Recurrent Neural
Networks
(part 2 -- technical things)

Yoav Goldberg



Concrete RNN
Functions



Recurrent Neural Networks
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* Very strong models of sequential data.
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* Trainable function from n vectors to a single vector.
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* [here are different variants (Implementations).

e So far, we focused on the interface level.




Recurrent Neural Networks

I I I
S1 So 1 | S3 | S4 1

' R,O -—» R,O — R,0 —— R,0 —— R,0 ——ss

__________________________________________

X1 X2 X3 X4 X
0
f f' .t . t RNN(SO, Xl:n) — Sn, yn
or every t1inite INnput sequence,
y P q. s; = R(sj_1,X;)
can unroll the recursion.
yi = O(sj)

* Recursively defined.
x; € R%n | y; € Rlout | g € RS (dowt)

 [There's a vector Yi for every prefix Xi:j



Recurrent Neural Networks

e \What do the RNN function look like”?

Y1 y2 Y3 Ya yYs

I_ - __‘ -_—_e——— I_ - __‘ -_—_e——— e T I_ - __‘ _————
1 S]_ Sz 1 S4 1 !
[

_____________________________________________

________

T trained parameters.

_ define function form
* But we can train them.< .
efine loss



CBOW as an RNN

RCBOW(Si—L Xi) = Sj—1 T+ Xj

(what are the parameters?)



CBOW as an RNN

RCBOW(Si—L Xi) = Sj—1 T+ Xj

(what are the parameters?)

RCBOW(Si—17 x’&) = Sj—1 T E[a’;z]



CBOW as an RNN

|s this a good parameterization?

RCBOW(Si—17 x’&) = Sj—1 T E[ajz]



CBOW as an RNN

how about this modification?

Repow (8i—1, %) = tanh(si—_1 + Efy,))



Simple RNN (Elman RNN)

Rsrnn(Si—1,Xi) = tanh(W?® - sj_1 + W™ - x;)



Simple RNN (Elman RNN)

Rsrnn(Si—1,Xi) = tanh(W?® - sj_1 + W™ - x;)

Looks very simple.
Theoretically very powerful.
In practice not so much (hard to train).

Why*? Vanishing gradients.



Simple RNN (Elman RNN)

Rsrnn(si_1,Xi) = tanh(W? - s;_1 + W™ - x;)
Another view on behavior:

* RNN as a "computer:
INput Xi arrives, memory s Is updated.

* |nthe Elman RNN, entire memory is written at
each time-step.



Simple RNN (Elman RNN)

read previous state memory write new Input

RSRNN(SI 1,X1)—tanh WS Si_ 1—|—VVX X1

Another view on behavior:

* RNN as a "computer:
INput Xi arrives, memory s Is updated.

* |nthe Elman RNN, entire memory is written at
each time-step.



LSTM RNN

Rpstm(sj-1,%;) =[cj; hy]
c; =Cci_1Of+g0oi
h; =tanh(c;) ® 0
i =o(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_;)
0 =0(W*°.x; + W" . h;_,)
g =tanh(W* . x; + W" . h;_;)

Orstm(8j) = Orstam([cj; hj]) = h;



LSTM RNN

better controlled memory access



continuous gates



Differentiable "Gates'

 The main idea behind the LSTM is that you want to
somehow control the "memory access’.

* InaSimpleRNN:

RSRNN(Si—la Xi) — tcmh(WS - Sj—1 T+ W*. Xi)

e N\

read previous state memory write new input

e All the memory gets overwritten



Vector "Gates’

« We'd like to:
* Selectively read from some memory “cells’.
* Selectively write to some memory “cells”.



Vector "Gates’

« We'd like to:
* Selectively read from some memory “cells’.
* Selectively write to some memory “cells”.

* A gate function: K
0 12 (element-wise multiplication)
®
0 13
0 14
1 _15_
g X

. N

gate controls access vector of values



Vector "Gates’

e \We'd like to:

* Selectively read from some memory “cells’.
* Selectively write to some memory “cells”.

* A gate function:
Si—1 O 8 g c {0,1}¢

N

vector of values gate controls access



Vector "Gates’

e Using the gate function to control access:

S —Si—108 +x08"7 ge{(),l}d

e N\

which cells to read which cells to write



Vector "Gates’

e Using the gate function to control access:

S —Si—108 +x08"7 ge{(),l}d

e N\

which cells to read which cells to write

e (can alsotiethem: g =1—g%)



Vector "Gates’
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Differentiable "Gates'

* Problem with the gates:
* they are fixed.
* they don't depend on the input or the output.



Differentiable "Gates'

* Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

e Solution: make them smooth, input dependent, and
trainable.

W'X1‘|‘U Si— 1)

2 S\

‘almost O
function of input and state

or
‘almost 1"



[ STM

(Long short-term Memory)

 The LSTM is a specific combination of gates.

RrsTm(sj—1,%;) =|cj; hj)
c; =Ci_1Of+g0O1
h; =tanh(c;) ® o
i =c(W* .x; + W™ . h;_;)
f =c(W*' . x; + W™ . h;_;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*8 . x; + W"€ . h;_;)

OLSTM(SJ') — OLSTM([CJ3 hj]) = h;



GRU

(Gated Recurrent Unit)

 The GRU is a different combination of gates.

sj = Raru(sj-1,%5) =(1 —2) ©8j_1 + 2O
2 =0 (x; W 1 s;_ W*%)
r =o0(x;W*" +s;_1W?)
s; = tanh(x; W™ + (r © s;_1)W?8)



GRU vs LSTM

 The GRU and the LSTM are very similar ideas.

* |nvented independently of the LSTM, almost two
decades later.



GRU

(Gated Recurrent Unit)

e The GRU formulation:

s; = Raru(sj—1,Xj) =

Proposal state: s; = tanh(x; W™ 4 (r © s5_1)W?>8)



GRU

(Gated Recurrent Unit)

e The GRU formulation:

s; = Raru(sj—1,Xj) =

gate controlling effect ;. —;(x, W** 4 5,_; W*F)
of prev on proposal:
S} = tanh(XjWXS -+ (I‘ D) Sj_l)WSg)



GRU

(Gated Recurrent Unit)

blend of old state and
proposal state
sj = Raru(8j-1,%j) =(1 —2) ©8j—1 + 2 OS;

I :O_(ijxr -+ Sj_lwsr)
S} :tanh(XjWXS -+ (I‘ ® Sj_l)WSg)



GRU

(Gated Recurrent Unit)

sj = Raru(Sj-1,%j) =(1 —2) ©8j_1 + 2 OS;
gate for controlling z =0 (x;W* + 551 W>%)
the blend r =0 (x; WX +s;_; W)
s; = tanh(x; W™ + (r © s;_1)W?8)



GRU

(Gated Recurrent Unit)

sj = Raru(sj-1,%;) =(1 —2) ©sj_1 +2 OS;
2 =0 (x; W 1 s;_ W*%)
r =o0(x;W*" +s;_1W?)
s; = tanh(x; W™ + (r © s;_1)W?8)



[ STM

(Long short-term Memory)

e The LSTM is formulation:

RrsTm(sj—1,%;) =|cj; hj)
c; =Ci_1Of+g0O1
h; =tanh(c;) ® o
i =c(W* .x; + W™ . h;_;)
f =c(W*' . x; + W™ . h;_;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*8 . x; + W"€ . h;_;)

OLSTM(SJ') — OLSTM([CJ3 hj]) = h;



[ STM

(Long short-term Memory)

e The LSTM is formulation:

RpsTam(Sj—1,%j) =|c;j; hj]
c; =Ci_1Of+g0O1
h; =tanh(c;) ® o A
"Input’ i =o(W* . x; + Wh . h;_,)
‘forget”  f=c(W*'.x; + WP . h;_,)
‘output” 0 =c(W*®.x; + W" . h;_4)
g =tanh(W*¢ . x; + W"€ . h;_4) input repr

OLSTM(SJ') — OLSTM([CJ3 hj]) = h;



Read More

* The gated architecture also helps the vanishing
gradients problems.

* For a good explanation, see Kyunghyun Cho's
notes:
nttp://arxiv.org/abs/1511.07916 sections 4.2, 4.3

e Chris Olah's blog post (link in class website)


http://arxiv.org/abs/1511.07916

Other Variants

 Many other variants exist.
* Mostly pertorm similarly to each other.

* Different tasks may work better with different
variants.

- The important idea is the differentiable gates.



Differences”?

- There ARE formal difference in power between
the GRU and the LSTM.

- The LSTM can count, the GRU cannot.

See paper by Weiss, Goldberg and Yahav in
reading material.

https:/arxiv.org/abs/1805.04908


https://arxiv.org/abs/1805.04908

Dropout In RNINS



Dropout In RNNS

e Still an open guestion how to perform well.

* One suggestion:

each color is a different random dropout mask



Dropout In RNNS

e Still an open guestion how to perform well.

* Yarin Gal's Dropout:

each color is a different random dropout mask



Dropout In RNNS

e Still an open guestion how to perform well.

* Yarin Gal's Dropout:

Y Y Y Yt—1 Y Yt+
_____ [(J------>[]------—[]----- >[] —>[] —>[] >

each color is a different random dropout mask



Practicalities

* Most toolkits require a fixed computation graph
for all examples.

 But RNNs have different input lengths. What do
we do”

e Option 1:
Use a tool that does not pose this limitation.

e Option 2:
Enforce max length + O padding for shorter
seqguences.



A

Bi-Directional RNNs



loss

/ predict & 7 predict & . predict & . predict & 7 predict &
| | | | |
‘. calcloss . calcloss . calcloss . calcloss . - calcloss

>0 RO ‘.4 RO 2. RO 2.0 RO —*.J RO
X1 X2 X3 X4 X5

Transducers for POS tagging?
Can predict the tag of word | based on words 1,...,i-1, but...



A

Bidirectional RNNs

Each state encodes the entire history up to that state.
This is not bad. But what about the future”



Y5
st
— R/,0/ —
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Xfox_

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

Ya
sbi
— R/,0/ —
Xjump_ed
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shi
— R/,0/ —
Lommooo
Xe




A

Bidirectional RNNs

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.



One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.




One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.




T L p an infinite window

B | _ R N N S around the word.

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.



T L p an infinite window

B | _ R N N S around the word.

_e_—e— e = === ——— - -_—— -: ;— ——————————————————————————————————
1 1
So — Lrwp — Lrwp — Lrwp —> LrwbD Rrgy «~—— Rrpv ~—— Rrgv ~—— Rgrpyv +~—5S0
1
L___‘_ ________ ‘_ ________ ‘_ ________ ‘_ ________ ‘_ ________ ‘____JI L___‘_ ________ ‘____J
Xth Xbrown Xfox Xjumped Xjumped Xov Xth Xdog
1 2 3 4 4 5 6 7

BiRNN (x1.7,4) = [y1;¥4]
One RNN runs left to right. ya = RNNp(x1.4)

Another runs right to left. ya = RNNg(x7.4)
Encode both future and history of a word.
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s Costor sy sy

RNN can be stacked
deeper is better!
(better how?)



Deep BI-RNNS

Ythe

BI;

Ybrown

BI;

BI,

Yfox

BI;

Yjumped

BI;

BI;

yOVGI‘

BI,

BI;

BI;

Xthe

BI,

Xbrown

BI;

BI,

Xfox

BI;

Xjumped

BI-RNN can also be stacked

BI;

XOVGI‘
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(Deep) BI-RNNs

provide an "infinite" window around a focus word.
learn to extract what's important.

easy to train!

very effective for sequence tagging.
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> BI
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Sequence tagger (here, POS)

NN
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Xthe

Xbrown
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Xfox

Xjumped

BI

XOVGI’




Sequence tagger (here, POS)

DET

BI

ADJ
1

BI

NN
i

BI

BI

VB

BI

BI

IN

BI

BI

BI

Xthe

RNNs can be easily "nested".

BI

BI

Xbrown

BI

BI

Xfox

BI

Xjumped

BI

Qutput of one RNN feeds into another RNN.




DET
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ADJ
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BI <

Sequence tagger (here, POS)

NN

M

BI <

BI <

M

Xthe

BI

IN
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Xbrown

BI

|

Xjumped

BI

XOVGI’




Back-off to char-level RNNs for Unknown Words:
(inspired by Ling et al, Ballesteros, Dyer and Smith)

DET ADJ NN VB IN
BT | — BT | — Bl | — Bl | — BRI

Bl |- BT | BT | -BBT | | BT |—
BT L -BBT L -BBI L BB L BT | —
Xthe Xfox Xover
RHHRMH RMH R R RHHRMHRHRH R R




Back-off to {Reminder: this network \ .
is just a large computation graph. {~*" Smith)
1Build the graph using a framework, |

get gradient-based training for free. |

BI P—

BT | — B | — BT | — MBI | — BBl | —



Back-off to char-level RNNs for Unknown Words:
(inspired by Ling et al, Ballesteros, Dyer and Smith)

DET ADJ NN VB IN
MBI | — B | — Bl | — MBI | — BBl

Bl |— B |— BB |[— -SR] | — @R |



Do they, really?

== TnT == Dbi-LSTM - CRF

Multilingual Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Models and Auxiliary Loss

Barbara Plank Anders Sggaard Yoav Goldberg
University of Groningen University of Copenhagen Bar-Ilan University
The Netherlands Denmark Israel

b.plank@rug.nl soegaard@hum.ku.dk yoav.goldberg@gmail.com



Do they, really?

== TnT == Dbi-LSTM - CRF

Indoeuropean non-Indoeuropean Slavic
100 100 100
a0 90 a0
-
Q
©
3 80 80 80
Q
[43]
70 70 70
60 60 60
100 1000 100 1000 100 1000
sentences sentences
sentences
Germanic Romance Semitic
100 100 100
©
—_
S 80 80 80
(141
70 70 70
60 60 60
100 1000 100 1000 100 1000

sentences sentences sentences



Do they, really?

== TnT == Dbi-LSTM - CRF

Indoeuropean non-Indoeuropean Slavic
100 100 100

20 _ : 90 90 '
80 80 80 /
o - p S A~ A g M Y s A s A = i e A el o s 4

For POS-tagging,

accuracy

needs less data than CRF,
breaks even with HMM sentences]

2 90 90 / 90
o
= y
8 80 80 7 80
©

70 70 70

60 60 60
100 1000 100 1000 100 1000
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RNN Recap

Trainable encoders of sequential data.

Allow capturing non-markovian (Infinite) history.
Used as "lego bricks’, teed into other components.
Very eftective for language modeling.

Very effective tor feature extraction.
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BI-RNN's Recap

Represent the history up to a point in the
sequence, and the future from a point in a
sequence.

Feed into an MLP (or linear classifier) to classify the
point based on history and future.

The network learns what's important in the history
and future for the given prediction task.

"Infinite window"



Batching iIn RNNs



Batching Reminder




Batching iIn RNNs

loss

/ predict &
|

v calc loss

~ -

|
/

____________________________________




Batching iIn RNNs

e Sequential in nature, very little parallelism.

e (Compare, e.g., to a Convolutional Network)



Batching iIn RNNs

/ predict & . predict & / predict & . predict & . predict &

| | | | |
‘. calcloss . calcloss . calcloss . calcloss . - calcloss

R,O R,O . R,0 R,O R,O0 |
X1 X2 X3 X4 X5

in transduction mode, can batch the final output predictions



Batching iIn RNNs

* proposals:
newer architectures, that try to make the sequence-
dependent parts cheaper.

QUASI-RECURRENT NEURAL NETWORKS

James Bradbury; Stephen Merity, Caiming Xiong & Richard Socher
Salesforce Research

Palo Alto, California
{james.bradbury, smerity, cxiong, rsocher}@salesforce.com



Batching iIn RNNs

* proposals:
newer architectures, that try to make the sequence-
dependent parts cheaper.

QUASI-RECURRENT NEURAL NETWORKS

James Bradbury; Stephen Merity, Caiming Xiong & Richard Socher
Salesforce Research

Palo Alto, California
{james.bradbury, smerity, cxiong, rsocher}@salesforce.com

Attention Is All You Need
("transformers")




Batching iIn RNNs

-+ Can batch across sequences.
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A

what if the sequences are different lengths?
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masking

padding

_
POOW POOW 0000




. = — masking
! ! ! !
! ! ! !
! ! ! ! |
T T e B e padding

this is how its done in TF, PyTorch.
supported also in DyNet, but...



. = — masking
! ! ! !
! ! ! !
! ! ! ! |
T e B padding
really annoying

super-confusing wit

N biLSTMSs

practically impossible with ou

r complex networks



Auto Batching



A

what if the sequences are different lengths?
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treat them
as a single

graph
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! ! \ treat them
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- graph

f f T DyNet will identity batching
— — opportunities for you.

! ! !
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nodes In blue are ready
to be executed
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nodes in red will be executed
using batch operations
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note: batching operations, not inputs.




Recent Efficiency
Benchmarks

For some tasks, GPU is much better.
For other, CPU still wins. (why, how?)



Efficiency Considerations
when Implementing an LSTM

 \What can be batched?

 What can be done in efficient math operations”



Efficiency Considerations
when Implementing an LSTM

Rpstm(Sj-1,%j) =[cj; hj]
c; =Cj_1 Of+g0Oi
h; =tanh(c;) ® 0
i =c(W* .x; + W™ . h;_;)
f =o(W*' . x; + W' . h; ;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*% . x; + W"8 . h;_,)



Efficiency Considerations
when Implementing an LSTM

Rpstm(Sj-1,%j) =[cj; hj]
c; =Cj_1 Of+g0Oi
h; =tanh(c;) ® 0
i =c(W* .x; + W™ . h;_;)
f =o(W*' . x; + W' . h; ;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*% . x; + W"8 . h;_,)

in transduction mode, can batch all inputs (not states)



Efficiency Considerations
when Implementing an LSTM

Rpstm(Sj-1,%j) =[cj; hj]
c; =Cj_1 Of+g0Oi
h; =tanh(c;) ® 0
i =c(W* .x; + W™ . h;_;)
f =o(W*' . x; + W' . h; ;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*% . x; + W"8 . h;_,)

all gates computations can be done in single mat-mat op.



