN over the sentence “the brown fox jumped .”.

looking at the k top-most elements of the stack, the RNN framework can be used to provide
a fixed-sized vector encoding of the entire stack.

The main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting
in a final encoding of the entire stack. In order to do this computation e�ciently (without
performing an O(n) stack encoding operation each time the stack changes), the RNN state
is maintained together with the stack state. If the stack was push-only, this would be
trivial: whenever a new element x is pushed into the stack, the corresponding vector x
will be used together with the RNN state si in order to obtain a new state si+1. Dealing
with pop operation is more challenging, but can be solved by using the persistent-stack
data-structure (Okasaki, 1999; Goldberg, Zhao, & Huang, 2013). Persistent, or immutable,
data-structures keep old versions of themselves intact when modified. The persistent stack
construction represents a stack as a pointer to the head of a linked list. An empty stack is
the empty list. The push operation appends an element to the list, returning the new head.
The pop operation then returns the parent of the head, but keeping the original list intact.
From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying
this procedure throughout the lifetime of the stack results in a tree, where the root is an
empty stack and each path from a node to the root represents an intermediary stack state.
Figure 12 provides an example of such a tree. The same process can be applied in the
computation graph construction, creating an RNN with a tree structure instead of a chain
structure. Backpropagating the error from a given node will then a↵ect all the elements
that participated in the stack when the node was created, in order. Figure 13 shows the
computation graph for the stack-RNN corresponding to the last state in Figure 12. This
modeling approach was proposed independently by Dyer et al and Watanabe et al (Dyer
et al., 2015; Watanabe & Sumita, 2015) for transition-based dependency parsing.

53

Bidirectional RNNs

One RNN runs left to right. 
Another runs right to left.

Encode both future and history of a word.

R
f
,O

f

xthe

concat

y
f
1

s
f
0

R
f
,O

f

xbrown

concat

y
f
2

s
f
1

R
f
,O

f

xfox

concat

y
f
3

s
f
2

R
f
,O

f

xjumped

concat

y
f
4

s
f
3

R
f
,O

f

x⇤

concat

y
f
5

s
f
4 s

f
5

R
b
,O

b
s0s
b
0

y
b
1

R
b
,O

b
s1s
b
1

y
b
2

R
b
,O

b
s2s
b
2

y
b
3

R
b
,O

b
s3s
b
3

y
b
4

R
b
,O

b
s4s
b
4

y
b
5

s
b
5

ythe ybrown yfox yjumped y⇤

Figure 11: BI-RNN over the sentence “the brown fox jumped .”.

looking at the k top-most elements of the stack, the RNN framework can be used to provide
a fixed-sized vector encoding of the entire stack.

The main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting
in a final encoding of the entire stack. In order to do this computation e�ciently (without
performing an O(n) stack encoding operation each time the stack changes), the RNN state
is maintained together with the stack state. If the stack was push-only, this would be
trivial: whenever a new element x is pushed into the stack, the corresponding vector x
will be used together with the RNN state si in order to obtain a new state si+1. Dealing
with pop operation is more challenging, but can be solved by using the persistent-stack
data-structure (Okasaki, 1999; Goldberg, Zhao, & Huang, 2013). Persistent, or immutable,
data-structures keep old versions of themselves intact when modified. The persistent stack
construction represents a stack as a pointer to the head of a linked list. An empty stack is
the empty list. The push operation appends an element to the list, returning the new head.
The pop operation then returns the parent of the head, but keeping the original list intact.
From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying
this procedure throughout the lifetime of the stack results in a tree, where the root is an
empty stack and each path from a node to the root represents an intermediary stack state.
Figure 12 provides an example of such a tree. The same process can be applied in the
computation graph construction, creating an RNN with a tree structure instead of a chain
structure. Backpropagating the error from a given node will then a↵ect all the elements
that participated in the stack when the node was created, in order. Figure 13 shows the
computation graph for the stack-RNN corresponding to the last state in Figure 12. This
modeling approach was proposed independently by Dyer et al and Watanabe et al (Dyer
et al., 2015; Watanabe & Sumita, 2015) for transition-based dependency parsing.

53

Bidirectional RNNs

One RNN runs left to right. 
Another runs right to left.

Encode both future and history of a word.

R
f
,O

f

xthe

concat

y
f
1

s
f
0

R
f
,O

f

xbrown

concat

y
f
2

s
f
1

R
f
,O

f

xfox

concat

y
f
3

s
f
2

R
f
,O

f

xjumped

concat

y
f
4

s
f
3

R
f
,O

f

x⇤

concat

y
f
5

s
f
4 s

f
5

R
b
,O

b
s0s
b
0

y
b
1

R
b
,O

b
s1s
b
1

y
b
2

R
b
,O

b
s2s
b
2

y
b
3

R
b
,O

b
s3s
b
3

y
b
4

R
b
,O

b
s4s
b
4

y
b
5

s
b
5

ythe ybrown yfox yjumped y⇤

Figure 11: BI-RNN over the sentence “the brown fox jumped .”.

looking at the k top-most elements of the stack, the RNN framework can be used to provide
a fixed-sized vector encoding of the entire stack.

The main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting
in a final encoding of the entire stack. In order to do this computation e�ciently (without
performing an O(n) stack encoding operation each time the stack changes), the RNN state
is maintained together with the stack state. If the stack was push-only, this would be
trivial: whenever a new element x is pushed into the stack, the corresponding vector x
will be used together with the RNN state si in order to obtain a new state si+1. Dealing
with pop operation is more challenging, but can be solved by using the persistent-stack
data-structure (Okasaki, 1999; Goldberg, Zhao, & Huang, 2013). Persistent, or immutable,
data-structures keep old versions of themselves intact when modified. The persistent stack
construction represents a stack as a pointer to the head of a linked list. An empty stack is
the empty list. The push operation appends an element to the list, returning the new head.
The pop operation then returns the parent of the head, but keeping the original list intact.
From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying
this procedure throughout the lifetime of the stack results in a tree, where the root is an
empty stack and each path from a node to the root represents an intermediary stack state.
Figure 12 provides an example of such a tree. The same process can be applied in the
computation graph construction, creating an RNN with a tree structure instead of a chain
structure. Backpropagating the error from a given node will then a↵ect all the elements
that participated in the stack when the node was created, in order. Figure 13 shows the
computation graph for the stack-RNN corresponding to the last state in Figure 12. This
modeling approach was proposed independently by Dyer et al and Watanabe et al (Dyer
et al., 2015; Watanabe & Sumita, 2015) for transition-based dependency parsing.

53

BI-RNNs

One RNN runs left to right. 
Another runs right to left.

Encode both future and history of a word.

R
f
,O

f

xthe

concat

y
f
1

s
f
0

R
f
,O

f

xbrown

concat

y
f
2

s
f
1

R
f
,O

f

xfox

concat

y
f
3

s
f
2

R
f
,O

f

xjumped

concat

y
f
4

s
f
3

R
f
,O

f

x⇤

concat

y
f
5

s
f
4 s

f
5

R
b
,O

b
s0s
b
0

y
b
1

R
b
,O

b
s1s
b
1

y
b
2

R
b
,O

b
s2s
b
2

y
b
3

R
b
,O

b
s3s
b
3

y
b
4

R
b
,O

b
s4s
b
4

y
b
5

s
b
5

ythe ybrown yfox yjumped y⇤

Figure 11: BI-RNN over the sentence “the brown fox jumped .”.

looking at the k top-most elements of the stack, the RNN framework can be used to provide
a fixed-sized vector encoding of the entire stack.

The main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting
in a final encoding of the entire stack. In order to do this computation e�ciently (without
performing an O(n) stack encoding operation each time the stack changes), the RNN state
is maintained together with the stack state. If the stack was push-only, this would be
trivial: whenever a new element x is pushed into the stack, the corresponding vector x
will be used together with the RNN state si in order to obtain a new state si+1. Dealing
with pop operation is more challenging, but can be solved by using the persistent-stack
data-structure (Okasaki, 1999; Goldberg, Zhao, & Huang, 2013). Persistent, or immutable,
data-structures keep old versions of themselves intact when modified. The persistent stack
construction represents a stack as a pointer to the head of a linked list. An empty stack is
the empty list. The push operation appends an element to the list, returning the new head.
The pop operation then returns the parent of the head, but keeping the original list intact.
From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying
this procedure throughout the lifetime of the stack results in a tree, where the root is an
empty stack and each path from a node to the root represents an intermediary stack state.
Figure 12 provides an example of such a tree. The same process can be applied in the
computation graph construction, creating an RNN with a tree structure instead of a chain
structure. Backpropagating the error from a given node will then a↵ect all the elements
that participated in the stack when the node was created, in order. Figure 13 shows the
computation graph for the stack-RNN corresponding to the last state in Figure 12. This
modeling approach was proposed independently by Dyer et al and Watanabe et al (Dyer
et al., 2015; Watanabe & Sumita, 2015) for transition-based dependency parsing.

53

BI-RNNs

One RNN runs left to right. 
Another runs right to left.

Encode both future and history of a word.

R
f
,O

f

xthe

concat

y
f
1

s
f
0

R
f
,O

f

xbrown

concat

y
f
2

s
f
1

R
f
,O

f

xfox

concat

y
f
3

s
f
2

R
f
,O

f

xjumped

concat

y
f
4

s
f
3

R
f
,O

f

x⇤

concat

y
f
5

s
f
4 s

f
5

R
b
,O

b
s0s
b
0

y
b
1

R
b
,O

b
s1s
b
1

y
b
2

R
b
,O

b
s2s
b
2

y
b
3

R
b
,O

b
s3s
b
3

y
b
4

R
b
,O

b
s4s
b
4

y
b
5

s
b
5

ythe ybrown yfox yjumped y⇤

Figure 11: BI-RNN over the sentence “the brown fox jumped .”.

looking at the k top-most elements of the stack, the RNN framework can be used to provide
a fixed-sized vector encoding of the entire stack.

The main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting
in a final encoding of the entire stack. In order to do this computation e�ciently (without
performing an O(n) stack encoding operation each time the stack changes), the RNN state
is maintained together with the stack state. If the stack was push-only, this would be
trivial: whenever a new element x is pushed into the stack, the corresponding vector x
will be used together with the RNN state si in order to obtain a new state si+1. Dealing
with pop operation is more challenging, but can be solved by using the persistent-stack
data-structure (Okasaki, 1999; Goldberg, Zhao, & Huang, 2013). Persistent, or immutable,
data-structures keep old versions of themselves intact when modified. The persistent stack
construction represents a stack as a pointer to the head of a linked list. An empty stack is
the empty list. The push operation appends an element to the list, returning the new head.
The pop operation then returns the parent of the head, but keeping the original list intact.
From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying
this procedure throughout the lifetime of the stack results in a tree, where the root is an
empty stack and each path from a node to the root represents an intermediary stack state.
Figure 12 provides an example of such a tree. The same process can be applied in the
computation graph construction, creating an RNN with a tree structure instead of a chain
structure. Backpropagating the error from a given node will then a↵ect all the elements
that participated in the stack when the node was created, in order. Figure 13 shows the
computation graph for the stack-RNN corresponding to the last state in Figure 12. This
modeling approach was proposed independently by Dyer et al and Watanabe et al (Dyer
et al., 2015; Watanabe & Sumita, 2015) for transition-based dependency parsing.

53

an infinite window
 around the word.

BI-RNNs

One RNN runs left to right. 
Another runs right to left.

Encode both future and history of a word.

an infinite window
 around the word.

s0 LFWD

xthe

1

LFWD

xbrown

2

LFWD

xfox

3

LFWD

xjumped

4

yf
4

RREV

xjumped

4

yr
4

RREV

xover

5

RREV

xthe

6

RREV

xdog

7

s0

concat

BiRNN(x1:7, 4) = [yF
4 ;y

R
4]

yF
4 = RNNF (x1:4)

yR
4 = RNNR(x7:4)

"deep RNNs"

RNN can be stacked

deeper is better!

(better how?)

R1,O1

R2,O2

y
1
1

s
1
0

R3,O3

y
2
1

s
2
0

s
3
0

x1

y1

y
3
1

R1,O1

R2,O2

y
1
2

s
1
1

R3,O3

y
2
2

s
2
1

s
3
1

x2

y2

y
3
2

R1,O1

R2,O2

y
1
3

s
1
2

R3,O3

y
2
3

s
2
2

s
3
2

x3

y3

y
3
3

R1,O1

R2,O2

y
1
4

s
1
3

R3,O3

y
2
4

s
2
3

s
3
3

x4

y4

y
3
4

R1,O1

R2,O2

y
1
5

s
1
4

R3,O3

y
2
5

s
2
4

s
3
4

x5

y5

y
3
5

s
1
5

s
2
5

s
3
5

Figure 10: A 3-layer (“deep”) RNN architecture.

10.4 BI-RNN

A useful elaboration of an RNN is a bidirectional-RNN (BI-RNN) (Schuster & Paliwal, 1997;
Graves, 2008).31 Consider the task of sequence tagging over a sentence x1, . . . , xn. An RNN
allows us to compute a function of the ith word xi based on the past – the words x1:i up
to and including it. However, the following words xi:n may also be useful for prediction, as
is evident by the common sliding-window approach in which the focus word is categorized
based on a window of k words surrounding it. Much like the RNN relaxes the Markov
assumption and allows looking arbitrarily back into the past, the BI-RNN relaxes the fixed
window size assumption, allowing to look arbitrarily far at both the past and the future.

Consider an input sequence x1:n. The BI-RNN works by maintaining two separate
states, sfi and sbi for each input position i. The forward state sfi is based on x1,x2, . . . ,xi,
while the backward state sbi is based on xn,xn�1, . . . ,xi. The forward and backward states
are generated by two di↵erent RNNs. The first RNN (Rf , Of) is fed the input sequence
x1:n as is, while the second RNN (Rb, Ob) is fed the input sequence in reverse. The state
representation si is then composed of both the forward and backward states.

The output at position i is based on the concatenation of the two output vectors
yi = [yf

i ;y
b
i] = [Of (sfi);O

b(sbi)], taking into account both the past and the future. The
vector yi can then be used directly for prediction, or fed as part of the input to a more
complex network. While the two RNNs are run independently of each other, the error gra-
dients at position i will flow both forward and backward through the two RNNs. A visual
representation of the BI-RNN architecture is given in Figure 11.

The use of BI-RNNs for sequence tagging was introduced to the NLP community by
Irsoy and Cardie (2014).

10.5 RNNs for Representing Stacks

Some algorithms in language processing, including those for transition-based parsing (Nivre,
2008), require performing feature extraction over a stack. Instead of being confined to

31. When used with a specific RNN architecture such as an LSTM, the model is called BI-LSTM.

52

Deep Bi-RNNs

BI1

BI2

BI3

xthe

ythe

BI1

BI2

BI3

xbrown

ybrown

BI1

BI2

BI3

xfox

yfox

BI1

BI2

BI3

xjumped

yjumped

BI1

BI2

BI3

xover

yover

BI-RNN can also be stacked

(Deep) BI-RNNs

• provide an "infinite" window around a focus word.

• learn to extract what's important.

• easy to train!

• very effective for sequence tagging.

BI

BI

BI

xthe

pred

DET

BI

BI

BI

xbrown

pred

ADJ

BI

BI

BI

xfox

pred

NN

BI

BI

BI

xjumped

pred

VB

BI

BI

BI

xover

pred

IN

Sequence tagger (here, POS)

BI

BI

BI

xthe

pred

DET

BI

BI

BI

xbrown

pred

ADJ

BI

BI

BI

xfox

pred

NN

BI

BI

BI

xjumped

pred

VB

BI

BI

BI

xover

pred

IN

Sequence tagger (here, POS)

RNNs can be easily "nested".

Output of one RNN feeds into another RNN.

BI

BI

BI

xthe

pred

DET

BI

BI

BI

xbrown

pred

ADJ

BI

BI

BI

xfox

pred

NN

BI

BI

BI

xjumped

pred

VB

BI

BI

BI

xover

pred

IN

Sequence tagger (here, POS)

BI

BI

BI

pred

DET

BI

BI

BI

pred

ADJ

BI

BI

BI

pred

NN

BI

BI

BI

pred

VB

BI

BI

BI

pred

IN

xthe xfox xover

R

vn

R

vwvw

R

vovo

R

vrvr

R

vbvb

R

vd

R

veve

R

vpvp

R

vmvm

R

vuvu

R

vjvj

Back-off to char-level RNNs for Unknown Words:
(inspired by Ling et al, Ballesteros, Dyer and Smith)

BI

BI

BI

pred

DET

BI

BI

BI

pred

ADJ

BI

BI

BI

pred

NN

BI

BI

BI

pred

VB

BI

BI

BI

pred

IN

xthe xfox xover

R

vn

R

vwvw

R

vovo

R

vrvr

R

vbvb

R

vd

R

veve

R

vpvp

R

vmvm

R

vuvu

R

vjvj

Back-off to char-level RNNs for Unknown Words:
(inspired by Ling et al, Ballesteros, Dyer and Smith)

Reminder: this network

is just a large computation graph.

Build the graph using a framework,
get gradient-based training for free.

BI

BI

BI

pred

DET

BI

BI

BI

pred

ADJ

BI

BI

BI

pred

NN

BI

BI

BI

pred

VB

BI

BI

BI

pred

IN

xthe xfox xover

R

vn

R

vwvw

R

vovo

R

vrvr

R

vbvb

R

vd

R

veve

R

vpvp

R

vmvm

R

vuvu

R

vjvj

Back-off to char-level RNNs for Unknown Words:
(inspired by Ling et al, Ballesteros, Dyer and Smith)

But RNNs need plenty of data to train on!

POS taggingBut RNNs need plenty of data to train on!

Do they, really?

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

Multilingual Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Models and Auxiliary Loss

Barbara Plank
University of Groningen

The Netherlands
b.plank@rug.nl

Anders Søgaard
University of Copenhagen

Denmark
soegaard@hum.ku.dk

Yoav Goldberg
Bar-Ilan University

Israel
yoav.goldberg@gmail.com

Abstract

Bidirectional long short-term memory (bi-
LSTM) networks have recently proven
successful for various NLP sequence mod-
eling tasks, but little is known about
their reliance to input representations, tar-
get languages, data set size, and label
noise. We address these issues and eval-
uate bi-LSTMs with word, character, and
unicode byte embeddings for POS tag-
ging. We compare bi-LSTMs to tradi-
tional POS taggers across languages and
data sizes. We also present a novel bi-
LSTM model, which combines the POS
tagging loss function with an auxiliary
loss function that accounts for rare words.
The model obtains state-of-the-art perfor-
mance across 22 languages, and works es-
pecially well for morphologically complex
languages. Our analysis suggests that bi-
LSTMs are less sensitive to training data
size and label corruptions (at small noise
levels) than previously assumed.

1 Introduction

Recently, bidirectional long short-term memory
networks (bi-LSTM) (Graves and Schmidhuber,
2005; Hochreiter and Schmidhuber, 1997) have
been used for language modelling (Ling et al.,
2015), POS tagging (Ling et al., 2015; Wang
et al., 2015), transition-based dependency pars-
ing (Ballesteros et al., 2015; Kiperwasser and
Goldberg, 2016), fine-grained sentiment analysis
(Liu et al., 2015), syntactic chunking (Huang et
al., 2015), and semantic role labeling (Zhou and
Xu, 2015). LSTMs are recurrent neural networks
(RNNs) in which layers are designed to prevent
vanishing gradients. Bidirectional LSTMs make a
backward and forward pass through the sequence

before passing on to the next layer. For further de-
tails, see (Goldberg, 2015; Cho, 2015).

We consider using bi-LSTMs for POS tagging.
Previous work on using deep learning-based meth-
ods for POS tagging has focused either on a sin-
gle language (Collobert et al., 2011; Wang et al.,
2015) or a small set of languages (Ling et al.,
2015; Santos and Zadrozny, 2014). Instead we
evaluate our models across 22 languages. In ad-
dition, we compare performance with represen-
tations at different levels of granularity (words,
characters, and bytes). These levels of represen-
tation were previously introduced in different ef-
forts (Chrupała, 2013; Zhang et al., 2015; Ling
et al., 2015; Santos and Zadrozny, 2014; Gillick
et al., 2016; Kim et al., 2015), but a comparative
evaluation was missing.

Moreover, deep networks are often said to re-
quire large volumes of training data. We investi-
gate to what extent bi-LSTMs are more sensitive
to the amount of training data and label noise than
standard POS taggers.

Finally, we introduce a novel model, a bi-LSTM
trained with auxiliary loss. The model jointly pre-
dicts the POS and the log frequency of the next
word. The intuition behind this model is that the
auxiliary loss, being predictive of word frequency,
helps to differentiate the representations of rare
and common words. We indeed observe perfor-
mance gains on rare and out-of-vocabulary words.
These performance gains transfer into general im-
provements for morphologically rich languages.

Contributions In this paper, we a) evaluate the
effectiveness of different representations in bi-
LSTMs, b) compare these models across a large
set of languages and under varying conditions
(data size, label noise) and c) propose a novel bi-
LSTM model with auxiliary loss (LOGFREQ).

ar
X

iv
:1

60
4.

05
52

9v
2

 [c
s.C

L]
 1

9
M

ay
 2

01
6

POS taggingBut RNNs need plenty of data to train on!

Do they, really?

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

POS taggingBut RNNs need plenty of data to train on!

Do they, really?

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

Figure 3: Amount of training data (number of sen-
tences) vs tagging accuracy.

the other taggers with even less data (100 sen-
tences). This shows that the bi-LSTMs often needs
more data than the generative markovian model,
but this is definitely less than what we expected.

Label Noise We investigated the susceptibility
of the models to noise, by artificially corrupting
training labels. Our initial results show that at low
noise rates, bi-LSTMs and TNT are affected sim-
ilarly, their accuracies drop to a similar degree.
Only at higher noise levels (more than 30% cor-
rupted labels), bi-LSTMs are less robust, showing
higher drops in accuracy compared to TNT. This
is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced
by Sutskever et al. (2011) for language model-
ing. Early applications include text classifica-
tion (Chrupała, 2013; Zhang et al., 2015). Re-
cently, these representations were successfully ap-
plied to a range of structured prediction tasks. For
POS tagging, Santos and Zadrozny (2014) were
the first to propose character-based models. They
use a convolutional neural network (CNN; or con-
vnet) and evaluated their model on English (PTB)
and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-
ing carefully designed feature templates. Ling et
al. (2015) extend this line and compare a novel
bi-LSTM model, learning word representations
through character embeddings. They evaluate
their model on a language modeling and POS tag-
ging setup, and show that bi-LSTMs outperform
the CNN approach of Santos and Zadrozny (2014).
Similarly, Labeau et al. (2015) evaluate character
embeddings for German. Bi-LSTMs for POS tag-
ging are also reported in Wang et al. (2015), how-
ever, they only explore word embeddings, ortho-
graphic information and evaluate on WSJ only. A
related study is Cheng et al. (2015) who propose a
multi-task RNN for named entity recognition by
jointly predicting the next token and current to-
ken’s name label. Our model is simpler, it uses
a very coarse set of labels rather then integrating
an entire language modeling task which is compu-
tationally more expensive. An interesting recent
study is Gillick et al. (2016), they build a single
byte-to-span model for multiple languages based
on a sequence-to-sequence RNN (Sutskever et al.,
2014) achieving impressive results. We would like
to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-
tions for neural network-based part-of-speech tag-
ging across 22 languages and proposed a novel
multi-task bi-LSTM with auxiliary loss. The aux-
iliary loss is effective at improving the accuracy of
rare words.

Subtoken representations are necessary to ob-
tain a state-of-the-art POS tagger, and charac-
ter embeddings are particularly helpful for non-
Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-
erarchical network provides the best representa-
tion. The bi-LSTM tagger is as effective as the
CRF and HMM taggers with already as little as
500 training sentences, but is less robust to label
noise (at higher noise rates).

Acknowledgments

We thank the anonymous reviewers for their feed-
back. AS is funded by the ERC Starting Grant
LOWLANDS No. 313695. YG is supported by
The Israeli Science Foundation (grant number
1555/15) and a Google Research Award.

For POS-tagging,
needs less data than CRF,

breaks even with HMM at ~500 sentences

RNN Recap
• Trainable encoders of sequential data.

• Allow capturing non-markovian (Infinite) history.

• Used as "lego bricks", feed into other components.

• Very effective for language modeling.

• Very effective for feature extraction.

BI-RNN's Recap
• Represent the history up to a point in the

sequence, and the future from a point in a
sequence.

• Feed into an MLP (or linear classifier) to classify the
point based on history and future.

• The network learns what's important in the history
and future for the given prediction task.

• "Infinite window"

Batching in RNNs

=

=

=

=

Batching Reminder

Batching in RNNs

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.

R,O

x1

s0
R,O

x2

s1
R,O

x3

s2
R,O

x4

s3
R,O

x5

s4

predict &
calc loss

y5

loss

Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L(ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

Batching in RNNs

• Sequential in nature, very little parallelism.

• (Compare, e.g., to a Convolutional Network)

Batching in RNNs

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

in transduction mode, can batch the final output predictions

Batching in RNNs
• proposals: 

newer architectures, that try to make the sequence-
dependent parts cheaper.

Batching in RNNs
• proposals: 

newer architectures, that try to make the sequence-
dependent parts cheaper.

("transformers")

Batching in RNNs

• Can batch across sequences.

what if the sequences are different lengths?

padding

masking

padding

masking

this is how its done in TF, PyTorch.
 supported also in DyNet, but...

padding

masking

really annoying
super-confusing with biLSTMs

practically impossible with our complex networks

Auto Batching

what if the sequences are different lengths?

then create a separate

 network for each

(easy)

treat them

as a single

graph

treat them

as a single

graph

DyNet will identify batching

opportunities for you.

note: batching operations, not inputs.

Recent Efficiency
Benchmarks

For some tasks, GPU is much better.

For other, CPU still wins. (why, how?)

Efficiency Considerations
when Implementing an LSTM

• What can be batched?

• What can be done in efficient math operations?

Efficiency Considerations
when Implementing an LSTM

RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

Efficiency Considerations
when Implementing an LSTM

RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

in transduction mode, can batch all inputs (not states)

Efficiency Considerations
when Implementing an LSTM

RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

all gates computations can be done in single mat-mat op.

