Recurrent Neural
Networks
(part 2 -- technical things)

Yoav Goldberg

Concrete RNN
Functions

Recurrent Neural Networks

OO0

OO0

OO0

OO0 4

v(what)

* Very strong models of sequential data.

Vv(is)

v(your) v(name)

+ (0000

enc(what is your name)

* Trainable function from n vectors to a single vector.

000

000

000

OO0 -

Recurrent Neural Networks

b (OOO0O

000

000

000

b (OOOO

P g
7 N
/74 > \
N Fa . WY
7 gAs] & SO
, S
OOO] L b . i)/\\
4
i3

000

000

000

000 -

b (OOOO

* [here are different variants (Implementations).

e So far, we focused on the interface level.

Recurrent Neural Networks

I I I
S1 So 1 | S3 | S4 1

' R,O -—» R,O — R,0 —— R,0 —— R,0 ——ss

__

X1 X2 X3 X4 X
0
f f' .t . t RNN(SO, Xl:n) — Sn, yn
or every t1inite INnput sequence,
y P q. s; = R(sj_1,X;)
can unroll the recursion.
yi = O(sj)

* Recursively defined.
x; € R%n | y; € Rlout | g € RS (dowt)

 [There's a vector Yi for every prefix Xi:j

Recurrent Neural Networks

e \What do the RNN function look like”?

Y1 y2 Y3 Ya yYs

I_ - __‘ -_—_e——— I_ - __‘ -_—_e——— e T I_ - __‘ _————
1 S]_ Sz 1 S4 1 !
[

T trained parameters.

_ define function form
* But we can train them.< .
efine loss

CBOW as an RNN

RCBOW(Si—L Xi) = Sj—1 T+ Xj

(what are the parameters?)

CBOW as an RNN

RCBOW(Si—L Xi) = Sj—1 T+ Xj

(what are the parameters?)

RCBOW(Si—17 x’&) = Sj—1 T E[a’;z]

CBOW as an RNN

|s this a good parameterization?

RCBOW(Si—17 x’&) = Sj—1 T E[ajz]

CBOW as an RNN

how about this modification?

Repow (8i—1, %) = tanh(si—_1 + Efy,))

Simple RNN (Elman RNN)

Rsrnn(Si—1,Xi) = tanh(W?® - sj_1 + W™ - x;)

Simple RNN (Elman RNN)

Rsrnn(Si—1,Xi) = tanh(W?® - sj_1 + W™ - x;)

Looks very simple.
Theoretically very powerful.
In practice not so much (hard to train).

Why*? Vanishing gradients.

Simple RNN (Elman RNN)

Rsrnn(si_1,Xi) = tanh(W? - s;_1 + W™ - x;)
Another view on behavior:

* RNN as a "computer:
INput Xi arrives, memory s Is updated.

* |nthe Elman RNN, entire memory is written at
each time-step.

Simple RNN (Elman RNN)

read previous state memory write new Input

RSRNN(SI 1,X1)—tanh WS Si_ 1—|—VVX X1

Another view on behavior:

* RNN as a "computer:
INput Xi arrives, memory s Is updated.

* |nthe Elman RNN, entire memory is written at
each time-step.

LSTM RNN

Rpstm(sj-1,%;) =[cj; hy]
c; =Cci_1Of+g0oi
h; =tanh(c;) ® 0
i =o(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_;)
0 =0(W*°.x; + W" . h;_,)
g =tanh(W* . x; + W" . h;_;)

Orstm(8j) = Orstam([cj; hj]) = h;

LSTM RNN

better controlled memory access

continuous gates

Differentiable "Gates'

 The main idea behind the LSTM is that you want to
somehow control the "memory access’.

* InaSimpleRNN:

RSRNN(Si—la Xi) — tcmh(WS - Sj—1 T+ W*. Xi)

e N\

read previous state memory write new input

e All the memory gets overwritten

Vector "Gates’

« We'd like to:
* Selectively read from some memory “cells’.
* Selectively write to some memory “cells”.

Vector "Gates’

« We'd like to:
* Selectively read from some memory “cells’.
* Selectively write to some memory “cells”.

* A gate function: K
0 12 (element-wise multiplication)
®
0 13
0 14
1 _15_
g X

. N

gate controls access vector of values

Vector "Gates’

e \We'd like to:

* Selectively read from some memory “cells’.
* Selectively write to some memory “cells”.

* A gate function:
Si—1 O 8 g c {0,1}¢

N

vector of values gate controls access

Vector "Gates’

e Using the gate function to control access:

S —Si—108 +x08"7 ge{(),l}d

e N\

which cells to read which cells to write

Vector "Gates’

e Using the gate function to control access:

S —Si—108 +x08"7 ge{(),l}d

e N\

which cells to read which cells to write

e (can alsotiethem: g =1—g%)

Vector "Gates’

| - <t
)| |]]]
) 1 1 1 1 1 1 1 1 1

_
_01000

15

Differentiable "Gates'

* Problem with the gates:
* they are fixed.
* they don't depend on the input or the output.

Differentiable "Gates'

* Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

e Solution: make them smooth, input dependent, and
trainable.

W'X1‘|‘U Si— 1)

2 S\

‘almost O
function of input and state

or
‘almost 1"

[STM

(Long short-term Memory)

 The LSTM is a specific combination of gates.

RrsTm(sj—1,%;) =|cj; hj)
c; =Ci_1Of+g0O1
h; =tanh(c;) ® o
i =c(W* .x; + W™ . h;_;)
f =c(W*' . x; + W™ . h;_;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*8 . x; + W"€ . h;_;)

OLSTM(SJ') — OLSTM([CJ3 hj]) = h;

GRU

(Gated Recurrent Unit)

 The GRU is a different combination of gates.

sj = Raru(sj-1,%5) =(1 —2) ©8j_1 + 2O
2 =0 (x; W 1 s;_ W*%)
r =o0(x;W*" +s;_1W?)
s; = tanh(x; W™ + (r © s;_1)W?8)

GRU vs LSTM

 The GRU and the LSTM are very similar ideas.

* |nvented independently of the LSTM, almost two
decades later.

GRU

(Gated Recurrent Unit)

e The GRU formulation:

s; = Raru(sj—1,Xj) =

Proposal state: s; = tanh(x; W™ 4 (r © s5_1)W?>8)

GRU

(Gated Recurrent Unit)

e The GRU formulation:

s; = Raru(sj—1,Xj) =

gate controlling effect ;. —;(x, W** 4 5,_; W*F)
of prev on proposal:
S} = tanh(XjWXS -+ (I‘ D) Sj_l)WSg)

GRU

(Gated Recurrent Unit)

blend of old state and
proposal state
sj = Raru(8j-1,%j) =(1 —2) ©8j—1 + 2 OS;

I :O_(ijxr -+ Sj_lwsr)
S} :tanh(XjWXS -+ (I‘ ® Sj_l)WSg)

GRU

(Gated Recurrent Unit)

sj = Raru(Sj-1,%j) =(1 —2) ©8j_1 + 2 OS;
gate for controlling z =0 (x;W* + 551 W>%)
the blend r =0 (x; WX +s;_; W)
s; = tanh(x; W™ + (r © s;_1)W?8)

GRU

(Gated Recurrent Unit)

sj = Raru(sj-1,%;) =(1 —2) ©sj_1 +2 OS;
2 =0 (x; W 1 s;_ W*%)
r =o0(x;W*" +s;_1W?)
s; = tanh(x; W™ + (r © s;_1)W?8)

[STM

(Long short-term Memory)

e The LSTM is formulation:

RrsTm(sj—1,%;) =|cj; hj)
c; =Ci_1Of+g0O1
h; =tanh(c;) ® o
i =c(W* .x; + W™ . h;_;)
f =c(W*' . x; + W™ . h;_;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*8 . x; + W"€ . h;_;)

OLSTM(SJ') — OLSTM([CJ3 hj]) = h;

[STM

(Long short-term Memory)

e The LSTM is formulation:

RpsTam(Sj—1,%j) =|c;j; hj]
c; =Ci_1Of+g0O1
h; =tanh(c;) ® o A
"Input’ i =o(W* . x; + Wh . h;_,)
‘forget” f=c(W*'.x; + WP . h;_,)
‘output” 0 =c(W*®.x; + W" . h;_4)
g =tanh(W*¢ . x; + W"€ . h;_4) input repr

OLSTM(SJ') — OLSTM([CJ3 hj]) = h;

Read More

* The gated architecture also helps the vanishing
gradients problems.

* For a good explanation, see Kyunghyun Cho's
notes:
nttp://arxiv.org/abs/1511.07916 sections 4.2, 4.3

e Chris Olah's blog post (link in class website)

http://arxiv.org/abs/1511.07916

Other Variants

 Many other variants exist.
* Mostly pertorm similarly to each other.

* Different tasks may work better with different
variants.

- The important idea is the differentiable gates.

Differences”?

- There ARE formal difference in power between
the GRU and the LSTM.

- The LSTM can count, the GRU cannot.

See paper by Weiss, Goldberg and Yahav in
reading material.

https:/arxiv.org/abs/1805.04908

https://arxiv.org/abs/1805.04908

Dropout In RNINS

Dropout In RNNS

e Still an open guestion how to perform well.

* One suggestion:

each color is a different random dropout mask

Dropout In RNNS

e Still an open guestion how to perform well.

* Yarin Gal's Dropout:

each color is a different random dropout mask

Dropout In RNNS

e Still an open guestion how to perform well.

* Yarin Gal's Dropout:

Y Y Y Yt—1 Y Yt+
_____ [(J------>[]------—[]----- >[] —>[] —>[] >

each color is a different random dropout mask

Practicalities

* Most toolkits require a fixed computation graph
for all examples.

 But RNNs have different input lengths. What do
we do”

e Option 1:
Use a tool that does not pose this limitation.

e Option 2:
Enforce max length + O padding for shorter
seqguences.

A

Bi-Directional RNNs

loss

/ predict & 7 predict & . predict & . predict & 7 predict &
| | | | |
‘. calcloss . calcloss . calcloss . calcloss . - calcloss

>0 RO ‘.4 RO 2. RO 2.0 RO —*.J RO
X1 X2 X3 X4 X5

Transducers for POS tagging?
Can predict the tag of word | based on words 1,...,i-1, but...

A

Bidirectional RNNs

Each state encodes the entire history up to that state.
This is not bad. But what about the future”

Y5
st
— R/,0/ —

Xbr v;

Y3
sbi
— R/,0/ —
Xfox_

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

Ya
sbi
— R/,0/ —
Xjump_ed

Vs
shi
— R/,0/ —
Lommooo
Xe

A

Bidirectional RNNs

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

T L p an infinite window

B | _ R N N S around the word.

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

T L p an infinite window

B | _ R N N S around the word.

e—e— e = === ——— - -_—— -: ;— ——————————————————————————————————
1 1
So — Lrwp — Lrwp — Lrwp —> LrwbD Rrgy «~—— Rrpv ~—— Rrgv ~—— Rgrpyv +~—5S0
1
L___‘_ ________ ‘_ ________ ‘_ ________ ‘_ ________ ‘_ ________ ‘____JI L___‘_ ________ ‘____J
Xth Xbrown Xfox Xjumped Xjumped Xov Xth Xdog
1 2 3 4 4 5 6 7

BiRNN (x1.7,4) = [y1;¥4]
One RNN runs left to right. ya = RNNp(x1.4)

Another runs right to left. ya = RNNg(x7.4)
Encode both future and history of a word.

{y% [yi [yi {YZ

sz o Los2 0 s2 7 s2 0
» R3,0; — Ry,00 —— R2,0; — R»,0,

Lo e ! b b b
Lyi LY§ LY§ LYi

s Costor sy sy

RNN can be stacked
deeper is better!
(better how?)

Deep BI-RNNS

Ythe

BI;

Ybrown

BI;

BI,

Yfox

BI;

Yjumped

BI;

BI;

yOVGI‘

BI,

BI;

BI;

Xthe

BI,

Xbrown

BI;

BI,

Xfox

BI;

Xjumped

BI-RNN can also be stacked

BI;

XOVGI‘

ve)

c

3

)

(Deep) BI-RNNs

provide an "infinite" window around a focus word.
learn to extract what's important.

easy to train!

very effective for sequence tagging.

DET

> BI

ADJ

BI <

Sequence tagger (here, POS)

NN

M

> BI

'Y

VB

BI <

IN

M

BI

Xthe

Xbrown

BI

Xfox

Xjumped

BI

XOVGI’

Sequence tagger (here, POS)

DET

BI

ADJ
1

BI

NN
i

BI

BI

VB

BI

BI

IN

BI

BI

BI

Xthe

RNNs can be easily "nested".

BI

BI

Xbrown

BI

BI

Xfox

BI

Xjumped

BI

Qutput of one RNN feeds into another RNN.

DET

> BI

ADJ

M

BI <

Sequence tagger (here, POS)

NN

M

BI <

BI <

M

Xthe

BI

IN

BI

Xbrown

BI

|

Xjumped

BI

XOVGI’

Back-off to char-level RNNs for Unknown Words:
(inspired by Ling et al, Ballesteros, Dyer and Smith)

DET ADJ NN VB IN
BT | — BT | — Bl | — Bl | — BRI

Bl |- BT | BT | -BBT | | BT |—
BT L -BBT L -BBI L BB L BT | —
Xthe Xfox Xover
RHHRMH RMH R R RHHRMHRHRH R R

Back-off to {Reminder: this network \ .
is just a large computation graph. {~*" Smith)
1Build the graph using a framework, |

get gradient-based training for free. |

BI P—

BT | — B | — BT | — MBI | — BBl | —

Back-off to char-level RNNs for Unknown Words:
(inspired by Ling et al, Ballesteros, Dyer and Smith)

DET ADJ NN VB IN
MBI | — B | — Bl | — MBI | — BBl

Bl |— B |— BB |[— -SR] | — @R |

Do they, really?

== TnT == Dbi-LSTM - CRF

Multilingual Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Models and Auxiliary Loss

Barbara Plank Anders Sggaard Yoav Goldberg
University of Groningen University of Copenhagen Bar-Ilan University
The Netherlands Denmark Israel

b.plank@rug.nl soegaard@hum.ku.dk yoav.goldberg@gmail.com

Do they, really?

== TnT == Dbi-LSTM - CRF

Indoeuropean non-Indoeuropean Slavic
100 100 100
a0 90 a0
-
Q
©
3 80 80 80
Q
[43]
70 70 70
60 60 60
100 1000 100 1000 100 1000
sentences sentences
sentences
Germanic Romance Semitic
100 100 100
©
—_
S 80 80 80
(141
70 70 70
60 60 60
100 1000 100 1000 100 1000

sentences sentences sentences

Do they, really?

== TnT == Dbi-LSTM - CRF

Indoeuropean non-Indoeuropean Slavic
100 100 100

20 _ : 90 90 '
80 80 80 /
o - p S A~ A g M Y s A s A = i e A el o s 4

For POS-tagging,

accuracy

needs less data than CRF,
breaks even with HMM sentences]

2 90 90 / 90
o
= y
8 80 80 7 80
©

70 70 70

60 60 60
100 1000 100 1000 100 1000

os)
c

A

Z
o

RNN Recap

Trainable encoders of sequential data.

Allow capturing non-markovian (Infinite) history.
Used as "lego bricks’, teed into other components.
Very eftective for language modeling.

Very effective tor feature extraction.

o)
c

A

Z
o

BI-RNN's Recap

Represent the history up to a point in the
sequence, and the future from a point in a
sequence.

Feed into an MLP (or linear classifier) to classify the
point based on history and future.

The network learns what's important in the history
and future for the given prediction task.

"Infinite window"

Batching iIn RNNs

Batching Reminder

Batching iIn RNNs

loss

/ predict &
|

v calc loss

~ -

|
/

Batching iIn RNNs

e Sequential in nature, very little parallelism.

e (Compare, e.g., to a Convolutional Network)

Batching iIn RNNs

/ predict & . predict & / predict & . predict & . predict &

| | | | |
‘. calcloss . calcloss . calcloss . calcloss . - calcloss

R,O R,O . R,0 R,O R,O0 |
X1 X2 X3 X4 X5

in transduction mode, can batch the final output predictions

Batching iIn RNNs

* proposals:
newer architectures, that try to make the sequence-
dependent parts cheaper.

QUASI-RECURRENT NEURAL NETWORKS

James Bradbury; Stephen Merity, Caiming Xiong & Richard Socher
Salesforce Research

Palo Alto, California
{james.bradbury, smerity, cxiong, rsocher}@salesforce.com

Batching iIn RNNs

* proposals:
newer architectures, that try to make the sequence-
dependent parts cheaper.

QUASI-RECURRENT NEURAL NETWORKS

James Bradbury; Stephen Merity, Caiming Xiong & Richard Socher
Salesforce Research

Palo Alto, California
{james.bradbury, smerity, cxiong, rsocher}@salesforce.com

Attention Is All You Need
("transformers")

Batching iIn RNNs

-+ Can batch across sequences.

0000

0000

0000

0000

0000

0000

0000

0000

m..._l <+

mn_u «—
ot | e

ml_l <4
e |

m.._l <+
b |

A

what if the sequences are different lengths?

—k

See —
|

L

e —
e |

ol
b |
<«— FBE

ot | el

ol
e
<+— QG
e

e | el

masking

padding

_
POOW POOW 0000

. = — masking
! ! ! !
! ! ! !
! ! ! ! |
T T e B e padding

this is how its done in TF, PyTorch.
supported also in DyNet, but...

. = — masking
! ! ! !
! ! ! !
! ! ! ! |
T e B padding
really annoying

super-confusing wit

N biLSTMSs

practically impossible with ou

r complex networks

Auto Batching

A

what if the sequences are different lengths?

then create a separate

i
O
Qv
D
© 7
ma
oL
=
)
(-
mT
- Tm g
!

treat them
as a single

graph

4

o —

0000

0000

—% g

! ! | f

! ! \ treat them

! f as a single
- graph

f f T DyNet will identity batching
— — opportunities for you.

! ! !

loss

loss

loss

loss

loss

A

A

A

A

-

OO ([[) OO OO
A A A A
MLP MLP MLP MLP
A A A A
RNN [= RNN [~ RNN |- RNN
A A A A
0000 0000 0000 0000

loss

loss

A

A

loss

OO OO
A A
MLP MLP
A A
RNN [RNN
A A
0000 0000

loss

loss

loss

A

A

A

loss

OO OO OO
A A A
MLP MLP MLP
A A A
RNN|>{RNN|[>|RNN
A A A
0000 0000 0000

nodes In blue are ready
to be executed

loss

loss

loss

loss

loss

A

o0
A

A

o0
A

A

o0
A

A

o0
A

MLP

MLP

MLP

MLP

A A
RNN|> RNN|[=>| RNN
A A A

-

loss

loss

A

o0
A

A

o0
A

MLP

MLP

loss

loss

loss

loss

A

o0
A

A

o0
A

A

o0
A

MLP

MLP

MLP

A A
RNN|>/RNN
A A

loss

nodes in red will be executed
using batch operations

loss

loss

loss

loss

loss

A

o0
A

A

o0
A

A

o0
A

A

o0
A

MLP

MLP

MLP

MLP

A A
RNN|> RNN|[=>| RNN
A A A

-

loss

loss

A

o0
A

A

o0
A

MLP

MLP

loss

loss

loss

loss

A

o0
A

A

o0
A

A

o0
A

MLP

MLP

MLP

A A
RNN|>/RNN
A A

loss

loss

loss

loss

loss

loss

A

o0
A

A

o0
A

A

o0
A

A

o0
A

MLP

MLP

MLP

MLP

A A
RNN|> RNN|[=>| RNN
A A A

-

loss

loss

A

o0
A

A

o0
A

MLP

MLP

loss

loss

loss

loss

A

o0
A

A

o0
A

A

o0
A

MLP

MLP

MLP

A
RNN|>/RNN
A A

loss

loss

loss

loss

loss

loss

A
o0

A

o0
A

A

o0
A

A

o0
A

MLP

MLP

MLP

MLP

RN RN R [N
f f f

-

loss

loss

A

A

loss

oo oo
MLP || [MLP
RNN]>+RNN
f
eeee 000

loss

loss

loss

A
o0

A

o0
A

A

o0
A

MLP

MLP

MLP

A A
RNN m RNN
f f

loss

loss

-

loss

loss

loss

loss

A

A

A

A

e o0 (o0 (oo
MLP|| [MLP| [MLP| [MLP
RNN RNN]>[RNN
! } }
0000 0000 0000 0000

loss

loss

A

A

OO .A.
MLP MLP
A

loss

loss

loss

loss

loss

A
o0

A

A

A

o0
A

MLP

MLP

MLP

RNN

f

LT

loss

-

loss

loss

loss

loss

A

A

A

A

loss

loss

loss

A

A

00 o0 o0 o0
A A A
MLP J[MLP || |MLP MLP
A t i A
RNN = RNN RNN
QOtC QOtQ 0000 QJ‘Q

e oo
MLPJ[RMP
i A
RNN]>[RNN
f f
eeee 000

loss

loss

loss

loss

A

A

A

o0 o0 (oo
MLPJ[MLP || [MLP
r r
RNN]>[RNN]4${RNN
})

o000 0000 0000

loss

-

loss

loss

loss

loss

A

A

A

A

loss

loss

loss

A

A

00 o0 o0 o0
A A A
MLP J[MLP || |MLP MLP
A t i A
RNN = RNN RNN
QOtC QOtQ 0000 QJ‘Q

e oo
MLPJ[RMP
i A
RNN]>[RNN
f f
eeee 000

loss

loss

loss

loss

A

A

A

o0 o0 (oo

MLPJ[MLP || [MLP
r r

RNN]>[RNN]4[RNN
})

o000 0000 0000

loss

loss

loss

loss

loss

A

A

A

A

00 QQ .A. .A.
MLP J[MLP J[MLP MLP

A t A i
RNN > RNN |>- RNN
QOtQ QOtQ .:00 0000

-

loss

loss

loss

A

A

e oo
MLPJ[RMP
i A
RNN]>[RNN
f f
eeee 000

loss

loss

loss

A

A

A

CC N
ML_P) Mkpj[MLp)
RNN]->[RNN]>[RNN

}) f

o000 0000 0000

loss

loss

loss

loss

loss

loss

A

A

A

A

00 QQ .A. .A.
MLP J[MLP J[MLP MLP

A t A i
RNN > RNN |>- RNN
QOtQ QOtQ .:00 0000

-

loss

loss

loss

A

A

e oo
MLPJ[RMP
i A
RNN]>[RNN
f f
eeee 000

loss

loss

loss

A

A

A

CC N
ML_P) Mkpj[MLp)
RNN]->[RNN]>[RNN

}) f

o000 0000 0000

loss

loss

-

loss

loss

loss

loss

A

A

A

A

loss

loss

loss

A

A

e 00 o0 (oo
uLp J[uLp j[uLp][MLP
R&N R&N R&N R&N

f f 1 1

0000 0000 0000 0000

e oo
MLPJ[RMP
i A
RNN]>[RNN
f f
eeee 000

loss

loss

loss

A

A

A

CC N
ML_P) Mkpj[MLp)
RNN]->[RNN]>[RNN

}) f

o000 0000 0000

loss

loss

-

loss

loss

loss

loss

A
o0

A
o0

A
o0

A
o0

A

loss

loss

loss

A
(1 J

A
(1 J

MLP

(e

\(mip

I

A
[MLP

RNN

> RNN

f

f

(s

> RNN

> RNN

1

1

RNN

> RNN

f

f

loss

loss

loss

loss

A
o0

A
o0

A
o0

e |

A A
MLP J[MLP

RNN

—> RNN

> RNN

f

f

f

-

loss

Ioss/J

[loss

MLP

MLP

MLP

MLP

RNN

> RNN

f

f

> RNN

> RNN

1

1

K

o0
A

K

o0
A

MLP

MLP

RNN

> RNN

f

f

loss
loss loss J[loss J

A

A

A

OO OO OO
A A A
MLP MLP MLP
A A A
RNN > RNN > RNN
A A A
0000 0000 0000

-

loss

Ioss/J

[loss

MLP

MLP

MLP

MLP

RNN

> RNN

f

f

> RNN

> RNN

1

1

K

o0
A

K

o0
A

MLP

MLP

RNN

> RNN

f

f

loss

Ioss/j

Iosa

loss

A

A

A

OO OO OO
A A A
MLP MLP MLP
A A A
RNN > RNN > RNN
A A A
0000 0000 0000

loss

loss

loss

loss

loss

A

A

A

A

OO ([[) OO OO
A A A A
MLP MLP MLP MLP
A A A A
RNN [= RNN [~ RNN = RNN
A A ? A
0000 0000 0000 0000

loss

loss

loss

OO OO
A A
MLP MLP
A A
RNN [RNN
A A
0000 0000

loss

loss

loss

loss

loss

A

A

A

A

OO ([[) OO OO
A A A A
MLP MLP MLP MLP
A A A A
RNN [= RNN [~ RNN = RNN
A A ? A
0000 0000 0000 0000

loss

loss

loss

OO OO
A A
MLP MLP
A A
RNN [RNN
A A
0000 0000

loss

loss

loss

loss

loss

A

A

A

A

OO ([[) OO OO
A A A A
MLP MLP MLP MLP
A A A A
RNN [= RNN [~ RNN = RNN
A A ? A
0000 0000 0000 0000

loss

loss

A

A

OO OO
A A
MLP MLP
A A
RNN [RNN
A A
0000 0000

A

MLP

MLP

MLP

RNN

—> RNN

—> RNN

loss

loss

loss

loss

loss

A

A

A

A

OO ([[) OO OO
A A A A
MLP MLP MLP MLP
A A A A
RNN [= RNN [~ RNN = RNN
A A ? A
0000 0000 0000 0000

loss

loss

A

A

OO OO
A A
MLP MLP
A A
RNN [RNN
A A
0000 0000

A

MLP

MLP

MLP

RNN

—> RNN

—> RNN

loss

-

loss

loss

loss

loss

A

A

A

A

OO ([[) OO OO
A A A A
MLP MLP MLP MLP
A A A A
RNN [= RNN [~ RNN = RNN
A A ? A
0000 0000 0000 0000

loss

loss

loss

A

A

OO OO
A A
MLP MLP
A A
RNN [RNN
A A
0000 0000

loss

loss

loss

loss

A

o0
A

A

o0
A

A

o0
A

MLP

MLP

MLP

RNN

—> RNN

—> RNN

loss

loss

loss

loss

loss

A

o0
A

A

o0
A

A

o0
A

A

o0
A

MLP

MLP

MLP

MLP

RNN

> RNN

f

f

> RNN

> RNN

1

1

-

loss

loss

loss

A

A

OO OO
A A
MLP MLP
A A
RNN [RNN
A A
0000 0000

loss

loss

loss

loss

A

o0
A

A

o0
A

A

o0
A

MLP

MLP

MLP

RNN

—> RNN

—> RNN

note: batching operations, not inputs.

Recent Efficiency
Benchmarks

For some tasks, GPU is much better.
For other, CPU still wins. (why, how?)

Efficiency Considerations
when Implementing an LSTM

 \What can be batched?

 What can be done in efficient math operations”

Efficiency Considerations
when Implementing an LSTM

Rpstm(Sj-1,%j) =[cj; hj]
c; =Cj_1 Of+g0Oi
h; =tanh(c;) ® 0
i =c(W* .x; + W™ . h;_;)
f =o(W*' . x; + W' . h; ;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*% . x; + W"8 . h;_,)

Efficiency Considerations
when Implementing an LSTM

Rpstm(Sj-1,%j) =[cj; hj]
c; =Cj_1 Of+g0Oi
h; =tanh(c;) ® 0
i =c(W* .x; + W™ . h;_;)
f =o(W*' . x; + W' . h; ;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*% . x; + W"8 . h;_,)

in transduction mode, can batch all inputs (not states)

Efficiency Considerations
when Implementing an LSTM

Rpstm(Sj-1,%j) =[cj; hj]
c; =Cj_1 Of+g0Oi
h; =tanh(c;) ® 0
i =c(W* .x; + W™ . h;_;)
f =o(W*' . x; + W' . h; ;)
0 =0(W*°.x; + W"° . h;_;)
g =tanh(W*% . x; + W"8 . h;_,)

all gates computations can be done in single mat-mat op.

