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Previously:

• Feed forward networks (multi-layer perceptrons). 

• Word/feature embeddings. 

• Convolution Networks (n-gram extractors) 

• The computation graph. Software toolkits.



(not about RNNs) 
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batching
• Instead of a k vector-matrix operations, 

call a single matrix-matrix operation. 

• You need to order your data it to be efficient. 

• Note: memory copies also cost some. 

• Batching can be very effective, need to be 
controlled manually.
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Dealing with Sequences
• For an input sequence x1,...,xn, we can: 

• If n is fixed: concatenate and feed into an MLP. 

• sum the vectors (CBOW) and feed into an MLP. 

• Break the sequence into windows (i.e., for tagging). 
Each window is fixed size, concatenate into an MLP. 

• Find good ngrams using ConvNet, using pooling 
(either sum/avg or max) to combine to a single 
vector.
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• For an input sequence x1,...,xn, we can: 

• If n is fixed: concatenate and feed into an MLP. 

• sum the vectors (CBOW) and feed into an MLP. 

• Break the sequence into windows (i.e., for tagging). 
Each window is fixed size, concatenate into an MLP. 

• Find good ngrams using ConvNet, using pooling 
(either sum/avg or max) to combine to a single 
vector.

Some of these approaches  
consider local word order (which ones?). 

How can we consider global word order?
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Recurrent Neural Networks

• Very strong models of sequential data. 

• Trainable function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)



Recurrent Neural Networks

• There are different variants (implementations). 

• We'll start by focusing (mostly) on the interface level.



Recurrent Neural Networks
RNN(s0,x1:n) = sn,yn

xi 2 Rdin , yi 2 Rdout , si 2 Rf(dout)

• Very strong models of sequential data. 

• Trainable function from n vectors to a single* vector.
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*this one is internal. we only care about the y

• Very strong models of sequential data. 

• Trainable function from n vectors to a single* vector.
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Recurrent Neural Networks

• Recursively defined. 

• There's a vector       for every prefix x1:iyi

RNN(s0,x1:n) =s1:n, y1:n

si = R(si�1,xi)

yi = O(si)

xi 2 Rdin , yi 2 Rdout , si 2 Rf(dout)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

xi

yi

sisi�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.
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Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent
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for every finite input sequence, 
can unroll the recursion.

An unrolled RNN is just a very deep Feed Forward Network 
with shared parameters across the layers,  

and a new input at each layer.
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• Think of      as "memory".  

• The output vector       depends on all inputs x1:iyi

si

instantiations of R and O will result in di↵erent network structures, and will exhibit di↵erent
properties in terms of their running times and their ability to be trained e↵ectively using
gradient-based methods. However, they all adhere to the same abstract interface. We will
provide details of concrete instantiations of R and O – the Simple RNN, the LSTM and the
GRU – in Section 11. Before that, let’s consider modeling with the RNN abstraction.

First, we note that the value of si is based on the entire input x1, ...,xi. For example,
by expanding the recursion for i = 4 we get:

s4 =R(s3,x4)

=R(

s3z }| {
R(s2,x3),x4)

=R(R(

s2z }| {
R(s1,x2),x3),x4)

=R(R(R(

s1z }| {
R(s0,x1),x2),x3),x4)

Thus, sn (as well as yn) could be thought of as encoding the entire input sequence.27 Is
the encoding useful? This depends on our definition of usefulness. The job of the network
training is to set the parameters of R and O such that the state conveys useful information
for the task we are tying to solve.

10.2 RNN Training

Viewed as in Figure 6 it is easy to see that an unrolled RNN is just a very deep neural
network (or rather, a very large computation graph with somewhat complex nodes), in
which the same parameters are shared across many parts of the computation. To train an
RNN network, then, all we need to do is to create the unrolled computation graph for a
given input sequence, add a loss node to the unrolled graph, and then use the backward
(backpropagation) algorithm to compute the gradients with respect to that loss. This
procedure is referred to in the RNN literature as backpropagation through time, or BPTT
(Werbos, 1990).28 There are various ways in which the supervision signal can be applied.

Acceptor One option is to base the supervision signal only on the final output vector,
yn. Viewed this way, the RNN is an acceptor. We observe the final state, and then decide

27. Note that, unless R is specifically designed against this, it is likely that the later elements of the input
sequence have stronger e↵ect on sn than earlier ones.

28. Variants of the BPTT algorithm include unrolling the RNN only for a fixed number of input symbols at
each time: first unroll the RNN for inputs x1:k, resulting in s1:k. Compute a loss, and backpropagate
the error through the network (k steps back). Then, unroll the inputs xk+1:2k, this time using sk as the
initial state, and again backpropagate the error for k steps, and so on. This strategy is based on the
observations that for the Simple-RNN variant, the gradients after k steps tend to vanish (for large enough
k), and so omitting them is negligible. This procedure allows training of arbitrarily long sequences. For
RNN variants such as the LSTM or the GRU that are designed specifically to mitigate the vanishing
gradients problem, this fixed size unrolling is less motivated, yet it is still being used, for example when
doing language modeling over a book without breaking it into sentences.

48

y4 = O(s4)
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Defining the loss.

Recurrent Neural Networks

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.

R,O

x1

s0
R,O

x2

s1
R,O

x3

s2
R,O

x4

s3
R,O

x5

s4

predict &
calc loss

y5

loss

Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L( ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

Acceptor: predict something from end state. 
Backprop the error all the way back. 
Train the network to capture meaningful information



Acceptor Examples
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each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L( ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.
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• Predict sentiment based on sentence words.



Acceptor Examples

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.
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Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L( ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.
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• Predict POS based on word's letters sequence.



Acceptor Examples

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.
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Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L( ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

• More examples?



Acceptor Examples

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.
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Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L( ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.
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• Will a customer hang up, based on a sequence of 
call-menu items.



Acceptor Examples

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.
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Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L( ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

• What next movie am I going to watch, after 
watching a sequence of previous movies.



Acceptor Examples

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.
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Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L( ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

• How about the language identification task from 
assignment 1? (discuss)



Acceptor Examples

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.
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Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L( ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

• Predict word i based on words 1,...,i-1



Acceptor Examples

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.
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Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L( ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.
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• Predict word i based on words 1,...,i-1

This is a language model with infinite history!



Defining the loss.

Transducers

Transducer: predict something from each state. 
Backprop the sum of errors all the way back. 
Train the network to capture meaningful information
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Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50



Defining the loss.
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Train the network to capture meaningful information

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach
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language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach
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RNN Language Models
• Training: an RNN Tranducer. 

• Generation: the output of step i is input to step i+1.
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Abstract

Recurrent Neural Networks (RNNs) are very
powerful sequence models that do not enjoy
widespread use because it is extremely diffi-
cult to train them properly. Fortunately, re-
cent advances in Hessian-free optimization have
been able to overcome the difficulties associated
with training RNNs, making it possible to apply
them successfully to challenging sequence prob-
lems. In this paper we demonstrate the power
of RNNs trained with the new Hessian-Free op-
timizer (HF) by applying them to character-level
language modeling tasks. The standard RNN ar-
chitecture, while effective, is not ideally suited
for such tasks, so we introduce a new RNN
variant that uses multiplicative (or “gated”) con-
nections which allow the current input charac-
ter to determine the transition matrix from one
hidden state vector to the next. After training
the multiplicative RNN with the HF optimizer
for five days on 8 high-end Graphics Processing
Units, we were able to surpass the performance
of the best previous single method for character-
level language modeling – a hierarchical non-
parametric sequence model. To our knowledge
this represents the largest recurrent neural net-
work application to date.

1. Introduction

Recurrent Neural Networks (RNNs) form an expressive
model family for sequence tasks. They are powerful be-
cause they have a high-dimensional hidden state with non-
linear dynamics that enable them to remember and process
past information. Furthermore, the gradients of the RNN
are cheap to compute with backpropagation through time.
Despite their attractive qualities, RNNs failed to become a

Appearing in Proceedings of the 28 th International Conference
on Machine Learning, Bellevue, WA, USA, 2011. Copyright 2011
by the author(s)/owner(s).

mainstream tool in machine learning due to the difficulty
of training them effectively. The cause of this difficulty
is the very unstable relationship between the parameters
and the dynamics of the hidden states, which manifests it-
self in the “vanishing/exploding gradients problem” (Ben-
gio et al., 1994). As a result, there has been surprisingly lit-
tle research on standard RNNs in the last 20 years, and only
a few successful applications using large RNNs (Robin-
son, 2002; Pollastri et al., 2002), including a recent no-
table application of RNNs as a word-level language model
(Mikolov et al., 2010).

Recently, Martens (2010) developed a greatly improved
variant of Hessian-Free optimization (HF) which was pow-
erful enough to train very deep neural networks from ran-
dom initializations. Since an RNN can be viewed as an
extremely deep neural network with weight sharing across
time, the same HF optimizer should be able to train RNNs.
Fortunately, Martens & Sutskever (2011) were able to show
that this is indeed the case, and that this form of non-
diagonal, 2nd-order optimization provides a principled so-
lution to the vanishing gradients problem in RNNs. More-
over, with the addition of a novel damping mechanism,
Martens & Sutskever (2011) showed that the HF optimizer
is robust enough to train RNNs, both on pathological syn-
thetic datasets known to be impossible to learn with gra-
dient descent, and on complex and diverse real-world se-
quence datasets.

The goal of the paper is to demonstrate the power of large
RNNs trained with the new Hessian-Free optimizer by ap-
plying them to the task of predicting the next character in a
stream of text. This is an important problem because a bet-
ter character-level language model could improve compres-
sion of text files (Rissanen & Langdon, 1979) and make it
easier for people with physical disabilities to interact with
computers (Ward et al., 2000). More speculatively, achiev-
ing the asymptotic limit in text compression requires an
understanding that is “equivalent to intelligence” (Hutter,
2006). Good compression can be achieved by exploiting
simple regularities such as the vocabulary and the syntax of
the relevant languages and the shallow associations exem-

Train and generate from a character-level RNN (LSTM)
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RNN Language Models

• Classification: reminder: we can classify based on 
trained LMs.

predict(x1:n) = argmax
i

P (x1:n|RNNi)

P (x1:n|RNN) =
nY

j=1

softmax(MLP (RNN(x1:j)))[xj ]



"deep RNNs"

RNN can be stacked 
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Figure 10: A 3-layer (“deep”) RNN architecture.

10.4 BI-RNN

A useful elaboration of an RNN is a bidirectional-RNN (BI-RNN) (Schuster & Paliwal, 1997;
Graves, 2008).31 Consider the task of sequence tagging over a sentence x1, . . . , xn. An RNN
allows us to compute a function of the ith word xi based on the past – the words x1:i up
to and including it. However, the following words xi:n may also be useful for prediction, as
is evident by the common sliding-window approach in which the focus word is categorized
based on a window of k words surrounding it. Much like the RNN relaxes the Markov
assumption and allows looking arbitrarily back into the past, the BI-RNN relaxes the fixed
window size assumption, allowing to look arbitrarily far at both the past and the future.

Consider an input sequence x1:n. The BI-RNN works by maintaining two separate
states, sfi and sbi for each input position i. The forward state sfi is based on x1,x2, . . . ,xi,
while the backward state sbi is based on xn,xn�1, . . . ,xi. The forward and backward states
are generated by two di↵erent RNNs. The first RNN (Rf , Of ) is fed the input sequence
x1:n as is, while the second RNN (Rb, Ob) is fed the input sequence in reverse. The state
representation si is then composed of both the forward and backward states.

The output at position i is based on the concatenation of the two output vectors
yi = [yf

i ;y
b
i ] = [Of (sfi );O

b(sbi )], taking into account both the past and the future. The
vector yi can then be used directly for prediction, or fed as part of the input to a more
complex network. While the two RNNs are run independently of each other, the error gra-
dients at position i will flow both forward and backward through the two RNNs. A visual
representation of the BI-RNN architecture is given in Figure 11.

The use of BI-RNNs for sequence tagging was introduced to the NLP community by
Irsoy and Cardie (2014).

10.5 RNNs for Representing Stacks

Some algorithms in language processing, including those for transition-based parsing (Nivre,
2008), require performing feature extraction over a stack. Instead of being confined to

31. When used with a specific RNN architecture such as an LSTM, the model is called BI-LSTM.
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• This example is fascinating, and shows a lot of 
power. 

• Definitely learning something hierarchical. 

• Can we do a more controlled experiment? 

• ... on a language which is less rigid?
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Abstract

The success of long short-term memory
(LSTM) neural networks in language process-
ing is typically attributed to their ability to
capture long-distance statistical regularities.
Linguistic regularities are often sensitive to
syntactic structure; can such dependencies be
captured by LSTMs, which do not have ex-
plicit structural representations? We begin ad-
dressing this question using number agreement
in English subject-verb dependencies. We
probe the architecture’s grammatical compe-
tence both using training objectives with an
explicit grammatical target (number prediction,
grammaticality judgments) and using language
models. In the strongly supervised settings,
the LSTM achieved very high overall accu-
racy (less than 1% errors), but errors increased
when sequential and structural information con-
flicted. The frequency of such errors rose
sharply in the language-modeling setting. We
conclude that LSTMs can capture a non-trivial
amount of grammatical structure given targeted
supervision, but stronger architectures may be
required to further reduce errors; furthermore,
the language modeling signal is insufficient
for capturing syntax-sensitive dependencies,
and should be supplemented with more direct
supervision if such dependencies need to be
captured.

1 Introduction

Recurrent neural networks (RNNs) are highly effec-
tive models of sequential data (Elman, 1990). The
rapid adoption of RNNs in NLP systems in recent
years, in particular of RNNs with gating mecha-
nisms such as long short-term memory (LSTM) units

(Hochreiter and Schmidhuber, 1997) or gated recur-
rent units (GRU) (Cho et al., 2014), has led to sig-
nificant gains in language modeling (Mikolov et al.,
2010; Sundermeyer et al., 2012), parsing (Vinyals
et al., 2015; Kiperwasser and Goldberg, 2016; Dyer
et al., 2016), machine translation (Bahdanau et al.,
2015) and other tasks.

The effectiveness of RNNs1 is attributed to their
ability to capture statistical contingencies that may
span an arbitrary number of words. The word France,
for example, is more likely to occur somewhere in
a sentence that begins with Paris than in a sentence
that begins with Penguins. The fact that an arbitrary
number of words can intervene between the mutually
predictive words implies that they cannot be captured
by models with a fixed window such as n-gram mod-
els, but can in principle be captured by RNNs, which
do not have an architecturally fixed limit on depen-
dency length.

RNNs are sequence models: they do not explicitly
incorporate syntactic structure. Indeed, many word
co-occurrence statistics can be captured by treating
the sentence as an unstructured list of words (Paris-
France); it is therefore unsurprising that RNNs can
learn them well. Other dependencies, however, are
sensitive to the syntactic structure of the sentence
(Chomsky, 1965; Everaert et al., 2015). To what
extent can RNNs learn to model such phenomena
based only on sequential cues?

Previous research has shown that RNNs (in particu-
lar LSTMs) can learn artificial context-free languages
(Gers and Schmidhuber, 2001) as well as nesting and

1In this work we use the term RNN to refer to the entire
class of sequential recurrent neural networks. Instances of the
class include long short-term memory networks (LSTM) and the
Simple Recurrent Network (SRN) due to Elman (1990).
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The case for Syntax

the boy kicks the ball
the boys kick the ball

• Some natural-language phenomena are indicative 
of hierarchical structure. 

• For example, subject verb agreement. 
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Can a sequence LSTM 
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy  

(look at last noun).



(a) (b) (c)

(d) (e) (f)

Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.
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Figure 3: Embeddings of singular nouns (in red) and
plural nouns (in blue) in the LSTM number predic-
tion network, projected onto the first two principal
components of the embedding space.

Figure 4

Figure 5: Targeted training: last intervening (note
that the “none” category is missing – all dependencies
had at least one intervening noun).

4 Targeted training

The network’s degraded performance on dependen-
cies with agreement attractors showed that it did not
extract the correct generalization from the training
data. At the same time, its overall accuracy was very
high. This suggests that most dependencies in the
test set do not contain attractors that can trip up the
network. An analysis of the corpus confirms this hy-
pothesis: the majority of dependencies in language
do not have any attractors at all, and there is a very
small number of dependencies that have multiple at-
tractors (Figure 4). As such, the network can achieve
high performance using heuristics that break in diffi-
cult cases.

The most natural training regime includes sentence
types in the training set in proportion to their fre-
quency in the language, as we did in our first exper-
iments and as is the case when an RNN language
model is trained on a corpus. Given the skew in the
distribution, however, we repeated our verb number
prediction experiment, this time training the model
only on dependencies that had at least one noun that
intervened between the subject and the verb (either
an agreement attractor or a noun with the same num-
ber as the subject). Our methodology was identical,
with the exception of doubling the proportion of train-
ing sentences in the split, since the full corpus was
smaller (226K dependencies).

The overall error rate was low, but higher than
before (2.5% compared to 0.9%). Figure 5 shows
that the errors are more balanced between attractors
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Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.
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order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.
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Figure 4: Alternative tasks and additional experiments: (a) overall error rate across tasks (note that the y-axis
ends in 10%); (b) effect of count of attractors in homogeneous dependencies across training objectives; (c)
comparison of the Google LM (Jozefowicz et al., 2016) to our LM and one of our supervised verb inflection
systems, on a sample of sentences; (d) number prediction: effect of count of attractors using SRNs with
standard training or LSTM with targeted training; (e) number prediction: difference in error rate between
singular and plural subjects across RNN cell types. Error bars represent binomial 95% confidence intervals.

made eight times as many errors as the original num-
ber prediction network (6.78% compared to 0.83%),
and did substantially worse than the noun-only base-
lines (though recall that the noun-only baselines were
still explicitly trained to predict verb number).

The differences across the networks are more strik-
ing when we focus on dependencies with agreement
attractors (Figure 4b). Here, the language model
does worse than chance in the most difficult cases,
and only slightly better than the noun-only baselines.
The worse-than-chance performance suggests that
attractors actively confuse the networks rather than
cause them to make a random decision. The other
models degrade more gracefully with the number
of agreement attractors; overall, the grammaticality
judgment objective is somewhat more difficult than
the number prediction and verb inflection ones. In
summary, we conclude that while the LSTM is capa-
ble of learning syntax-sensitive agreement dependen-
cies under various objectives, the language-modeling
objective alone is not sufficient for learning such de-
pendencies, and a more direct form of training signal

is required.

Comparison to a large-scale language model:

One objection to our language modeling result is
that our LM faced a much harder objective than
our other models—predicting a distribution over
10,000 vocabulary items is certainly harder than bi-
nary classification—but was equipped with the same
capacity (50-dimensional hidden state and word vec-
tors). Would the performance gap between the LM
and the explicitly supervised models close if we in-
creased the capacity of the LM?

We address this question using a very large pub-
licly available LM (Jozefowicz et al., 2016), which
we refer to as the Google LM.12 The Google LM rep-
resent the current state-of-the-art in language mod-
eling: it is trained on a billion-word corpus (Chelba
et al., 2013), with a vocabulary of 800,000 words.
It is based on a two-layer LSTM with 8192 units in
each layer, or more than 300 times as many units
as our LM; at 1.04 billion parameters it has almost

12 https://github.com/tensorflow/models/
tree/master/lm_1b
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standard training or LSTM with targeted training; (e) number prediction: difference in error rate between
singular and plural subjects across RNN cell types. Error bars represent binomial 95% confidence intervals.

made eight times as many errors as the original num-
ber prediction network (6.78% compared to 0.83%),
and did substantially worse than the noun-only base-
lines (though recall that the noun-only baselines were
still explicitly trained to predict verb number).

The differences across the networks are more strik-
ing when we focus on dependencies with agreement
attractors (Figure 4b). Here, the language model
does worse than chance in the most difficult cases,
and only slightly better than the noun-only baselines.
The worse-than-chance performance suggests that
attractors actively confuse the networks rather than
cause them to make a random decision. The other
models degrade more gracefully with the number
of agreement attractors; overall, the grammaticality
judgment objective is somewhat more difficult than
the number prediction and verb inflection ones. In
summary, we conclude that while the LSTM is capa-
ble of learning syntax-sensitive agreement dependen-
cies under various objectives, the language-modeling
objective alone is not sufficient for learning such de-
pendencies, and a more direct form of training signal

is required.

Comparison to a large-scale language model:

One objection to our language modeling result is
that our LM faced a much harder objective than
our other models—predicting a distribution over
10,000 vocabulary items is certainly harder than bi-
nary classification—but was equipped with the same
capacity (50-dimensional hidden state and word vec-
tors). Would the performance gap between the LM
and the explicitly supervised models close if we in-
creased the capacity of the LM?

We address this question using a very large pub-
licly available LM (Jozefowicz et al., 2016), which
we refer to as the Google LM.12 The Google LM rep-
resent the current state-of-the-art in language mod-
eling: it is trained on a billion-word corpus (Chelba
et al., 2013), with a vocabulary of 800,000 words.
It is based on a two-layer LSTM with 8192 units in
each layer, or more than 300 times as many units
as our LM; at 1.04 billion parameters it has almost

12 https://github.com/tensorflow/models/
tree/master/lm_1b

Google's beast LM  
does better than ours 
but still struggles 
considerably.
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Later works: LSTM-LM does learn agreement.
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noun compounds can be tricky

reaches 60% (Figure 4e).

Qualitative analysis: We manually examined a
sample of 200 cases in which the majority of the
20 runs of the number prediction network made the
wrong prediction. There were only 8890 such depen-
dencies (about 0.6%). Many of those were straight-
forward agreement attraction errors; others were dif-
ficult to interpret. We mention here three classes of
errors that can motivate future experiments.

The networks often misidentified the heads of
noun-noun compounds. In (17), for example, the
models predict a singular verb even though the num-
ber of the subject conservation refugees should be
determined by its head refugees. This suggests that
the networks didn’t master the structure of English
noun-noun compounds.14

(17) Conservation refugees live in a world col-
ored in shades of gray; limbo.

(18) Information technology (IT) assets com-
monly hold large volumes of confidential
data.

Some verbs that are ambiguous with plural nouns
seem to have been misanalyzed as plural nouns and
consequently act as attractors. The models predicted
a plural verb in the following two sentences even
though neither of them has any plural nouns, possibly
because of the ambiguous verbs drives and lands:

(19) The ship that the player drives has a very
high speed.

(20) It was also to be used to learn if the area

where the lander lands is typical of the sur-
rounding terrain.

Other errors appear to be due to difficulty not in
identifying the subject but in determining whether it
is plural or singular. In Example (22), in particular,
there is very little information in the left context of
the subject 5 paragraphs suggesting that the writer
considers it to be singular:

(21) Rabaul-based Japanese aircraft make three
dive-bombing attacks.

14The dependencies are presented as they appeared in the
corpus; the predicted number was the opposite of the correct one
(e.g., singular in (17), where the original is plural).

(22) The lead is also rather long; 5 paragraphs

is pretty lengthy for a 62 kilobyte article.

The last errors point to a limitation of the number
prediction task, which jointly evaluates the model’s
ability to identify the subject and its ability to assign
the correct number to noun phrases.

8 Related Work

The majority of NLP work on neural networks eval-
uates them on their performance in a task such as
language modeling or machine translation (Sunder-
meyer et al., 2012; Bahdanau et al., 2015). These
evaluation setups average over many different syn-
tactic constructions, making it difficult to isolate the
network’s syntactic capabilities.

Other studies have tested the capabilities of RNNs
to learn simple artificial languages. Gers and Schmid-
huber (2001) showed that LSTMs can learn the
context-free language anbn, generalizing to ns as
high as 1000 even when trained only on n 2
{1, . . . , 10}. Simple recurrent networks struggled
with this language (Rodriguez et al., 1999; Rodriguez,
2001). These results have been recently replicated
and extended by Joulin and Mikolov (2015).

Elman (1991) tested an SRN on a miniature lan-
guage that simulated English relative clauses, and
found that the network was only able to learn the
language under highly specific circumstances (El-
man, 1993), though later work has called some of his
conclusions into question (Rohde and Plaut, 1999;
Cartling, 2008). Frank et al. (2013) studied the ac-
quisition of anaphora coreference by SRNs, again
in a miniature language. Recently, Bowman et al.
(2015) tested the ability of LSTMs to learn an artifi-
cial language based on propositional logic. As in our
study, the performance of the network degraded as
the complexity of the test sentences increased.

Karpathy et al. (2016) present analyses and visual-
ization methods for character-level RNNs. Kádár et
al. (2016) and Li et al. (2016) suggest visualization
techniques for word-level RNNs trained to perform
tasks that aren’t explicitly syntactic (image caption-
ing and sentiment analysis).

Early work that used neural networks to model
grammaticality judgments includes Allen and Sei-
denberg (1999) and Lawrence et al. (1996). More re-
cently, the connection between grammaticality judg-
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Relative clauses are hard.

Relative clauses: We now look in greater detail
into the network’s performance when the words that
intervened between the subject and verb contained
a relative clause. Relative clauses with attractors
are likely to be fairly challenging, for several rea-
sons. They typically contain a verb that agrees with
the attractor, reinforcing the misleading cue to noun
number. The attractor is often itself a subject of an
irrelevant verb, making a potential “agree with the
most recent subject” strategy unreliable. Finally, the
existence of a relative clause is sometimes not overtly
indicated by a function word (relativizer), as in (11)
(for comparison, see the minimally different (12)):

(11) The landmarks this article lists here are

also run-of-the-mill and not notable.

(12) The landmarks that this article lists here
are also run-of-the-mill and not notable.

For data sparsity reasons we restricted our attention
to dependencies with a single attractor and no other
intervening nouns. As Figure 2d shows, attraction
errors were more frequent in dependencies with an
overt relative clause (9.9% errors) than in dependen-
cies without a relative clause (3.2%), and consider-
ably more frequent when the relative clause was not
introduced by an overt relativizer (25%). As in the
case of multiple attractors, however, while the model
struggled with the more difficult dependencies, its
performance was much better than random guessing,
and slightly better than a majority-class strategy.

Word representations: We explored the 50-
dimensional word representations acquired by the
model by performing a principal component anal-
ysis. We assigned a part-of-speech (POS) to each
word based on the word’s most common POS in the
corpus. We only considered relatively ambiguous
words, in which a single POS accounted for more
than 90% of the word’s occurrences in the corpus.
Figure 2f shows that the first principal component
corresponded almost perfectly to the expected num-
ber of the noun, suggesting that the model learned
the number of specific words very well; recall that
the model did not have access during training to noun
number annotations or to morphological suffixes such
as -s that could be used to identify plurals.

Visualizing the network’s activations: We start
investigating the inner workings of the number pre-
diction network by analyzing its activation in re-
sponse to particular syntactic constructions. To sim-
plify the analysis, we deviate from our practice in the
rest of this paper and use constructed sentences.

We first constructed sets of sentence prefixes based
on the following patterns:

(13) PP: The toy(s) of the boy(s)...

(14) RC: The toy(s) that the boy(s)...

These patterns differ by exactly one function word,
which determines the type of the modifier of the main
clause subject: a prepositional phrase (PP) in the first
sentence and a relative clause (RC) in the second. In
PP sentences the correct number of the upcoming
verb is determined by the main clause subject toy(s);
in RC sentences it is determined by the embedded
subject boy(s).

We generated all four versions of each pattern, and
repeated the process ten times with different lexical
items (the house(s) of/that the girl(s), the computer(s)
of/that the student(s), etc.), for a total of 80 sentences.
The network made correct number predictions for all
40 PP sentences, but made three errors in RC sen-
tences. We averaged the word-by-word activations
across all sets of ten sentences that had the same com-
bination of modifier (PP or RC), first noun number
and second noun number. Plots of the activation of
all 50 units are provided in the Appendix (Figure
5). Figure 3a highlights a unit (Unit 1) that shows
a particularly clear pattern: it tracks the number of
the main clause subject throughout the PP modifier,
resets when it reaches the relativizer that which intro-
duces the RC modifier, and then switches to tracking
the number of the embedded subject.

To explore how the network deals with dependen-
cies spanning a larger number of words, we tracked
its activation during the processing of the following
two sentences:9

(15) The houses of/that the man from the office
across the street...

The network made the correct prediction for the PP
9We simplified this experiment in light of the relative robust-

ness of the first experiment to lexical items and to whether each
of the nouns was singular or plural.
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Reduced relative clauses are harder.

Relative clauses: We now look in greater detail
into the network’s performance when the words that
intervened between the subject and verb contained
a relative clause. Relative clauses with attractors
are likely to be fairly challenging, for several rea-
sons. They typically contain a verb that agrees with
the attractor, reinforcing the misleading cue to noun
number. The attractor is often itself a subject of an
irrelevant verb, making a potential “agree with the
most recent subject” strategy unreliable. Finally, the
existence of a relative clause is sometimes not overtly
indicated by a function word (relativizer), as in (11)
(for comparison, see the minimally different (12)):

(11) The landmarks this article lists here are

also run-of-the-mill and not notable.

(12) The landmarks that this article lists here
are also run-of-the-mill and not notable.

For data sparsity reasons we restricted our attention
to dependencies with a single attractor and no other
intervening nouns. As Figure 2d shows, attraction
errors were more frequent in dependencies with an
overt relative clause (9.9% errors) than in dependen-
cies without a relative clause (3.2%), and consider-
ably more frequent when the relative clause was not
introduced by an overt relativizer (25%). As in the
case of multiple attractors, however, while the model
struggled with the more difficult dependencies, its
performance was much better than random guessing,
and slightly better than a majority-class strategy.

Word representations: We explored the 50-
dimensional word representations acquired by the
model by performing a principal component anal-
ysis. We assigned a part-of-speech (POS) to each
word based on the word’s most common POS in the
corpus. We only considered relatively ambiguous
words, in which a single POS accounted for more
than 90% of the word’s occurrences in the corpus.
Figure 2f shows that the first principal component
corresponded almost perfectly to the expected num-
ber of the noun, suggesting that the model learned
the number of specific words very well; recall that
the model did not have access during training to noun
number annotations or to morphological suffixes such
as -s that could be used to identify plurals.

Visualizing the network’s activations: We start
investigating the inner workings of the number pre-
diction network by analyzing its activation in re-
sponse to particular syntactic constructions. To sim-
plify the analysis, we deviate from our practice in the
rest of this paper and use constructed sentences.

We first constructed sets of sentence prefixes based
on the following patterns:

(13) PP: The toy(s) of the boy(s)...

(14) RC: The toy(s) that the boy(s)...

These patterns differ by exactly one function word,
which determines the type of the modifier of the main
clause subject: a prepositional phrase (PP) in the first
sentence and a relative clause (RC) in the second. In
PP sentences the correct number of the upcoming
verb is determined by the main clause subject toy(s);
in RC sentences it is determined by the embedded
subject boy(s).

We generated all four versions of each pattern, and
repeated the process ten times with different lexical
items (the house(s) of/that the girl(s), the computer(s)
of/that the student(s), etc.), for a total of 80 sentences.
The network made correct number predictions for all
40 PP sentences, but made three errors in RC sen-
tences. We averaged the word-by-word activations
across all sets of ten sentences that had the same com-
bination of modifier (PP or RC), first noun number
and second noun number. Plots of the activation of
all 50 units are provided in the Appendix (Figure
5). Figure 3a highlights a unit (Unit 1) that shows
a particularly clear pattern: it tracks the number of
the main clause subject throughout the PP modifier,
resets when it reaches the relativizer that which intro-
duces the RC modifier, and then switches to tracking
the number of the embedded subject.

To explore how the network deals with dependen-
cies spanning a larger number of words, we tracked
its activation during the processing of the following
two sentences:9

(15) The houses of/that the man from the office
across the street...

The network made the correct prediction for the PP
9We simplified this experiment in light of the relative robust-

ness of the first experiment to lexical items and to whether each
of the nouns was singular or plural.
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humans also fail much more on reduced relatives.



The agreement experiment: 
recap

• We wanted to show LSTMs can't learn hierarchy. 

• --> We sort-of failed. 

• LSTMs learn to cope with natural-language 
patterns that exhibit hierarchy, based on minimal 
and indirect supervision. 

• But some sort of relevant supervision is required.



RNNs recap (for now)
• Representing a variable-length sequence of vectors as a single 

vector. 

• Capturing the global order of the elements. 

• Using a recursively defined trainable function. 

• We saw the following configurations: 
• Acceptors 
• Transducers 
• Deep 

• RNN Language Models. 

• Generation from a language model.


