
Variable Length Sequences
N-gram features

Convolutional Networks
Yoav Goldberg

Reminder:
Word Embeddings

• Represent each vocabulary item as a d-dim vector.

• "Embedding matrix" stores all these vectors.

• Vectors are trained with the network.

• (relation to 1-hot X matrix).

"feature embeddings"
• Each feature is assigned a vector.

• The input is a combination of feature vectors.

• The feature vectors are parameters of the model 
and are trained jointly with the rest of the network.

• Representation Learning: similar features will
receive similar vectors.

"feature embeddings"

Figure 1: Sparse vs. dense feature representations. Two encodings of the informa-
tion: current word is “dog”; previous word is “the”; previous pos-tag is “DET”.
(a) Sparse feature vector. Each dimension represents a feature. Feature combi-
nations receive their own dimensions. Feature values are binary. Dimensionality
is very high. (b) Dense, embeddings-based feature vector. Each core feature is
represented as a vector. Each feature corresponds to several input vector en-
tries. No explicit encoding of feature combinations. Dimensionality is low. The
feature-to-vector mappings come from an embedding table.

• Features are completely independent from one another. The feature “word is
‘dog’ ” is as dis-similar to “word is ‘thinking’ ” than it is to “word is ‘cat’ ”.

Dense Each feature is a d-dimensional vector.

• Dimensionality of vector is d.

• Similar features will have similar vectors – information is shared between similar
features.

One benefit of using dense and low-dimensional vectors is computational: the majority
of neural network toolkits do not play well with very high-dimensional, sparse vectors.
However, this is just a technical obstacle, which can be resolved with some engineering
e↵ort.

The main benefit of the dense representations is in generalization power: if we believe
some features may provide similar clues, it is worthwhile to provide a representation that
is able to capture these similarities. For example, assume we have observed the word ‘dog’
many times during training, but only observed the word ‘cat’ a handful of times, or not at

6

Figure 1: Sparse vs. dense feature representations. Two encodings of the informa-
tion: current word is “dog”; previous word is “the”; previous pos-tag is “DET”.
(a) Sparse feature vector. Each dimension represents a feature. Feature combi-
nations receive their own dimensions. Feature values are binary. Dimensionality
is very high. (b) Dense, embeddings-based feature vector. Each core feature is
represented as a vector. Each feature corresponds to several input vector en-
tries. No explicit encoding of feature combinations. Dimensionality is low. The
feature-to-vector mappings come from an embedding table.

• Features are completely independent from one another. The feature “word is
‘dog’ ” is as dis-similar to “word is ‘thinking’ ” than it is to “word is ‘cat’ ”.

Dense Each feature is a d-dimensional vector.

• Dimensionality of vector is d.

• Similar features will have similar vectors – information is shared between similar
features.

One benefit of using dense and low-dimensional vectors is computational: the majority
of neural network toolkits do not play well with very high-dimensional, sparse vectors.
However, this is just a technical obstacle, which can be resolved with some engineering
e↵ort.

The main benefit of the dense representations is in generalization power: if we believe
some features may provide similar clues, it is worthwhile to provide a representation that
is able to capture these similarities. For example, assume we have observed the word ‘dog’
many times during training, but only observed the word ‘cat’ a handful of times, or not at

6

"feature embeddings"

v(f1) v(f2) v(f3) v(f4)

f4f3f2f1

concatenate(⇤)

MLP (⇤)

"feature embeddings"

v(f1) v(f2) v(f3) v(f4)

f4f3f2f1

MLP (⇤)

sum(⇤)

Concat vs. Sum
• Concatenating feature vectors: the "roles" of each

vector is retained.
concat (v(”the”), v(”thirsty”), v(”dog”))

current
word

prev
word

next
word

• Different features can have vectors of different dim.

• Fixed number of features in each example
(need to feed into a fixed dim layer).

Concat vs. Sum
• Summing feature vectors: "bag of features"

wordword word

• Different feature vectors should have same dim.

• Can encode arbitrary number of features.

sum (v(”the”), v(”thirsty”), v(”dog”))

Concat vs. Sum
• Summing feature vectors: "bag of features"

wordword word

• Different feature vectors should have same dim.

• Can encode arbitrary number of features.

sum (v(”the”), v(”thirsty”), v(”dog”))

Continuous Bag of Words
(CBOW)

• a popular choice in document classification.

• can assign a different weight to each feature:

CBOW (f1, ..., fk) =
1

k

kX

i=1

v(fi)

A simple variation on the CBOW representation is weighted CBOW, in which di↵erent
vectors receive di↵erent weights:

WCBOW (f1, ..., fk) =
1

Pk
i=1 ai

kX

i=1

aiv(fi)

Here, each feature fi has an associated weight ai, indicating the relative importance of
the feature. For example, in a document classification task, a feature fi may correspond to
a word in the document, and the associated weight ai could be the word’s TF-IDF score.

Distance and Position Features The linear distance in between two words in a sentence
may serve as an informative feature. For example, in an event extraction task3 we may be
given a trigger word and a candidate argument word, and asked to predict if the argument
word is indeed an argument of the trigger. The distance (or relative position) between the
trigger and the argument is a strong signal for this prediction task. In the “traditional” NLP
setup, distances are usually encoded by binning the distances into several groups (i.e. 1, 2,
3, 4, 5–10, 10+) and associating each bin with a one-hot vector. In a neural architecture,
where the input vector is not composed of binary indicator features, it may seem natural to
allocate a single input vector entry to the distance feature, where the numeric value of that
entry is the distance. However, this approach is not taken in practice. Instead, distance
features are encoded similarly to the other feature types: each bin is associated with a
d-dimensional vector, and these distance-embedding vectors are then trained as regular
parameters in the network (Zeng et al., 2014; dos Santos et al., 2015; Zhu et al., 2015a;
Nguyen & Grishman, 2015).

Feature Combinations Note that the feature extraction stage in the neural-network
settings deals only with extraction of core features. This is in contrast to the traditional
linear-model-based NLP systems in which the feature designer had to manually specify not
only the core features of interests but also interactions between them (e.g., introducing not
only a feature stating “word is X” and a feature stating “tag is Y” but also combined feature
stating “word is X and tag is Y” or sometimes even “word is X, tag is Y and previous word
is Z”). The combination features are crucial in linear models because they introduce more
dimensions to the input, transforming it into a space where the data-points are closer to
being linearly separable. On the other hand, the space of possible combinations is very
large, and the feature designer has to spend a lot of time coming up with an e↵ective
set of feature combinations. One of the promises of the non-linear neural network models
is that one needs to define only the core features. The non-linearity of the classifier, as
defined by the network structure, is expected to take care of finding the indicative feature
combinations, alleviating the need for feature combination engineering.

3. The event extraction task involves identification of events from a predefined set of event types. For
example identification of “purchase” events or “terror-attack” events. Each event type can be triggered
by various triggering words (commonly verbs), and has several slots (arguments) that needs to be filled
(i.e. who purchased? what was purchased? at what amount?).

8

CBOW (f1, ..., fk) =
1

k

kX

i=1

v(fi)

A simple variation on the CBOW representation is weighted CBOW, in which di↵erent
vectors receive di↵erent weights:

WCBOW (f1, ..., fk) =
1

Pk
i=1 ai

kX

i=1

aiv(fi)

Here, each feature fi has an associated weight ai, indicating the relative importance of
the feature. For example, in a document classification task, a feature fi may correspond to
a word in the document, and the associated weight ai could be the word’s TF-IDF score.

Distance and Position Features The linear distance in between two words in a sentence
may serve as an informative feature. For example, in an event extraction task3 we may be
given a trigger word and a candidate argument word, and asked to predict if the argument
word is indeed an argument of the trigger. The distance (or relative position) between the
trigger and the argument is a strong signal for this prediction task. In the “traditional” NLP
setup, distances are usually encoded by binning the distances into several groups (i.e. 1, 2,
3, 4, 5–10, 10+) and associating each bin with a one-hot vector. In a neural architecture,
where the input vector is not composed of binary indicator features, it may seem natural to
allocate a single input vector entry to the distance feature, where the numeric value of that
entry is the distance. However, this approach is not taken in practice. Instead, distance
features are encoded similarly to the other feature types: each bin is associated with a
d-dimensional vector, and these distance-embedding vectors are then trained as regular
parameters in the network (Zeng et al., 2014; dos Santos et al., 2015; Zhu et al., 2015a;
Nguyen & Grishman, 2015).

Feature Combinations Note that the feature extraction stage in the neural-network
settings deals only with extraction of core features. This is in contrast to the traditional
linear-model-based NLP systems in which the feature designer had to manually specify not
only the core features of interests but also interactions between them (e.g., introducing not
only a feature stating “word is X” and a feature stating “tag is Y” but also combined feature
stating “word is X and tag is Y” or sometimes even “word is X, tag is Y and previous word
is Z”). The combination features are crucial in linear models because they introduce more
dimensions to the input, transforming it into a space where the data-points are closer to
being linearly separable. On the other hand, the space of possible combinations is very
large, and the feature designer has to spend a lot of time coming up with an e↵ective
set of feature combinations. One of the promises of the non-linear neural network models
is that one needs to define only the core features. The non-linearity of the classifier, as
defined by the network structure, is expected to take care of finding the indicative feature
combinations, alleviating the need for feature combination engineering.

3. The event extraction task involves identification of events from a predefined set of event types. For
example identification of “purchase” events or “terror-attack” events. Each event type can be triggered
by various triggering words (commonly verbs), and has several slots (arguments) that needs to be filled
(i.e. who purchased? what was purchased? at what amount?).

8

Surprising Power of CBOW
CBOW (f1, ..., fk) =

1

k

kX

i=1

v(fi)

A simple variation on the CBOW representation is weighted CBOW, in which di↵erent
vectors receive di↵erent weights:

WCBOW (f1, ..., fk) =
1

Pk
i=1 ai

kX

i=1

aiv(fi)

Here, each feature fi has an associated weight ai, indicating the relative importance of
the feature. For example, in a document classification task, a feature fi may correspond to
a word in the document, and the associated weight ai could be the word’s TF-IDF score.

Distance and Position Features The linear distance in between two words in a sentence
may serve as an informative feature. For example, in an event extraction task3 we may be
given a trigger word and a candidate argument word, and asked to predict if the argument
word is indeed an argument of the trigger. The distance (or relative position) between the
trigger and the argument is a strong signal for this prediction task. In the “traditional” NLP
setup, distances are usually encoded by binning the distances into several groups (i.e. 1, 2,
3, 4, 5–10, 10+) and associating each bin with a one-hot vector. In a neural architecture,
where the input vector is not composed of binary indicator features, it may seem natural to
allocate a single input vector entry to the distance feature, where the numeric value of that
entry is the distance. However, this approach is not taken in practice. Instead, distance
features are encoded similarly to the other feature types: each bin is associated with a
d-dimensional vector, and these distance-embedding vectors are then trained as regular
parameters in the network (Zeng et al., 2014; dos Santos et al., 2015; Zhu et al., 2015a;
Nguyen & Grishman, 2015).

Feature Combinations Note that the feature extraction stage in the neural-network
settings deals only with extraction of core features. This is in contrast to the traditional
linear-model-based NLP systems in which the feature designer had to manually specify not
only the core features of interests but also interactions between them (e.g., introducing not
only a feature stating “word is X” and a feature stating “tag is Y” but also combined feature
stating “word is X and tag is Y” or sometimes even “word is X, tag is Y and previous word
is Z”). The combination features are crucial in linear models because they introduce more
dimensions to the input, transforming it into a space where the data-points are closer to
being linearly separable. On the other hand, the space of possible combinations is very
large, and the feature designer has to spend a lot of time coming up with an e↵ective
set of feature combinations. One of the promises of the non-linear neural network models
is that one needs to define only the core features. The non-linearity of the classifier, as
defined by the network structure, is expected to take care of finding the indicative feature
combinations, alleviating the need for feature combination engineering.

3. The event extraction task involves identification of events from a predefined set of event types. For
example identification of “purchase” events or “terror-attack” events. Each event type can be triggered
by various triggering words (commonly verbs), and has several slots (arguments) that needs to be filled
(i.e. who purchased? what was purchased? at what amount?).

8

Given CBOW vector and word vector,
can we predict if word is in cbow?

Surprising Power of CBOW
CBOW (f1, ..., fk) =

1

k

kX

i=1

v(fi)

A simple variation on the CBOW representation is weighted CBOW, in which di↵erent
vectors receive di↵erent weights:

WCBOW (f1, ..., fk) =
1

Pk
i=1 ai

kX

i=1

aiv(fi)

Here, each feature fi has an associated weight ai, indicating the relative importance of
the feature. For example, in a document classification task, a feature fi may correspond to
a word in the document, and the associated weight ai could be the word’s TF-IDF score.

Distance and Position Features The linear distance in between two words in a sentence
may serve as an informative feature. For example, in an event extraction task3 we may be
given a trigger word and a candidate argument word, and asked to predict if the argument
word is indeed an argument of the trigger. The distance (or relative position) between the
trigger and the argument is a strong signal for this prediction task. In the “traditional” NLP
setup, distances are usually encoded by binning the distances into several groups (i.e. 1, 2,
3, 4, 5–10, 10+) and associating each bin with a one-hot vector. In a neural architecture,
where the input vector is not composed of binary indicator features, it may seem natural to
allocate a single input vector entry to the distance feature, where the numeric value of that
entry is the distance. However, this approach is not taken in practice. Instead, distance
features are encoded similarly to the other feature types: each bin is associated with a
d-dimensional vector, and these distance-embedding vectors are then trained as regular
parameters in the network (Zeng et al., 2014; dos Santos et al., 2015; Zhu et al., 2015a;
Nguyen & Grishman, 2015).

Feature Combinations Note that the feature extraction stage in the neural-network
settings deals only with extraction of core features. This is in contrast to the traditional
linear-model-based NLP systems in which the feature designer had to manually specify not
only the core features of interests but also interactions between them (e.g., introducing not
only a feature stating “word is X” and a feature stating “tag is Y” but also combined feature
stating “word is X and tag is Y” or sometimes even “word is X, tag is Y and previous word
is Z”). The combination features are crucial in linear models because they introduce more
dimensions to the input, transforming it into a space where the data-points are closer to
being linearly separable. On the other hand, the space of possible combinations is very
large, and the feature designer has to spend a lot of time coming up with an e↵ective
set of feature combinations. One of the promises of the non-linear neural network models
is that one needs to define only the core features. The non-linearity of the classifier, as
defined by the network structure, is expected to take care of finding the indicative feature
combinations, alleviating the need for feature combination engineering.

3. The event extraction task involves identification of events from a predefined set of event types. For
example identification of “purchase” events or “terror-attack” events. Each event type can be triggered
by various triggering words (commonly verbs), and has several slots (arguments) that needs to be filled
(i.e. who purchased? what was purchased? at what amount?).

8

Given CBOW vector and two word vectors,
can we predict which word appeared before the other?

Surprising Power of CBOW
CBOW (f1, ..., fk) =

1

k

kX

i=1

v(fi)

A simple variation on the CBOW representation is weighted CBOW, in which di↵erent
vectors receive di↵erent weights:

WCBOW (f1, ..., fk) =
1

Pk
i=1 ai

kX

i=1

aiv(fi)

Here, each feature fi has an associated weight ai, indicating the relative importance of
the feature. For example, in a document classification task, a feature fi may correspond to
a word in the document, and the associated weight ai could be the word’s TF-IDF score.

Distance and Position Features The linear distance in between two words in a sentence
may serve as an informative feature. For example, in an event extraction task3 we may be
given a trigger word and a candidate argument word, and asked to predict if the argument
word is indeed an argument of the trigger. The distance (or relative position) between the
trigger and the argument is a strong signal for this prediction task. In the “traditional” NLP
setup, distances are usually encoded by binning the distances into several groups (i.e. 1, 2,
3, 4, 5–10, 10+) and associating each bin with a one-hot vector. In a neural architecture,
where the input vector is not composed of binary indicator features, it may seem natural to
allocate a single input vector entry to the distance feature, where the numeric value of that
entry is the distance. However, this approach is not taken in practice. Instead, distance
features are encoded similarly to the other feature types: each bin is associated with a
d-dimensional vector, and these distance-embedding vectors are then trained as regular
parameters in the network (Zeng et al., 2014; dos Santos et al., 2015; Zhu et al., 2015a;
Nguyen & Grishman, 2015).

Feature Combinations Note that the feature extraction stage in the neural-network
settings deals only with extraction of core features. This is in contrast to the traditional
linear-model-based NLP systems in which the feature designer had to manually specify not
only the core features of interests but also interactions between them (e.g., introducing not
only a feature stating “word is X” and a feature stating “tag is Y” but also combined feature
stating “word is X and tag is Y” or sometimes even “word is X, tag is Y and previous word
is Z”). The combination features are crucial in linear models because they introduce more
dimensions to the input, transforming it into a space where the data-points are closer to
being linearly separable. On the other hand, the space of possible combinations is very
large, and the feature designer has to spend a lot of time coming up with an e↵ective
set of feature combinations. One of the promises of the non-linear neural network models
is that one needs to define only the core features. The non-linearity of the classifier, as
defined by the network structure, is expected to take care of finding the indicative feature
combinations, alleviating the need for feature combination engineering.

3. The event extraction task involves identification of events from a predefined set of event types. For
example identification of “purchase” events or “terror-attack” events. Each event type can be triggered
by various triggering words (commonly verbs), and has several slots (arguments) that needs to be filled
(i.e. who purchased? what was purchased? at what amount?).

8

Given CBOW vector
can we predict sentence length?

Surprising Power of CBOW
CBOW (f1, ..., fk) =

1

k

kX

i=1

v(fi)

A simple variation on the CBOW representation is weighted CBOW, in which di↵erent
vectors receive di↵erent weights:

WCBOW (f1, ..., fk) =
1

Pk
i=1 ai

kX

i=1

aiv(fi)

Here, each feature fi has an associated weight ai, indicating the relative importance of
the feature. For example, in a document classification task, a feature fi may correspond to
a word in the document, and the associated weight ai could be the word’s TF-IDF score.

Distance and Position Features The linear distance in between two words in a sentence
may serve as an informative feature. For example, in an event extraction task3 we may be
given a trigger word and a candidate argument word, and asked to predict if the argument
word is indeed an argument of the trigger. The distance (or relative position) between the
trigger and the argument is a strong signal for this prediction task. In the “traditional” NLP
setup, distances are usually encoded by binning the distances into several groups (i.e. 1, 2,
3, 4, 5–10, 10+) and associating each bin with a one-hot vector. In a neural architecture,
where the input vector is not composed of binary indicator features, it may seem natural to
allocate a single input vector entry to the distance feature, where the numeric value of that
entry is the distance. However, this approach is not taken in practice. Instead, distance
features are encoded similarly to the other feature types: each bin is associated with a
d-dimensional vector, and these distance-embedding vectors are then trained as regular
parameters in the network (Zeng et al., 2014; dos Santos et al., 2015; Zhu et al., 2015a;
Nguyen & Grishman, 2015).

Feature Combinations Note that the feature extraction stage in the neural-network
settings deals only with extraction of core features. This is in contrast to the traditional
linear-model-based NLP systems in which the feature designer had to manually specify not
only the core features of interests but also interactions between them (e.g., introducing not
only a feature stating “word is X” and a feature stating “tag is Y” but also combined feature
stating “word is X and tag is Y” or sometimes even “word is X, tag is Y and previous word
is Z”). The combination features are crucial in linear models because they introduce more
dimensions to the input, transforming it into a space where the data-points are closer to
being linearly separable. On the other hand, the space of possible combinations is very
large, and the feature designer has to spend a lot of time coming up with an e↵ective
set of feature combinations. One of the promises of the non-linear neural network models
is that one needs to define only the core features. The non-linearity of the classifier, as
defined by the network structure, is expected to take care of finding the indicative feature
combinations, alleviating the need for feature combination engineering.

3. The event extraction task involves identification of events from a predefined set of event types. For
example identification of “purchase” events or “terror-attack” events. Each event type can be triggered
by various triggering words (commonly verbs), and has several slots (arguments) that needs to be filled
(i.e. who purchased? what was purchased? at what amount?).

8

Given CBOW vector
can we predict sentence length?

Under review as a conference paper at ICLR 2017

mensions, the decoder’s language model may be strong enough to allow the representation produced
by the encoder to be less informative with regard to word content.

CBOW representations with low dimensional vectors (100 and 300 dimensions) perform exception-
ally well, outperforming the more complex, sequence-aware models by a wide margin. If your task
requires access to word identities, it is worth considering this simple representation. Interestingly,
CBOW scores drop at higher dimensions.

6.3 WORD ORDER EXPERIMENTS

Figure 1c shows the performance of the different models on the order test. The LSTM encoders are
very capable of encoding word order, with LSTM-1000 allowing the recovery of word order in 91%
of the cases. Similar to the length test, LSTM order prediction accuracy is only loosely correlated
with BLEU scores. It is worth noting that increasing the representation size helps the LSTM-encoder
to better encode order information.

Surprisingly, the CBOW encodings manage to reach an accuracy of 70% on the word order task,
20% above the baseline. This is remarkable as, by definition, the CBOW encoder does not attempt
to preserve word order information. One way to explain this is by considering distribution patterns
of words in natural language sentences: some words tend to appear before others. In the next section
we analyze the effect of natural language on the different models.

7 IMPORTANCE OF “NATURAL LANGUAGENESS”

Natural language imposes many constraints on sentence structure. To what extent do the differ-
ent encoders rely on specific properties of word distributions in natural language sentences when
encoding sentences?

To account for this, we perform additional experiments in which we attempt to control for the effect
of natural language.

How can CBOW encode sentence length? Is the ability of CBOW embeddings to encode length
related to specific words being indicative of longer or shorter sentences? To control for this, we
created a synthetic dataset where each word in each sentence is replaced by a random word from
the dictionary and re-ran the length test for the CBOW embeddings using this dataset. As Figure 2a
shows, this only leads to a slight decrease in accuracy, indicating that the identity of the words is not
the main component in CBOW’s success at predicting length.

(a) Length accuracy for different
CBOW sizes on natural and synthetic
(random words) sentences.

(b) Average embedding norm vs. sen-
tence length for CBOW with an em-
bedding size of 300.

An alternative explanation for CBOW’s ability to encode sentence length is given by considering the
norms of the sentence embeddings. Indeed, Figure 2b shows that the embedding norm decreases as
sentences grow longer. We believe this is one of the main reasons for the strong CBOW results.

While the correlation between the number of averaged vectors and the resulting norm surprised us,
in retrospect it is an expected behavior that has sound mathematical foundations. To understand
the behavior, consider the different word vectors to be random variables, with the values in each
dimension centered roughly around zero. The central limit theorem tells us that as we add samples,
the expected average of the values will better approximate the true mean, causing the norm of the

6

how come?

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1681–1691,

Beijing, China, July 26-31, 2015. c�2015 Association for Computational Linguistics

Deep Unordered Composition Rivals Syntactic Methods
for Text Classification

Mohit Iyyer,1 Varun Manjunatha,1 Jordan Boyd-Graber,2 Hal Daumé III1

1University of Maryland, Department of Computer Science and UMIACS
2University of Colorado, Department of Computer Science

{miyyer,varunm,hal}@umiacs.umd.edu, Jordan.Boyd.Graber@colorado.edu

Abstract

Many existing deep learning models for
natural language processing tasks focus on
learning the compositionality of their in-
puts, which requires many expensive com-
putations. We present a simple deep neural
network that competes with and, in some
cases, outperforms such models on sen-
timent analysis and factoid question an-
swering tasks while taking only a fraction
of the training time. While our model is
syntactically-ignorant, we show significant
improvements over previous bag-of-words
models by deepening our network and ap-
plying a novel variant of dropout. More-
over, our model performs better than syn-
tactic models on datasets with high syn-
tactic variance. We show that our model
makes similar errors to syntactically-aware
models, indicating that for the tasks we con-
sider, nonlinearly transforming the input is
more important than tailoring a network to
incorporate word order and syntax.

1 Introduction

Vector space models for natural language process-
ing (NLP) represent words using low dimensional
vectors called embeddings. To apply vector space
models to sentences or documents, one must first
select an appropriate composition function, which
is a mathematical process for combining multiple
words into a single vector.

Composition functions fall into two classes: un-
ordered and syntactic. Unordered functions treat in-
put texts as bags of word embeddings, while syntac-
tic functions take word order and sentence structure
into account. Previously published experimental

results have shown that syntactic functions outper-
form unordered functions on many tasks (Socher
et al., 2013b; Kalchbrenner and Blunsom, 2013).

However, there is a tradeoff: syntactic functions
require more training time than unordered compo-
sition functions and are prohibitively expensive in
the case of huge datasets or limited computing re-
sources. For example, the recursive neural network
(Section 2) computes costly matrix/tensor products
and nonlinearities at every node of a syntactic parse
tree, which limits it to smaller datasets that can be
reliably parsed.

We introduce a deep unordered model that ob-
tains near state-of-the-art accuracies on a variety of
sentence and document-level tasks with just min-
utes of training time on an average laptop computer.
This model, the deep averaging network (DAN),
works in three simple steps:

1. take the vector average of the embeddings
associated with an input sequence of tokens

2. pass that average through one or more feed-
forward layers

3. perform (linear) classification on the final
layer’s representation

The model can be improved by applying a novel
dropout-inspired regularizer: for each training in-
stance, randomly drop some of the tokens’ embed-
dings before computing the average.

We evaluate DANs on sentiment analysis and fac-
toid question answering tasks at both the sentence
and document level in Section 4. Our model’s suc-
cesses demonstrate that for these tasks, the choice
of composition function is not as important as ini-
tializing with pretrained embeddings and using a
deep network. Furthermore, DANs, unlike more
complex composition functions, can be effectively
trained on data that have high syntactic variance. A

1681

"Document Averaging Networks"

text classification

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

This is the log-linear model over
bigrams from ass1!

(see why?)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words"

Consider Assignment 1's model:

If each feature is bigram,
works great.

Moving to unigrams, large drop.

Unigrams + MLP --> better
but not like bigrams.

Why?

Importance of Ngrams

• While we can ignore global order in many cases...

• ... local ordering is still often very important.

• Local sub-sequences encode useful structures.

Importance of Ngrams

• While we can ignore global order in many cases...

• ... local ordering is still often very important.

• Local sub-sequences encode useful structures.

(so why not just assign a vector to each ngram?)

Hybrids
• We have a language model, and we want to

condition on the entire sentence history.

• We can have "window" (concatenation)

• but then we are restricted to fixed length.

• We can have "cbow" (sum)

• but then we loose word order information.

what can we do?

Hybrids
• For predicting word k:

• concat words k-1, k-2, k-3, k-4 into v1

• sum words 1,...,k-5 into v2

• concat v1 and v2.

• We have local history with order, and the unordered
context of the entire history also.

Hybrids
• For predicting word k:

• concat words k-1, k-2, k-3, k-4 into v1

• sum words 1,...,k-5 into v2

• concat v1 and v2.

• We have local history with order, and the unordered
context of the entire history also.

another option: when summing words,
give weight 1/2 to k-1, 1/3 to k-2, 1/4 to k-3, etc.

ConvNets
special architecture for local predictors

ConvNets
• CBOW allows encoding arbitrary length sequences,

but loses all order information.

• Some local order (i.e. bigrams, trigrams) is informative.
Yet, we do not care about exact position in the
sequence. (think "good" vs. "not good")

• ConvNets (in language) allow to identify informative
local predictors.

• Works by moving a shared function (feature extractor)
over a sliding window, then pooling results.

ConvNets

• ConvNets have huge success in computer vision.

• It allows invariance to object position.

• It allows composing large predictors from small.

(you've seen them in 2d in ML class)

from
2d ConvNets

to
1d ConvNets

the service was not goodveryactual

the service was not goodveryactual

dot

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=
the

 ac
tua

l

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

the service was not goodveryactual

dot
=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

the service was not goodveryactual

dot

=
the

 ac
tua

l

the service was not goodveryactual

dot

=
the

 ac
tua

l

the service was not goodveryactual

dot

=
the

 ac
tua

l

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

the

another way to represent text convolutions
(like 2d, useful for 2d-based software)

actual
service

was
not

very

conv =

ac
tua

l se
rvi

ce

the
actual

service
was
not

very

conv =

ac
tua

l se
rvi

ce

another way to represent text convolutions
(like 2d, useful for 2d-based software)

the
actual

service
was
not

very

conv =

se
rvi

ce
 was

another way to represent text convolutions
(like 2d, useful for 2d-based software)

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

(we'll focus on the 1-d view here,
but remember they are equivalent)

the service was not goodveryactual

dot

=

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

tanh() tanh() tanh() tanh() tanh() tanh()

(usually also add non linearity)

the service was not goodveryactual

(can have larger filters...)

dot

=
the

 ac
tua

l

tanh()

the service was not goodveryactual

dot

=

the
 ac

tua
l se

rvi
ce

tanh()

(...can have larger filters)

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

we have the ngram vectors. now what?

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

can do "pooling"

+ + + + + =

"Pooling"

Combine K vectors into a single vector

"Pooling"

Combine K vectors into a single vector

This vector is a summary of the K vectors,
and can be used for prediction.

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

+ + + + + =

average pooling average vector

the service was not goodveryactual

+ + + + + =

tanh(W⇤+ b)

U⇤

softmax(⇤)

prediction

MLP

train end-to-end for some task
(train the MLP, the filter matrix, and the embeddings together)

the service was not goodveryactual

+ + + + + =

tanh(W⇤+ b)

U⇤

softmax(⇤)

prediction

MLP

train end-to-end for some task
(train the MLP, the filter matrix, and the embeddings together)

the vectors learn to capture what's important

we have the ngram vectors. now what?
Can look at the differences between terms.

A Latent Semantic Model with Convolutional-Pooling
Structure for Information Retrieval

Yelong Shen
Microsoft Research
Redmond, WA, USA
yeshen@microsoft.com

Xiaodong He
Microsoft Research
Redmond, WA, USA
xiaohe@microsoft.com

Jianfeng Gao
Microsoft Research
Redmond, WA, USA
jfgao@microsoft.com

Li Deng
Microsoft Research
Redmond, WA, USA
deng@microsoft.com

Grégoire Mesnil
University of Montréal

Montréal, Canada
gregoire.mesnil@umont

real.ca

ABSTRACT
In this paper, we propose a new latent semantic model that
incorporates a convolutional-pooling structure over word
sequences to learn low-dimensional, semantic vector
representations for search queries and Web documents. In order to
capture the rich contextual structures in a query or a document, we
start with each word within a temporal context window in a word
sequence to directly capture contextual features at the word n-
gram level. Next, the salient word n-gram features in the word
sequence are discovered by the model and are then aggregated to
form a sentence-level feature vector. Finally, a non-linear
transformation is applied to extract high-level semantic
information to generate a continuous vector representation for the
full text string. The proposed convolutional latent semantic model
(CLSM) is trained on clickthrough data and is evaluated on a Web
document ranking task using a large-scale, real-world data set.
Results show that the proposed model effectively captures salient
semantic information in queries and documents for the task while
significantly outperforming previous state-of-the-art semantic
models.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Convolutional Neural Network, Semantic Representation, Web
Search

1. INTRODUCTION
Most modern search engines resort to semantic based methods
beyond lexical matching for Web document retrieval. This is
partially due to the fact that the same single concept is often
expressed using different vocabularies and language styles in
documents and queries. For example, latent semantic models such
as latent semantic analysis (LSA) are able to map a query to its

relevant documents at the semantic level where lexical matching
often fails (e.g., [9][10][31]). These models address the problem
of language discrepancy between Web documents and search
queries by grouping different terms that occur in a similar context
into the same semantic cluster. Thus, a query and a document,
represented as two vectors in the low-dimensional semantic space,
can still have a high similarity even if they do not share any term.
Extending from LSA, probabilistic topic models such as
probabilistic LSA (PLSA), Latent Dirichlet Allocation (LDA),
and Bi-Lingual Topic Model (BLTM), have been proposed and
successfully applied to semantic matching [19][4][16][15][39].
More recently, semantic modeling methods based on neural
networks have also been proposed for information retrieval (IR)
[16][32][20]. Salakhutdinov and Hinton proposed the Semantic
Hashing method based on a deep auto-encoder in [32][16]. A
Deep Structured Semantic Model (DSSM) for Web search was
proposed in [20], which is reported to give very strong IR
performance on a large-scale web search task when clickthrough
data are exploited as weakly-supervised information in training
the model. In both methods, plain feed-forward neural networks
are used to extract the semantic structures embedded in a query or
a document.

Despite the progress made recently, all the aforementioned
latent semantic models view a query (or a document) as a bag of
words. As a result, they are not effective in modeling contextual
structures of a query (or a document). Table 1 gives several
examples of document titles to illustrate the problem. For
example, tKH� ZRUG� ³office´� in the first document refers to the
popular Microsoft product, but in the second document it refers to
a working space. We see that the precise search intent of the word
³office´�FDQnot be identified without context.

microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator
online auto body repair estimates
Table 1: Sample document titles. The text is lower-cased and
punctuation removed. The same ZRUG�� H�J��� ³office´�� KDV�
different meanings depending on its contexts.

Modeling contextual information in search queries and

documents is a long-standing research topic in IR
[11][25][12][26][2][22][24]. Classical retrieval models, such as
TF-IDF and BM25, use a bag-of-words representation and cannot
effectively capture contextual information of a word. Topic
models learn the topic distribution of a word by considering word
occurrence information within a document or a sentence.
However, the contextual information captured by such models is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
&,.0¶14, November 03 ± 07, 2014, Shanghai, China.
Copyright © 2014 ACM 978-1-4503-2598-�������«������
http://dx.doi.org/10.1145/2661829.2661935

3.2 Letter-trigram based Word-n-gram
Representation
Conventionally, each word w is represented by a one-hot word
vector where the dimensionality of the vector is the size of the
vocabulary. However, the vocabulary size is often very large in
real-world Web search tasks, and the one-hot vector word
representation makes model learning very expensive. Therefore,
we resort to a technique called word hashing proposed in [20],
which represents a word by a letter-trigram vector. For example,
given a word (e.g. boy), after adding word boundary symbols (e.g.
#boy#), the word is segmented into a sequence of letter-n-grams
(e.g. letter-tri-grams: #-b-o, b-o-y, o-y-#). Then, the word is
represented as a count vector of letter-tri-grams. For example, the
letter-trigram representation RI�³boy´�LV:

݂ሺܾݕሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
Ͳ
ڭ
ͳ
ڭ
ͳ
ڭ
ͳ
ڭ
Ͳے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

In Figure 1, the letter-trigram matrix ܹ denotes the
transformation from a word to its letter-trigram count vector,
which requires no learning. Even though the total number of
English words may grow to be extremely large, the total number
of distinct letter-trigrams in English (or other similar languages) is
often limited. Therefore, it can generalize to new words unseen in
the training data.

Given the letter-trigram based word representation, we
represent a word-n-gram by concatenating the letter-trigram
vectors of each word, e.g., for the t-th word-n-gram at the word-n-
gram layer, we have:

݈௧ ൌ ሾ ௧݂ିௗ
் ǡ ǥ ǡ ௧݂

்ǡ ǥ ǡ ௧݂ାௗ
் �ሿ்ǡ ݐ ൌ ͳǡǥ ǡ ܶ (1)

where ௧݂is the letter-trigram representation of the t-th word, and
݊ ൌ ʹ݀ ͳ is the size of the contextual window. In our
experiment, there are about 30K unique letter-trigrams observed
in the training set after the data are lower-cased and punctuation-
removed. Therefore, the letter-trigram layer has a dimensionality
of ݊ ൈ ͵Ͳܭ.

3.3 Modeling Word-n-gram-Level Contextual
Features at the Convolutional Layer
The convolution operation can be viewed as sliding window based
feature extraction. It is designed to capture the word-n-gram
contextual features. Consider the t-th word-n-gram, the
convolution matrix projects its letter-trigram representation vector
݈௧ to a contextual feature vector ݄௧. As shown in Figure 1, ݄௧ is
computed by

݄௧ ൌ ሺ݄݊ܽݐ ܹ ή ݈௧ሻ ǡ ݐ ൌ ͳǡǥ ǡ ܶ (2)

where ܹ is the feature transformation matrix, as known as the
convolution matrix, that are shared among all word n-grams. ݄݊ܽݐ
is used as the activation function of the neurons:

ሻݔሺ݄݊ܽݐ� ൌ
ͳ െ ݁ିଶ௫

ͳ ݁ିଶ௫��� (3)

The output of the convolutional layer is a variable length sequence
of feature vectors, whose length is proportional to the length of
the input word sequence. $�VSHFLDO�³SDGGLQJ´�ZRUG���V!��LV�DGGHG�
at the beginning and the end of the input word sequence so that a
full window for a word at any position in the word sequence can
be formed. Figure 1 shows a convolutional layer using a 3-word
contextual window. Note that like the conventional CNN, the
convolution matrix used in our CLSM is shared among all n-word
phrases and therefore generalizes to new word-n-grams unseen in
the training set.

At the convolutional layer, words within their contexts are
projected to vectors that are close to each other if they are
semantically similar. Table 2 presents a set of sample word-tri-
grams. Considering the word ³office´�as the word of interest, we
measure the cosine similarity between the contextual feature
YHFWRU� RI� ³office´�ZLWKLQ� WKH� FRQWH[W� ³PLFURVRIW� RIILFH� VRIWZDUH´�
and the vector of ³office´ within other contexts. We can see that
the similarity scores between the learned feature vector of
³microsoft office software´� DQG� WKRVH� RI� WKH� FRQWH[WV� ZKHUH�
³office´� LV� UHIHUUHG� WR� the software are quite high, while the
similarity scores between it and the features vectors where
³office´�KDV�WKH�VHDUFK�LQWHQW�RI�³ZRUNLQJ�VSDFH´�DUH�VLJQLILFDQWO\�
lower. Similarly, as shown in Table 2, the context vectors of
³body´�DUH�PXFK�FORVHU�ZKHQ�WKH\�DUH�RI�WKH�VDPH�VHDUFK�LQWHQW�

microsoft office software car body shop
Free office 2000 0.550 car body kits 0.698
download office excel 0.541 auto body repair 0.578
word office online 0.502 auto body parts 0.555
apartment office hours 0.331 wave body language 0.301
massachusetts office location 0.293 calculate body fat 0.220
international office berkeley 0.274 forcefield body armour 0.165
Table 2: Sample word n-grams and the cosine similarities
between the learned word-n-gram feature vectors of ³office´�DQG�
³body´�LQ�GLIIHUHQW�FRQWH[WV after the CLSM is trained.

3.4 Modeling Sentence-Level Semantic
Features Using Max Pooling
A sequence of local contextual feature vectors is extracted at the
convolutional layer, one for each word-n-gram. These local
features need to be aggregated to obtain a sentence-level feature
vector with a fixed size independent of the length of the input
word sequence. Since many words do not have significant
influence on the semantics of the sentence, we want to suppress
the non-significant local features and retain in the global feature
vector only the salient features that are useful for IR. For this
purpose, we use a max operation, also known as max pooling, to
force the network to retain only the most useful local features
produced by the convolutional layers. I.e., we select the highest
neuron activation value across all local word n-gram feature
vectors at each dimension. Referring to the max-pooling layer of
Figure 1, we have

ሺ݅ሻݒ ൌ ���
௧ୀଵǡǥǡ்

ሼ݄௧ሺ݅ሻሽ ǡ ݅ ൌ ͳǡǥ ǡ ܭ

Indices of #-b-o, b-o-y, o-y-# in the
letter-tri-gram list, respectively.

we have the ngram vectors. now what?
Can look at the differences between terms.

A Latent Semantic Model with Convolutional-Pooling
Structure for Information Retrieval

Yelong Shen
Microsoft Research
Redmond, WA, USA
yeshen@microsoft.com

Xiaodong He
Microsoft Research
Redmond, WA, USA
xiaohe@microsoft.com

Jianfeng Gao
Microsoft Research
Redmond, WA, USA
jfgao@microsoft.com

Li Deng
Microsoft Research
Redmond, WA, USA
deng@microsoft.com

Grégoire Mesnil
University of Montréal

Montréal, Canada
gregoire.mesnil@umont

real.ca

ABSTRACT
In this paper, we propose a new latent semantic model that
incorporates a convolutional-pooling structure over word
sequences to learn low-dimensional, semantic vector
representations for search queries and Web documents. In order to
capture the rich contextual structures in a query or a document, we
start with each word within a temporal context window in a word
sequence to directly capture contextual features at the word n-
gram level. Next, the salient word n-gram features in the word
sequence are discovered by the model and are then aggregated to
form a sentence-level feature vector. Finally, a non-linear
transformation is applied to extract high-level semantic
information to generate a continuous vector representation for the
full text string. The proposed convolutional latent semantic model
(CLSM) is trained on clickthrough data and is evaluated on a Web
document ranking task using a large-scale, real-world data set.
Results show that the proposed model effectively captures salient
semantic information in queries and documents for the task while
significantly outperforming previous state-of-the-art semantic
models.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Convolutional Neural Network, Semantic Representation, Web
Search

1. INTRODUCTION
Most modern search engines resort to semantic based methods
beyond lexical matching for Web document retrieval. This is
partially due to the fact that the same single concept is often
expressed using different vocabularies and language styles in
documents and queries. For example, latent semantic models such
as latent semantic analysis (LSA) are able to map a query to its

relevant documents at the semantic level where lexical matching
often fails (e.g., [9][10][31]). These models address the problem
of language discrepancy between Web documents and search
queries by grouping different terms that occur in a similar context
into the same semantic cluster. Thus, a query and a document,
represented as two vectors in the low-dimensional semantic space,
can still have a high similarity even if they do not share any term.
Extending from LSA, probabilistic topic models such as
probabilistic LSA (PLSA), Latent Dirichlet Allocation (LDA),
and Bi-Lingual Topic Model (BLTM), have been proposed and
successfully applied to semantic matching [19][4][16][15][39].
More recently, semantic modeling methods based on neural
networks have also been proposed for information retrieval (IR)
[16][32][20]. Salakhutdinov and Hinton proposed the Semantic
Hashing method based on a deep auto-encoder in [32][16]. A
Deep Structured Semantic Model (DSSM) for Web search was
proposed in [20], which is reported to give very strong IR
performance on a large-scale web search task when clickthrough
data are exploited as weakly-supervised information in training
the model. In both methods, plain feed-forward neural networks
are used to extract the semantic structures embedded in a query or
a document.

Despite the progress made recently, all the aforementioned
latent semantic models view a query (or a document) as a bag of
words. As a result, they are not effective in modeling contextual
structures of a query (or a document). Table 1 gives several
examples of document titles to illustrate the problem. For
example, tKH� ZRUG� ³office´� in the first document refers to the
popular Microsoft product, but in the second document it refers to
a working space. We see that the precise search intent of the word
³office´�FDQnot be identified without context.

microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator
online auto body repair estimates
Table 1: Sample document titles. The text is lower-cased and
punctuation removed. The same ZRUG�� H�J��� ³office´�� KDV�
different meanings depending on its contexts.

Modeling contextual information in search queries and

documents is a long-standing research topic in IR
[11][25][12][26][2][22][24]. Classical retrieval models, such as
TF-IDF and BM25, use a bag-of-words representation and cannot
effectively capture contextual information of a word. Topic
models learn the topic distribution of a word by considering word
occurrence information within a document or a sentence.
However, the contextual information captured by such models is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
&,.0¶14, November 03 ± 07, 2014, Shanghai, China.
Copyright © 2014 ACM 978-1-4503-2598-�������«������
http://dx.doi.org/10.1145/2661829.2661935

3.2 Letter-trigram based Word-n-gram
Representation
Conventionally, each word w is represented by a one-hot word
vector where the dimensionality of the vector is the size of the
vocabulary. However, the vocabulary size is often very large in
real-world Web search tasks, and the one-hot vector word
representation makes model learning very expensive. Therefore,
we resort to a technique called word hashing proposed in [20],
which represents a word by a letter-trigram vector. For example,
given a word (e.g. boy), after adding word boundary symbols (e.g.
#boy#), the word is segmented into a sequence of letter-n-grams
(e.g. letter-tri-grams: #-b-o, b-o-y, o-y-#). Then, the word is
represented as a count vector of letter-tri-grams. For example, the
letter-trigram representation RI�³boy´�LV:

݂ሺܾݕሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
Ͳ
ڭ
ͳ
ڭ
ͳ
ڭ
ͳ
ڭ
Ͳے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

In Figure 1, the letter-trigram matrix ܹ denotes the
transformation from a word to its letter-trigram count vector,
which requires no learning. Even though the total number of
English words may grow to be extremely large, the total number
of distinct letter-trigrams in English (or other similar languages) is
often limited. Therefore, it can generalize to new words unseen in
the training data.

Given the letter-trigram based word representation, we
represent a word-n-gram by concatenating the letter-trigram
vectors of each word, e.g., for the t-th word-n-gram at the word-n-
gram layer, we have:

݈௧ ൌ ሾ ௧݂ିௗ
் ǡ ǥ ǡ ௧݂

்ǡ ǥ ǡ ௧݂ାௗ
் �ሿ்ǡ ݐ ൌ ͳǡǥ ǡ ܶ (1)

where ௧݂is the letter-trigram representation of the t-th word, and
݊ ൌ ʹ݀ ͳ is the size of the contextual window. In our
experiment, there are about 30K unique letter-trigrams observed
in the training set after the data are lower-cased and punctuation-
removed. Therefore, the letter-trigram layer has a dimensionality
of ݊ ൈ ͵Ͳܭ.

3.3 Modeling Word-n-gram-Level Contextual
Features at the Convolutional Layer
The convolution operation can be viewed as sliding window based
feature extraction. It is designed to capture the word-n-gram
contextual features. Consider the t-th word-n-gram, the
convolution matrix projects its letter-trigram representation vector
݈௧ to a contextual feature vector ݄௧. As shown in Figure 1, ݄௧ is
computed by

݄௧ ൌ ሺ݄݊ܽݐ ܹ ή ݈௧ሻ ǡ ݐ ൌ ͳǡǥ ǡ ܶ (2)

where ܹ is the feature transformation matrix, as known as the
convolution matrix, that are shared among all word n-grams. ݄݊ܽݐ
is used as the activation function of the neurons:

ሻݔሺ݄݊ܽݐ� ൌ
ͳ െ ݁ିଶ௫

ͳ ݁ିଶ௫��� (3)

The output of the convolutional layer is a variable length sequence
of feature vectors, whose length is proportional to the length of
the input word sequence. $�VSHFLDO�³SDGGLQJ´�ZRUG���V!��LV�DGGHG�
at the beginning and the end of the input word sequence so that a
full window for a word at any position in the word sequence can
be formed. Figure 1 shows a convolutional layer using a 3-word
contextual window. Note that like the conventional CNN, the
convolution matrix used in our CLSM is shared among all n-word
phrases and therefore generalizes to new word-n-grams unseen in
the training set.

At the convolutional layer, words within their contexts are
projected to vectors that are close to each other if they are
semantically similar. Table 2 presents a set of sample word-tri-
grams. Considering the word ³office´�as the word of interest, we
measure the cosine similarity between the contextual feature
YHFWRU� RI� ³office´�ZLWKLQ� WKH� FRQWH[W� ³PLFURVRIW� RIILFH� VRIWZDUH´�
and the vector of ³office´ within other contexts. We can see that
the similarity scores between the learned feature vector of
³microsoft office software´� DQG� WKRVH� RI� WKH� FRQWH[WV� ZKHUH�
³office´� LV� UHIHUUHG� WR� the software are quite high, while the
similarity scores between it and the features vectors where
³office´�KDV�WKH�VHDUFK�LQWHQW�RI�³ZRUNLQJ�VSDFH´�DUH�VLJQLILFDQWO\�
lower. Similarly, as shown in Table 2, the context vectors of
³body´�DUH�PXFK�FORVHU�ZKHQ�WKH\�DUH�RI�WKH�VDPH�VHDUFK�LQWHQW�

microsoft office software car body shop
Free office 2000 0.550 car body kits 0.698
download office excel 0.541 auto body repair 0.578
word office online 0.502 auto body parts 0.555
apartment office hours 0.331 wave body language 0.301
massachusetts office location 0.293 calculate body fat 0.220
international office berkeley 0.274 forcefield body armour 0.165
Table 2: Sample word n-grams and the cosine similarities
between the learned word-n-gram feature vectors of ³office´�DQG�
³body´�LQ�GLIIHUHQW�FRQWH[WV after the CLSM is trained.

3.4 Modeling Sentence-Level Semantic
Features Using Max Pooling
A sequence of local contextual feature vectors is extracted at the
convolutional layer, one for each word-n-gram. These local
features need to be aggregated to obtain a sentence-level feature
vector with a fixed size independent of the length of the input
word sequence. Since many words do not have significant
influence on the semantics of the sentence, we want to suppress
the non-significant local features and retain in the global feature
vector only the salient features that are useful for IR. For this
purpose, we use a max operation, also known as max pooling, to
force the network to retain only the most useful local features
produced by the convolutional layers. I.e., we select the highest
neuron activation value across all local word n-gram feature
vectors at each dimension. Referring to the max-pooling layer of
Figure 1, we have

ሺ݅ሻݒ ൌ ���
௧ୀଵǡǥǡ்

ሼ݄௧ሺ݅ሻሽ ǡ ݅ ൌ ͳǡǥ ǡ ܭ

Indices of #-b-o, b-o-y, o-y-# in the
letter-tri-gram list, respectively.

we have the ngram vectors. now what?
Can look at the differences between terms.

A Latent Semantic Model with Convolutional-Pooling
Structure for Information Retrieval

Yelong Shen
Microsoft Research
Redmond, WA, USA
yeshen@microsoft.com

Xiaodong He
Microsoft Research
Redmond, WA, USA
xiaohe@microsoft.com

Jianfeng Gao
Microsoft Research
Redmond, WA, USA
jfgao@microsoft.com

Li Deng
Microsoft Research
Redmond, WA, USA
deng@microsoft.com

Grégoire Mesnil
University of Montréal

Montréal, Canada
gregoire.mesnil@umont

real.ca

ABSTRACT
In this paper, we propose a new latent semantic model that
incorporates a convolutional-pooling structure over word
sequences to learn low-dimensional, semantic vector
representations for search queries and Web documents. In order to
capture the rich contextual structures in a query or a document, we
start with each word within a temporal context window in a word
sequence to directly capture contextual features at the word n-
gram level. Next, the salient word n-gram features in the word
sequence are discovered by the model and are then aggregated to
form a sentence-level feature vector. Finally, a non-linear
transformation is applied to extract high-level semantic
information to generate a continuous vector representation for the
full text string. The proposed convolutional latent semantic model
(CLSM) is trained on clickthrough data and is evaluated on a Web
document ranking task using a large-scale, real-world data set.
Results show that the proposed model effectively captures salient
semantic information in queries and documents for the task while
significantly outperforming previous state-of-the-art semantic
models.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Convolutional Neural Network, Semantic Representation, Web
Search

1. INTRODUCTION
Most modern search engines resort to semantic based methods
beyond lexical matching for Web document retrieval. This is
partially due to the fact that the same single concept is often
expressed using different vocabularies and language styles in
documents and queries. For example, latent semantic models such
as latent semantic analysis (LSA) are able to map a query to its

relevant documents at the semantic level where lexical matching
often fails (e.g., [9][10][31]). These models address the problem
of language discrepancy between Web documents and search
queries by grouping different terms that occur in a similar context
into the same semantic cluster. Thus, a query and a document,
represented as two vectors in the low-dimensional semantic space,
can still have a high similarity even if they do not share any term.
Extending from LSA, probabilistic topic models such as
probabilistic LSA (PLSA), Latent Dirichlet Allocation (LDA),
and Bi-Lingual Topic Model (BLTM), have been proposed and
successfully applied to semantic matching [19][4][16][15][39].
More recently, semantic modeling methods based on neural
networks have also been proposed for information retrieval (IR)
[16][32][20]. Salakhutdinov and Hinton proposed the Semantic
Hashing method based on a deep auto-encoder in [32][16]. A
Deep Structured Semantic Model (DSSM) for Web search was
proposed in [20], which is reported to give very strong IR
performance on a large-scale web search task when clickthrough
data are exploited as weakly-supervised information in training
the model. In both methods, plain feed-forward neural networks
are used to extract the semantic structures embedded in a query or
a document.

Despite the progress made recently, all the aforementioned
latent semantic models view a query (or a document) as a bag of
words. As a result, they are not effective in modeling contextual
structures of a query (or a document). Table 1 gives several
examples of document titles to illustrate the problem. For
example, tKH� ZRUG� ³office´� in the first document refers to the
popular Microsoft product, but in the second document it refers to
a working space. We see that the precise search intent of the word
³office´�FDQnot be identified without context.

microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator
online auto body repair estimates
Table 1: Sample document titles. The text is lower-cased and
punctuation removed. The same ZRUG�� H�J��� ³office´�� KDV�
different meanings depending on its contexts.

Modeling contextual information in search queries and

documents is a long-standing research topic in IR
[11][25][12][26][2][22][24]. Classical retrieval models, such as
TF-IDF and BM25, use a bag-of-words representation and cannot
effectively capture contextual information of a word. Topic
models learn the topic distribution of a word by considering word
occurrence information within a document or a sentence.
However, the contextual information captured by such models is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
&,.0¶14, November 03 ± 07, 2014, Shanghai, China.
Copyright © 2014 ACM 978-1-4503-2598-�������«������
http://dx.doi.org/10.1145/2661829.2661935

3.2 Letter-trigram based Word-n-gram
Representation
Conventionally, each word w is represented by a one-hot word
vector where the dimensionality of the vector is the size of the
vocabulary. However, the vocabulary size is often very large in
real-world Web search tasks, and the one-hot vector word
representation makes model learning very expensive. Therefore,
we resort to a technique called word hashing proposed in [20],
which represents a word by a letter-trigram vector. For example,
given a word (e.g. boy), after adding word boundary symbols (e.g.
#boy#), the word is segmented into a sequence of letter-n-grams
(e.g. letter-tri-grams: #-b-o, b-o-y, o-y-#). Then, the word is
represented as a count vector of letter-tri-grams. For example, the
letter-trigram representation RI�³boy´�LV:

݂ሺܾݕሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
Ͳ
ڭ
ͳ
ڭ
ͳ
ڭ
ͳ
ڭ
Ͳے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

In Figure 1, the letter-trigram matrix ܹ denotes the
transformation from a word to its letter-trigram count vector,
which requires no learning. Even though the total number of
English words may grow to be extremely large, the total number
of distinct letter-trigrams in English (or other similar languages) is
often limited. Therefore, it can generalize to new words unseen in
the training data.

Given the letter-trigram based word representation, we
represent a word-n-gram by concatenating the letter-trigram
vectors of each word, e.g., for the t-th word-n-gram at the word-n-
gram layer, we have:

݈௧ ൌ ሾ ௧݂ିௗ
் ǡ ǥ ǡ ௧݂

்ǡ ǥ ǡ ௧݂ାௗ
் �ሿ்ǡ ݐ ൌ ͳǡǥ ǡ ܶ (1)

where ௧݂is the letter-trigram representation of the t-th word, and
݊ ൌ ʹ݀ ͳ is the size of the contextual window. In our
experiment, there are about 30K unique letter-trigrams observed
in the training set after the data are lower-cased and punctuation-
removed. Therefore, the letter-trigram layer has a dimensionality
of ݊ ൈ ͵Ͳܭ.

3.3 Modeling Word-n-gram-Level Contextual
Features at the Convolutional Layer
The convolution operation can be viewed as sliding window based
feature extraction. It is designed to capture the word-n-gram
contextual features. Consider the t-th word-n-gram, the
convolution matrix projects its letter-trigram representation vector
݈௧ to a contextual feature vector ݄௧. As shown in Figure 1, ݄௧ is
computed by

݄௧ ൌ ሺ݄݊ܽݐ ܹ ή ݈௧ሻ ǡ ݐ ൌ ͳǡǥ ǡ ܶ (2)

where ܹ is the feature transformation matrix, as known as the
convolution matrix, that are shared among all word n-grams. ݄݊ܽݐ
is used as the activation function of the neurons:

ሻݔሺ݄݊ܽݐ� ൌ
ͳ െ ݁ିଶ௫

ͳ ݁ିଶ௫��� (3)

The output of the convolutional layer is a variable length sequence
of feature vectors, whose length is proportional to the length of
the input word sequence. $�VSHFLDO�³SDGGLQJ´�ZRUG���V!��LV�DGGHG�
at the beginning and the end of the input word sequence so that a
full window for a word at any position in the word sequence can
be formed. Figure 1 shows a convolutional layer using a 3-word
contextual window. Note that like the conventional CNN, the
convolution matrix used in our CLSM is shared among all n-word
phrases and therefore generalizes to new word-n-grams unseen in
the training set.

At the convolutional layer, words within their contexts are
projected to vectors that are close to each other if they are
semantically similar. Table 2 presents a set of sample word-tri-
grams. Considering the word ³office´�as the word of interest, we
measure the cosine similarity between the contextual feature
YHFWRU� RI� ³office´�ZLWKLQ� WKH� FRQWH[W� ³PLFURVRIW� RIILFH� VRIWZDUH´�
and the vector of ³office´ within other contexts. We can see that
the similarity scores between the learned feature vector of
³microsoft office software´� DQG� WKRVH� RI� WKH� FRQWH[WV� ZKHUH�
³office´� LV� UHIHUUHG� WR� the software are quite high, while the
similarity scores between it and the features vectors where
³office´�KDV�WKH�VHDUFK�LQWHQW�RI�³ZRUNLQJ�VSDFH´�DUH�VLJQLILFDQWO\�
lower. Similarly, as shown in Table 2, the context vectors of
³body´�DUH�PXFK�FORVHU�ZKHQ�WKH\�DUH�RI�WKH�VDPH�VHDUFK�LQWHQW�

microsoft office software car body shop
Free office 2000 0.550 car body kits 0.698
download office excel 0.541 auto body repair 0.578
word office online 0.502 auto body parts 0.555
apartment office hours 0.331 wave body language 0.301
massachusetts office location 0.293 calculate body fat 0.220
international office berkeley 0.274 forcefield body armour 0.165
Table 2: Sample word n-grams and the cosine similarities
between the learned word-n-gram feature vectors of ³office´�DQG�
³body´�LQ�GLIIHUHQW�FRQWH[WV after the CLSM is trained.

3.4 Modeling Sentence-Level Semantic
Features Using Max Pooling
A sequence of local contextual feature vectors is extracted at the
convolutional layer, one for each word-n-gram. These local
features need to be aggregated to obtain a sentence-level feature
vector with a fixed size independent of the length of the input
word sequence. Since many words do not have significant
influence on the semantics of the sentence, we want to suppress
the non-significant local features and retain in the global feature
vector only the salient features that are useful for IR. For this
purpose, we use a max operation, also known as max pooling, to
force the network to retain only the most useful local features
produced by the convolutional layers. I.e., we select the highest
neuron activation value across all local word n-gram feature
vectors at each dimension. Referring to the max-pooling layer of
Figure 1, we have

ሺ݅ሻݒ ൌ ���
௧ୀଵǡǥǡ்

ሼ݄௧ሺ݅ሻሽ ǡ ݅ ൌ ͳǡǥ ǡ ܭ

Indices of #-b-o, b-o-y, o-y-# in the
letter-tri-gram list, respectively.

we have the ngram vectors. now what?
Can look at the differences between terms.

A Latent Semantic Model with Convolutional-Pooling
Structure for Information Retrieval

Yelong Shen
Microsoft Research
Redmond, WA, USA
yeshen@microsoft.com

Xiaodong He
Microsoft Research
Redmond, WA, USA
xiaohe@microsoft.com

Jianfeng Gao
Microsoft Research
Redmond, WA, USA
jfgao@microsoft.com

Li Deng
Microsoft Research
Redmond, WA, USA
deng@microsoft.com

Grégoire Mesnil
University of Montréal

Montréal, Canada
gregoire.mesnil@umont

real.ca

ABSTRACT
In this paper, we propose a new latent semantic model that
incorporates a convolutional-pooling structure over word
sequences to learn low-dimensional, semantic vector
representations for search queries and Web documents. In order to
capture the rich contextual structures in a query or a document, we
start with each word within a temporal context window in a word
sequence to directly capture contextual features at the word n-
gram level. Next, the salient word n-gram features in the word
sequence are discovered by the model and are then aggregated to
form a sentence-level feature vector. Finally, a non-linear
transformation is applied to extract high-level semantic
information to generate a continuous vector representation for the
full text string. The proposed convolutional latent semantic model
(CLSM) is trained on clickthrough data and is evaluated on a Web
document ranking task using a large-scale, real-world data set.
Results show that the proposed model effectively captures salient
semantic information in queries and documents for the task while
significantly outperforming previous state-of-the-art semantic
models.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Convolutional Neural Network, Semantic Representation, Web
Search

1. INTRODUCTION
Most modern search engines resort to semantic based methods
beyond lexical matching for Web document retrieval. This is
partially due to the fact that the same single concept is often
expressed using different vocabularies and language styles in
documents and queries. For example, latent semantic models such
as latent semantic analysis (LSA) are able to map a query to its

relevant documents at the semantic level where lexical matching
often fails (e.g., [9][10][31]). These models address the problem
of language discrepancy between Web documents and search
queries by grouping different terms that occur in a similar context
into the same semantic cluster. Thus, a query and a document,
represented as two vectors in the low-dimensional semantic space,
can still have a high similarity even if they do not share any term.
Extending from LSA, probabilistic topic models such as
probabilistic LSA (PLSA), Latent Dirichlet Allocation (LDA),
and Bi-Lingual Topic Model (BLTM), have been proposed and
successfully applied to semantic matching [19][4][16][15][39].
More recently, semantic modeling methods based on neural
networks have also been proposed for information retrieval (IR)
[16][32][20]. Salakhutdinov and Hinton proposed the Semantic
Hashing method based on a deep auto-encoder in [32][16]. A
Deep Structured Semantic Model (DSSM) for Web search was
proposed in [20], which is reported to give very strong IR
performance on a large-scale web search task when clickthrough
data are exploited as weakly-supervised information in training
the model. In both methods, plain feed-forward neural networks
are used to extract the semantic structures embedded in a query or
a document.

Despite the progress made recently, all the aforementioned
latent semantic models view a query (or a document) as a bag of
words. As a result, they are not effective in modeling contextual
structures of a query (or a document). Table 1 gives several
examples of document titles to illustrate the problem. For
example, tKH� ZRUG� ³office´� in the first document refers to the
popular Microsoft product, but in the second document it refers to
a working space. We see that the precise search intent of the word
³office´�FDQnot be identified without context.

microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator
online auto body repair estimates
Table 1: Sample document titles. The text is lower-cased and
punctuation removed. The same ZRUG�� H�J��� ³office´�� KDV�
different meanings depending on its contexts.

Modeling contextual information in search queries and

documents is a long-standing research topic in IR
[11][25][12][26][2][22][24]. Classical retrieval models, such as
TF-IDF and BM25, use a bag-of-words representation and cannot
effectively capture contextual information of a word. Topic
models learn the topic distribution of a word by considering word
occurrence information within a document or a sentence.
However, the contextual information captured by such models is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
&,.0¶14, November 03 ± 07, 2014, Shanghai, China.
Copyright © 2014 ACM 978-1-4503-2598-�������«������
http://dx.doi.org/10.1145/2661829.2661935

3.2 Letter-trigram based Word-n-gram
Representation
Conventionally, each word w is represented by a one-hot word
vector where the dimensionality of the vector is the size of the
vocabulary. However, the vocabulary size is often very large in
real-world Web search tasks, and the one-hot vector word
representation makes model learning very expensive. Therefore,
we resort to a technique called word hashing proposed in [20],
which represents a word by a letter-trigram vector. For example,
given a word (e.g. boy), after adding word boundary symbols (e.g.
#boy#), the word is segmented into a sequence of letter-n-grams
(e.g. letter-tri-grams: #-b-o, b-o-y, o-y-#). Then, the word is
represented as a count vector of letter-tri-grams. For example, the
letter-trigram representation RI�³boy´�LV:

݂ሺܾݕሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
Ͳ
ڭ
ͳ
ڭ
ͳ
ڭ
ͳ
ڭ
Ͳے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

In Figure 1, the letter-trigram matrix ܹ denotes the
transformation from a word to its letter-trigram count vector,
which requires no learning. Even though the total number of
English words may grow to be extremely large, the total number
of distinct letter-trigrams in English (or other similar languages) is
often limited. Therefore, it can generalize to new words unseen in
the training data.

Given the letter-trigram based word representation, we
represent a word-n-gram by concatenating the letter-trigram
vectors of each word, e.g., for the t-th word-n-gram at the word-n-
gram layer, we have:

݈௧ ൌ ሾ ௧݂ିௗ
் ǡ ǥ ǡ ௧݂

்ǡ ǥ ǡ ௧݂ାௗ
் �ሿ்ǡ ݐ ൌ ͳǡǥ ǡ ܶ (1)

where ௧݂is the letter-trigram representation of the t-th word, and
݊ ൌ ʹ݀ ͳ is the size of the contextual window. In our
experiment, there are about 30K unique letter-trigrams observed
in the training set after the data are lower-cased and punctuation-
removed. Therefore, the letter-trigram layer has a dimensionality
of ݊ ൈ ͵Ͳܭ.

3.3 Modeling Word-n-gram-Level Contextual
Features at the Convolutional Layer
The convolution operation can be viewed as sliding window based
feature extraction. It is designed to capture the word-n-gram
contextual features. Consider the t-th word-n-gram, the
convolution matrix projects its letter-trigram representation vector
݈௧ to a contextual feature vector ݄௧. As shown in Figure 1, ݄௧ is
computed by

݄௧ ൌ ሺ݄݊ܽݐ ܹ ή ݈௧ሻ ǡ ݐ ൌ ͳǡǥ ǡ ܶ (2)

where ܹ is the feature transformation matrix, as known as the
convolution matrix, that are shared among all word n-grams. ݄݊ܽݐ
is used as the activation function of the neurons:

ሻݔሺ݄݊ܽݐ� ൌ
ͳ െ ݁ିଶ௫

ͳ ݁ିଶ௫��� (3)

The output of the convolutional layer is a variable length sequence
of feature vectors, whose length is proportional to the length of
the input word sequence. $�VSHFLDO�³SDGGLQJ´�ZRUG���V!��LV�DGGHG�
at the beginning and the end of the input word sequence so that a
full window for a word at any position in the word sequence can
be formed. Figure 1 shows a convolutional layer using a 3-word
contextual window. Note that like the conventional CNN, the
convolution matrix used in our CLSM is shared among all n-word
phrases and therefore generalizes to new word-n-grams unseen in
the training set.

At the convolutional layer, words within their contexts are
projected to vectors that are close to each other if they are
semantically similar. Table 2 presents a set of sample word-tri-
grams. Considering the word ³office´�as the word of interest, we
measure the cosine similarity between the contextual feature
YHFWRU� RI� ³office´�ZLWKLQ� WKH� FRQWH[W� ³PLFURVRIW� RIILFH� VRIWZDUH´�
and the vector of ³office´ within other contexts. We can see that
the similarity scores between the learned feature vector of
³microsoft office software´� DQG� WKRVH� RI� WKH� FRQWH[WV� ZKHUH�
³office´� LV� UHIHUUHG� WR� the software are quite high, while the
similarity scores between it and the features vectors where
³office´�KDV�WKH�VHDUFK�LQWHQW�RI�³ZRUNLQJ�VSDFH´�DUH�VLJQLILFDQWO\�
lower. Similarly, as shown in Table 2, the context vectors of
³body´�DUH�PXFK�FORVHU�ZKHQ�WKH\�DUH�RI�WKH�VDPH�VHDUFK�LQWHQW�

microsoft office software car body shop
Free office 2000 0.550 car body kits 0.698
download office excel 0.541 auto body repair 0.578
word office online 0.502 auto body parts 0.555
apartment office hours 0.331 wave body language 0.301
massachusetts office location 0.293 calculate body fat 0.220
international office berkeley 0.274 forcefield body armour 0.165
Table 2: Sample word n-grams and the cosine similarities
between the learned word-n-gram feature vectors of ³office´�DQG�
³body´�LQ�GLIIHUHQW�FRQWH[WV after the CLSM is trained.

3.4 Modeling Sentence-Level Semantic
Features Using Max Pooling
A sequence of local contextual feature vectors is extracted at the
convolutional layer, one for each word-n-gram. These local
features need to be aggregated to obtain a sentence-level feature
vector with a fixed size independent of the length of the input
word sequence. Since many words do not have significant
influence on the semantics of the sentence, we want to suppress
the non-significant local features and retain in the global feature
vector only the salient features that are useful for IR. For this
purpose, we use a max operation, also known as max pooling, to
force the network to retain only the most useful local features
produced by the convolutional layers. I.e., we select the highest
neuron activation value across all local word n-gram feature
vectors at each dimension. Referring to the max-pooling layer of
Figure 1, we have

ሺ݅ሻݒ ൌ ���
௧ୀଵǡǥǡ்

ሼ݄௧ሺ݅ሻሽ ǡ ݅ ൌ ͳǡǥ ǡ ܭ

Indices of #-b-o, b-o-y, o-y-# in the
letter-tri-gram list, respectively.

we have the ngram vectors. now what?
Can look at the differences between terms.

A Latent Semantic Model with Convolutional-Pooling
Structure for Information Retrieval

Yelong Shen
Microsoft Research
Redmond, WA, USA
yeshen@microsoft.com

Xiaodong He
Microsoft Research
Redmond, WA, USA
xiaohe@microsoft.com

Jianfeng Gao
Microsoft Research
Redmond, WA, USA
jfgao@microsoft.com

Li Deng
Microsoft Research
Redmond, WA, USA
deng@microsoft.com

Grégoire Mesnil
University of Montréal

Montréal, Canada
gregoire.mesnil@umont

real.ca

ABSTRACT
In this paper, we propose a new latent semantic model that
incorporates a convolutional-pooling structure over word
sequences to learn low-dimensional, semantic vector
representations for search queries and Web documents. In order to
capture the rich contextual structures in a query or a document, we
start with each word within a temporal context window in a word
sequence to directly capture contextual features at the word n-
gram level. Next, the salient word n-gram features in the word
sequence are discovered by the model and are then aggregated to
form a sentence-level feature vector. Finally, a non-linear
transformation is applied to extract high-level semantic
information to generate a continuous vector representation for the
full text string. The proposed convolutional latent semantic model
(CLSM) is trained on clickthrough data and is evaluated on a Web
document ranking task using a large-scale, real-world data set.
Results show that the proposed model effectively captures salient
semantic information in queries and documents for the task while
significantly outperforming previous state-of-the-art semantic
models.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Convolutional Neural Network, Semantic Representation, Web
Search

1. INTRODUCTION
Most modern search engines resort to semantic based methods
beyond lexical matching for Web document retrieval. This is
partially due to the fact that the same single concept is often
expressed using different vocabularies and language styles in
documents and queries. For example, latent semantic models such
as latent semantic analysis (LSA) are able to map a query to its

relevant documents at the semantic level where lexical matching
often fails (e.g., [9][10][31]). These models address the problem
of language discrepancy between Web documents and search
queries by grouping different terms that occur in a similar context
into the same semantic cluster. Thus, a query and a document,
represented as two vectors in the low-dimensional semantic space,
can still have a high similarity even if they do not share any term.
Extending from LSA, probabilistic topic models such as
probabilistic LSA (PLSA), Latent Dirichlet Allocation (LDA),
and Bi-Lingual Topic Model (BLTM), have been proposed and
successfully applied to semantic matching [19][4][16][15][39].
More recently, semantic modeling methods based on neural
networks have also been proposed for information retrieval (IR)
[16][32][20]. Salakhutdinov and Hinton proposed the Semantic
Hashing method based on a deep auto-encoder in [32][16]. A
Deep Structured Semantic Model (DSSM) for Web search was
proposed in [20], which is reported to give very strong IR
performance on a large-scale web search task when clickthrough
data are exploited as weakly-supervised information in training
the model. In both methods, plain feed-forward neural networks
are used to extract the semantic structures embedded in a query or
a document.

Despite the progress made recently, all the aforementioned
latent semantic models view a query (or a document) as a bag of
words. As a result, they are not effective in modeling contextual
structures of a query (or a document). Table 1 gives several
examples of document titles to illustrate the problem. For
example, tKH� ZRUG� ³office´� in the first document refers to the
popular Microsoft product, but in the second document it refers to
a working space. We see that the precise search intent of the word
³office´�FDQnot be identified without context.

microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator
online auto body repair estimates
Table 1: Sample document titles. The text is lower-cased and
punctuation removed. The same ZRUG�� H�J��� ³office´�� KDV�
different meanings depending on its contexts.

Modeling contextual information in search queries and

documents is a long-standing research topic in IR
[11][25][12][26][2][22][24]. Classical retrieval models, such as
TF-IDF and BM25, use a bag-of-words representation and cannot
effectively capture contextual information of a word. Topic
models learn the topic distribution of a word by considering word
occurrence information within a document or a sentence.
However, the contextual information captured by such models is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
&,.0¶14, November 03 ± 07, 2014, Shanghai, China.
Copyright © 2014 ACM 978-1-4503-2598-�������«������
http://dx.doi.org/10.1145/2661829.2661935

3.2 Letter-trigram based Word-n-gram
Representation
Conventionally, each word w is represented by a one-hot word
vector where the dimensionality of the vector is the size of the
vocabulary. However, the vocabulary size is often very large in
real-world Web search tasks, and the one-hot vector word
representation makes model learning very expensive. Therefore,
we resort to a technique called word hashing proposed in [20],
which represents a word by a letter-trigram vector. For example,
given a word (e.g. boy), after adding word boundary symbols (e.g.
#boy#), the word is segmented into a sequence of letter-n-grams
(e.g. letter-tri-grams: #-b-o, b-o-y, o-y-#). Then, the word is
represented as a count vector of letter-tri-grams. For example, the
letter-trigram representation RI�³boy´�LV:

݂ሺܾݕሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
Ͳ
ڭ
ͳ
ڭ
ͳ
ڭ
ͳ
ڭ
Ͳے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

In Figure 1, the letter-trigram matrix ܹ denotes the
transformation from a word to its letter-trigram count vector,
which requires no learning. Even though the total number of
English words may grow to be extremely large, the total number
of distinct letter-trigrams in English (or other similar languages) is
often limited. Therefore, it can generalize to new words unseen in
the training data.

Given the letter-trigram based word representation, we
represent a word-n-gram by concatenating the letter-trigram
vectors of each word, e.g., for the t-th word-n-gram at the word-n-
gram layer, we have:

݈௧ ൌ ሾ ௧݂ିௗ
் ǡ ǥ ǡ ௧݂

்ǡ ǥ ǡ ௧݂ାௗ
் �ሿ்ǡ ݐ ൌ ͳǡǥ ǡ ܶ (1)

where ௧݂is the letter-trigram representation of the t-th word, and
݊ ൌ ʹ݀ ͳ is the size of the contextual window. In our
experiment, there are about 30K unique letter-trigrams observed
in the training set after the data are lower-cased and punctuation-
removed. Therefore, the letter-trigram layer has a dimensionality
of ݊ ൈ ͵Ͳܭ.

3.3 Modeling Word-n-gram-Level Contextual
Features at the Convolutional Layer
The convolution operation can be viewed as sliding window based
feature extraction. It is designed to capture the word-n-gram
contextual features. Consider the t-th word-n-gram, the
convolution matrix projects its letter-trigram representation vector
݈௧ to a contextual feature vector ݄௧. As shown in Figure 1, ݄௧ is
computed by

݄௧ ൌ ሺ݄݊ܽݐ ܹ ή ݈௧ሻ ǡ ݐ ൌ ͳǡǥ ǡ ܶ (2)

where ܹ is the feature transformation matrix, as known as the
convolution matrix, that are shared among all word n-grams. ݄݊ܽݐ
is used as the activation function of the neurons:

ሻݔሺ݄݊ܽݐ� ൌ
ͳ െ ݁ିଶ௫

ͳ ݁ିଶ௫��� (3)

The output of the convolutional layer is a variable length sequence
of feature vectors, whose length is proportional to the length of
the input word sequence. $�VSHFLDO�³SDGGLQJ´�ZRUG���V!��LV�DGGHG�
at the beginning and the end of the input word sequence so that a
full window for a word at any position in the word sequence can
be formed. Figure 1 shows a convolutional layer using a 3-word
contextual window. Note that like the conventional CNN, the
convolution matrix used in our CLSM is shared among all n-word
phrases and therefore generalizes to new word-n-grams unseen in
the training set.

At the convolutional layer, words within their contexts are
projected to vectors that are close to each other if they are
semantically similar. Table 2 presents a set of sample word-tri-
grams. Considering the word ³office´�as the word of interest, we
measure the cosine similarity between the contextual feature
YHFWRU� RI� ³office´�ZLWKLQ� WKH� FRQWH[W� ³PLFURVRIW� RIILFH� VRIWZDUH´�
and the vector of ³office´ within other contexts. We can see that
the similarity scores between the learned feature vector of
³microsoft office software´� DQG� WKRVH� RI� WKH� FRQWH[WV� ZKHUH�
³office´� LV� UHIHUUHG� WR� the software are quite high, while the
similarity scores between it and the features vectors where
³office´�KDV�WKH�VHDUFK�LQWHQW�RI�³ZRUNLQJ�VSDFH´�DUH�VLJQLILFDQWO\�
lower. Similarly, as shown in Table 2, the context vectors of
³body´�DUH�PXFK�FORVHU�ZKHQ�WKH\�DUH�RI�WKH�VDPH�VHDUFK�LQWHQW�

microsoft office software car body shop
Free office 2000 0.550 car body kits 0.698
download office excel 0.541 auto body repair 0.578
word office online 0.502 auto body parts 0.555
apartment office hours 0.331 wave body language 0.301
massachusetts office location 0.293 calculate body fat 0.220
international office berkeley 0.274 forcefield body armour 0.165
Table 2: Sample word n-grams and the cosine similarities
between the learned word-n-gram feature vectors of ³office´�DQG�
³body´�LQ�GLIIHUHQW�FRQWH[WV after the CLSM is trained.

3.4 Modeling Sentence-Level Semantic
Features Using Max Pooling
A sequence of local contextual feature vectors is extracted at the
convolutional layer, one for each word-n-gram. These local
features need to be aggregated to obtain a sentence-level feature
vector with a fixed size independent of the length of the input
word sequence. Since many words do not have significant
influence on the semantics of the sentence, we want to suppress
the non-significant local features and retain in the global feature
vector only the salient features that are useful for IR. For this
purpose, we use a max operation, also known as max pooling, to
force the network to retain only the most useful local features
produced by the convolutional layers. I.e., we select the highest
neuron activation value across all local word n-gram feature
vectors at each dimension. Referring to the max-pooling layer of
Figure 1, we have

ሺ݅ሻݒ ൌ ���
௧ୀଵǡǥǡ்

ሼ݄௧ሺ݅ሻሽ ǡ ݅ ൌ ͳǡǥ ǡ ܭ

Indices of #-b-o, b-o-y, o-y-# in the
letter-tri-gram list, respectively.

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

+ + + + + =

average pooling average vector

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

max =

max pooling max vector

max max max max

(max in each coordinate)

the service was not goodveryactual

max max max max max =

each dimension comes from a specific ngram

the quick brown

quick brown fox

brown fox jumped

fox jumped over

jumped over the

over the lazy

the lazy dog

MUL+tanh

MUL+tanh

MUL+tanh

MUL+tanh

MUL+tanh

MUL+tanh

MUL+tanh

W

6⇥ 3

the quick brown fox jumped over the lazy dog

max

convolution pooling

Figure 4: 1d convolution+pooling over the sentence “the quick brown fox jumped over the
lazy dog”. This is a narrow convolution (no padding is added to the sentence)
with a window size of 3. Each word is translated to a 2-dim embedding vector
(not shown). The embedding vectors are then concatenated, resulting in 6-dim
window representations. Each of the seven windows is transfered through a 6⇥ 3
filter (linear transformation followed by element-wise tanh), resulting in seven
3-dimensional filtered representations. Then, a max-pooling operation is applied,
taking the max over each dimension, resulting in a final 3-dimensional pooled
vector.

While max-pooling is the most common pooling operation in text applications, other
pooling operations are also possible, the second most common operation being average
pooling, taking the average value of each index instead of the max.

9.2 Dynamic, Hierarchical and k-max Pooling

Rather than performing a single pooling operation over the entire sequence, we may want
to retain some positional information based on our domain understanding of the prediction
problem at hand. To this end, we can split the vectors pi into ` distinct groups, apply
the pooling separately on each group, and then concatenate the ` resulting dconv vectors
c1, . . . , c`. The division of the pis into groups is performed based on domain knowledge. For
example, we may conjecture that words appearing early in the sentence are more indicative
than words appearing late. We can then split the sequence into ` equally sized regions,
applying a separate max-pooling to each region. For example, Johnson and Zhang (Johnson
& Zhang, 2014) found that when classifying documents into topics, it is useful to have 20
average-pooling regions, clearly separating the initial sentences (where the topic is usually
introduced) from later ones, while for a sentiment classification task a single max-pooling
operation over the entire sentence was optimal (suggesting that one or two very strong
signals are enough to determine the sentiment, regardless of the position in the sentence).

44

Another way to draw this:

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

max =

max pooling max vector

max max max max

max vs average -- discuss

one benefit of max-pooling: it's "interpretable"

we can know where each element
 in the summary vector came from

the service was not goodveryactual

the
 ac

tua
l

ac
tua

l se
rvi

ce

se
rvi

ce
 was

was
 no

t

no
t v

ery

ve
ry

goo
d

strides = how much you move

Strides

Strides

�����)*&3"3$)*$"- $0/70-65*0/4 ���

k = 3, s = 1

k = 3, s = 2

k = 3, s = 3

(a)

(b)

(c)

'JHVSF ����� 4USJEFT� 	BoD
 $POWPMVUJPO MBZFS XJUI k�� BOE TUSJEF TJ[FT � � ��

DBO CF DPOWFSUFE JOUP B TJOHMF WFDUPS VTJOH NBY QPPMJOH PS BWFSBHFE QPPMJOH� &WFO JG XF QPPM
KVTU FWFSZ UXP OFJHICPSJOH WFDUPST FBDI DPOWPMVUJPOBM�BOE�QPPMJOH MBZFS JO UIF IJFSBSDIZ XJMM
IBMWF UIF MFOHUI PG UIF TFRVFODF� 4JNJMBS UP UIF EJMBUJPO BQQSPBDI XF BHBJO HBJO BO FYQPOFOUJBM
EFDSFBTF JO TFRVFODF MFOHUI BT B GVODUJPO PG UIF OVNCFS PG MBZFST�

1BSBNFUFS 5ZJOH BOE 4LJQ�DPOOFDUJPOT "OPUIFS WBSJBUJPO UIBU DBO CF BQQMJFE UP UIF IJFSBSDIJDBM
DPOWPMVUJPO BSDIJUFDUVSF JT QFSGPSNJOH QBSBNFUFS�UZJOH VTJOH UIF TBNF TFU PG QBSBNFUFST U; b

JO BMM UIF QBSBNFUFS MBZFST� ɩJT SFTVMUT JO NPSF QBSBNFUFS TIBSJOH BT XFMM BT BMMPXJOH UP VTF BO
VOCPVOEFE OVNCFS PG DPOWPMVUJPO MBZFST 	BT BMM UIF DPOWPMVUJPO MBZFST TIBSF UIF TBNF QBSBNFUFST
UIF OVNCFS PG DPOWPMVUJPO MBZFST OFFE OPU CF TFU JO BEWBODF
 XIJDI JO UVSO BMMPXT UP SFEVDF
BSCJUSBSZ MFOHUI TFRVFODFT JOUP B TJOHMF WFDUPS CZ VTJOH B TFRVFODF PG OBSSPX DPOWPMVUJPOT FBDI
SFTVMUJOH JO B TIPSUFS TFRVFODF PG WFDUPST�

8IFO VTJOH EFFQ BSDIJUFDUVSFT TLJQ�DPOOFDUJPOT BSF TPNFUJNFT VTFGVM� UIFTF XPSL CZ GFFE�
JOH JOUP UIF i UI MBZFS OPU POMZ UIF WFDUPST SFTVMUJOH GSPN UIF i ! 1UI MBZFS CVU BMTP WFDUPST GSPN

k = 3, stride = 1

Strides�����)*&3"3$)*$"- $0/70-65*0/4 ���

k = 3, s = 1

k = 3, s = 2

k = 3, s = 3

(a)

(b)

(c)

'JHVSF ����� 4USJEFT� 	BoD
 $POWPMVUJPO MBZFS XJUI k�� BOE TUSJEF TJ[FT � � ��

DBO CF DPOWFSUFE JOUP B TJOHMF WFDUPS VTJOH NBY QPPMJOH PS BWFSBHFE QPPMJOH� &WFO JG XF QPPM
KVTU FWFSZ UXP OFJHICPSJOH WFDUPST FBDI DPOWPMVUJPOBM�BOE�QPPMJOH MBZFS JO UIF IJFSBSDIZ XJMM
IBMWF UIF MFOHUI PG UIF TFRVFODF� 4JNJMBS UP UIF EJMBUJPO BQQSPBDI XF BHBJO HBJO BO FYQPOFOUJBM
EFDSFBTF JO TFRVFODF MFOHUI BT B GVODUJPO PG UIF OVNCFS PG MBZFST�

1BSBNFUFS 5ZJOH BOE 4LJQ�DPOOFDUJPOT "OPUIFS WBSJBUJPO UIBU DBO CF BQQMJFE UP UIF IJFSBSDIJDBM
DPOWPMVUJPO BSDIJUFDUVSF JT QFSGPSNJOH QBSBNFUFS�UZJOH VTJOH UIF TBNF TFU PG QBSBNFUFST U; b

JO BMM UIF QBSBNFUFS MBZFST� ɩJT SFTVMUT JO NPSF QBSBNFUFS TIBSJOH BT XFMM BT BMMPXJOH UP VTF BO
VOCPVOEFE OVNCFS PG DPOWPMVUJPO MBZFST 	BT BMM UIF DPOWPMVUJPO MBZFST TIBSF UIF TBNF QBSBNFUFST
UIF OVNCFS PG DPOWPMVUJPO MBZFST OFFE OPU CF TFU JO BEWBODF
 XIJDI JO UVSO BMMPXT UP SFEVDF
BSCJUSBSZ MFOHUI TFRVFODFT JOUP B TJOHMF WFDUPS CZ VTJOH B TFRVFODF PG OBSSPX DPOWPMVUJPOT FBDI
SFTVMUJOH JO B TIPSUFS TFRVFODF PG WFDUPST�

8IFO VTJOH EFFQ BSDIJUFDUVSFT TLJQ�DPOOFDUJPOT BSF TPNFUJNFT VTFGVM� UIFTF XPSL CZ GFFE�
JOH JOUP UIF i UI MBZFS OPU POMZ UIF WFDUPST SFTVMUJOH GSPN UIF i ! 1UI MBZFS CVU BMTP WFDUPST GSPN

k = 3, stride = 2

Strides

k = 3, stride = 3

�����)*&3"3$)*$"- $0/70-65*0/4 ���

k = 3, s = 1

k = 3, s = 2

k = 3, s = 3

(a)

(b)

(c)

'JHVSF ����� 4USJEFT� 	BoD
 $POWPMVUJPO MBZFS XJUI k�� BOE TUSJEF TJ[FT � � ��

DBO CF DPOWFSUFE JOUP B TJOHMF WFDUPS VTJOH NBY QPPMJOH PS BWFSBHFE QPPMJOH� &WFO JG XF QPPM
KVTU FWFSZ UXP OFJHICPSJOH WFDUPST FBDI DPOWPMVUJPOBM�BOE�QPPMJOH MBZFS JO UIF IJFSBSDIZ XJMM
IBMWF UIF MFOHUI PG UIF TFRVFODF� 4JNJMBS UP UIF EJMBUJPO BQQSPBDI XF BHBJO HBJO BO FYQPOFOUJBM
EFDSFBTF JO TFRVFODF MFOHUI BT B GVODUJPO PG UIF OVNCFS PG MBZFST�

1BSBNFUFS 5ZJOH BOE 4LJQ�DPOOFDUJPOT "OPUIFS WBSJBUJPO UIBU DBO CF BQQMJFE UP UIF IJFSBSDIJDBM
DPOWPMVUJPO BSDIJUFDUVSF JT QFSGPSNJOH QBSBNFUFS�UZJOH VTJOH UIF TBNF TFU PG QBSBNFUFST U; b

JO BMM UIF QBSBNFUFS MBZFST� ɩJT SFTVMUT JO NPSF QBSBNFUFS TIBSJOH BT XFMM BT BMMPXJOH UP VTF BO
VOCPVOEFE OVNCFS PG DPOWPMVUJPO MBZFST 	BT BMM UIF DPOWPMVUJPO MBZFST TIBSF UIF TBNF QBSBNFUFST
UIF OVNCFS PG DPOWPMVUJPO MBZFST OFFE OPU CF TFU JO BEWBODF
 XIJDI JO UVSO BMMPXT UP SFEVDF
BSCJUSBSZ MFOHUI TFRVFODFT JOUP B TJOHMF WFDUPS CZ VTJOH B TFRVFODF PG OBSSPX DPOWPMVUJPOT FBDI
SFTVMUJOH JO B TIPSUFS TFRVFODF PG WFDUPST�

8IFO VTJOH EFFQ BSDIJUFDUVSFT TLJQ�DPOOFDUJPOT BSF TPNFUJNFT VTFGVM� UIFTF XPSL CZ GFFE�
JOH JOUP UIF i UI MBZFS OPU POMZ UIF WFDUPST SFTVMUJOH GSPN UIF i ! 1UI MBZFS CVU BMTP WFDUPST GSPN

In the world

https://devblogs.nvidia.com/parallelforall/malware-detection-neural-networks/

https://devblogs.nvidia.com/parallelforall/malware-detection-neural-networks/

https://devblogs.nvidia.com/parallelforall/malware-detection-neural-networks/

"gated convolution"
didn't learn yet,

will discuss gating
 in future.

https://devblogs.nvidia.com/parallelforall/malware-detection-neural-networks/

max pooling
of ~1M vectors!

https://devblogs.nvidia.com/parallelforall/malware-detection-neural-networks/

can you write
the equations
based on this

diagram?

(you should be)

Hierarchy

the service was not goodveryactual

the actual

can have hierarchy

actual service

service was
was not

not very
very good

Hierarchy

the service was not goodveryactual

the actual

can have hierarchy

actual service

service was
was not

not very
very good

dot
=

the actual service

the service was not goodveryactual

(can combine: pooling + hierarchy)

dot

=

Hierarchy��� ��� /(3". %&5&$5034� $0/70-65*0/"- /&63"- /&5803,4
DBO CF GVSUIFS TQFDJBMJ[FE 	J�F� iB TFRVFODF PG XPSET UIBU EP OPU DPOUBJO OPUw PS iB TFRVFODF PG
XPSET UIBU BSF BEWFSC�MJLFw
�ŉ 'JHVSF ���� TIPXT B UXP�MBZFS IJFSBSDIJDBM DPOWPMVUJPO XJUI k D 2�

the actual se
rvice

the actual

actual se
rvice

service was

was n
ot

not v
ery

very good

actual se
rvice was

service was n
ot

was n
ot v

ery

not v
ery good

the actual service was not very good

'JHVSF ����� 5XP�MBZFS IJFSBSDIJDBM DPOWPMVUJPO XJUI k���

4USJEFT %JMBUJPO BOE 1PPMJOH 4P GBS UIF DPOWPMVUJPO PQFSBUJPO JT BQQMJFE UP FBDI k�XPSE XJO�
EPX JO UIF TFRVFODF J�F� XJOEPXT TUBSUJOH BU JOEJDFT 1; 2; 3; : : :� ɩJT JT TBJE UP IBWF B TUSJEF PG
TJ[F 1� -BSHFS TUSJEFT BSF BMTP QPTTJCMF J�F� XJUI B TUSJEF PG TJ[F 2 UIF DPOWPMVUJPO PQFSBUJPO XJMM
CF BQQMJFE UP XJOEPXT TUBSUJOH BU JOEJDFT 1; 3; 5; : : :� .PSF HFOFSBMMZ XF EFmOF $0/7k;s BT�

p1Wm D$0/7k;s

U ;b
.w1Wn/

pi Dg.˚.w1C.i!1/sW.sCk/i / ! U C b/;
	����

XIFSF s JT UIF TUSJEF TJ[F� ɩF SFTVMU XJMM CF B TIPSUFS PVUQVU TFRVFODF GSPN UIF DPOWPMVUJPOBM
MBZFS�

*O B EJMBUFE DPOWPMVUJPO BSDIJUFDUVSF <4USVCFMM FU BM� ���� :V BOE ,PMUVO ����> UIF IJ�
FSBSDIZ PG DPOWPMVUJPO MBZFST FBDI IBT B TUSJEF TJ[F PG k " 1 	J�F� $0/7k;k!1
� ɩJT BMMPXT BO
FYQPOFOUJBM HSPXUI JO UIF FĊFDUJWF XJOEPX TJ[F BT B GVODUJPO PG UIF OVNCFS PG MBZFST� 'JHVSF ����
TIPXT DPOWPMVUJPO MBZFST XJUI EJĊFSFOU TUSJEF MFOHUIT� 'JHVSF ���� TIPXT B EJMBUFE DPOWPMVUJPO
BSDIJUFDUVSF�

"O BMUFSOBUJWF UP UIF EJMBUJPO BQQSPBDI JT UP LFFQ UIF TUSJEF�TJ[F mYFE BU � CVU TIPSUFO UIF
TFRVFODF MFOHUI CFUXFFO FBDI MBZFS CZ BQQMZJOH MPDBM QPPMJOH J�F DPOTFDVUJWF k0�HSBN PG WFDUPST
ŉ5P TFF XIZ DPOTJEFS B TFRVFODF PG UXP DPOWPMVUJPO MBZFS FBDI XJUI B XJOEPX PG TJ[F � PWFS UIF TFRVFODF GVOOZ BOE BQQFBMJOH�
ɩF mSTU DPOWPMVUJPO MBZFS XJMM FODPEF GVOOZ BOE BOE BOE BQQFBMJOH BT WFDUPST BOE NBZ DIPPTF UP SFUBJO UIF FRVJWBMFOU PG
iGVOOZ w BOE i BQQFBMJOHw JO UIF SFTVMUJOH WFDUPST� ɩF TFDPOE DPOWPMVUJPO MBZFS DBO UIFO DPNCJOF UIFTF JOUP iGVOOZ

BQQFBMJOHw iGVOOZ w PS i BQQFBMJOH�w

2-layer hierarchical conv with k=2

Dilated Convolutions
we want to cover more of the sequence

idea: strides + hierarchy

Dilated Convolutions

idea: strides + hierarchy

��� ��� /(3". %&5&$5034� $0/70-65*0/"- /&63"- /&5803,4

'JHVSF ����� ɩSFF�MBZFS EJMBUFE IJFSBSDIJDBM DPOWPMVUJPO XJUI k���

QSFWJPVT MBZFST XIJDI BSF DPNCJOFE UP UIF WFDUPST PG UIF i ! 1UI MBZFS VTJOH FJUIFS DPODBUFOBUJPO
BWFSBHJOH PS TVNNBUJPO�
'VSUIFS 3FBEJOH ɩF VTF PG IJFSBSDIJDBM BOE EJMBUFE DPOWPMVUJPO BOE QPPMJOH BSDIJUFDUVSFT JT
WFSZ DPNNPO JO UIF DPNQVUFS�WJTJPO DPNNVOJUZ XIFSF WBSJPVT EFFQ BSDIJUFDUVSFT�DPNQSJTJOH
PG BSSBOHFNFOUT PG NBOZ DPOWPMVUJPOT BOE QPPMJOH MBZFST XJUI EJĊFSFOU TUSJEFT�IBWF CFFO QSP�
QPTFE SFTVMUJOH JO WFSZ TUSPOH JNBHF DMBTTJmDBUJPO BOE PCKFDU SFDPHOJUJPO SFTVMUT <)F FU BM� ����
,SJ[IFWTLZ FU BM� ���� 4JNPOZBO BOE ;JTTFSNBO ����>� ɩF VTF PG TVDI EFFQ BSDIJUFDUVSFT GPS
/-1 JT TUJMM NPSF QSFMJNJOBSZ� ;IBOH FU BM� <����> QSPWJEF JOJUJBM FYQFSJNFOUT XJUI UFYU DMBTTJ�
mDBUJPO XJUI IJFSBSDIJDBM DPOWPMVUJPOT PWFS DIBSBDUFST BOE $POOFBV FU BM� <����> QSPWJEF GVS�
UIFS SFTVMUT UIJT UJNF XJUI WFSZ EFFQ DPOWPMVUJPOBM OFUXPSLT� ɩF XPSL PG 4USVCFMM FU BM� <����>
QSPWJEFT B HPPE PWFSWJFX PG IJFSBSDIJDBM BOE EJMBUFE BSDIJUFDUVSFT GPS B TFRVFODF MBCFMJOH UBTL�
,BMDICSFOOFS FU BM� <����> VTF EJMBUFE DPOWPMVUJPOT BT FODPEFST JO BO FODPEFS�EFDPEFS BSDIJ�
UFDUVSF 	4FDUJPO ����
 GPS NBDIJOF USBOTMBUJPO� ɩF IJFSBSDIZ PG DPOWPMVUJPOT XJUI MPDBM QPPMJOH
BQQSPBDI JT VTFE CZ 9JBP BOE $IP <����> XIP BQQMZ JU UP B TFRVFODF PG DIBSBDUFS JO B EPDVNFOU�
DMBTTJmDBUJPO UBTL BOE UIFO GFFE UIF SFTVMUJOH WFDUPST JOUP B SFDVSSFOU OFVSBM OFUXPSL� 8F SFUVSO
UP UIJT FYBNQMF JO 4FDUJPO ������ BGUFS EJTDVTTJOH SFDVSSFOU�OFVSBM�OFUXPSLT�

dilated convolution, k=3

• Shared matrix used as feature detector.

• Extracts interesting ngrams.

• Pool ngrams to get fixed length representation.

• Max-pooling works well.

• Max vs. Average pooling.

• Use hierarchy / dilation to expand coverage.

• Train end-to-end.

ConvNets Summary

if time permits

• ConvNet is an architecture for finding good
ngrams.

• But if we know ngrams are important, why not just
have ngram embeddings (ngram vectors)?

• --> for large vocabulary, not scalable.

Can't represent all ngrams, don't know which are
important.

Alternative: Hashing Trick

• Problem: our ngram vocabulary size if 10^9

• Solution: use smaller space via hashing,
 allow feature clashes.

Alternative: Hashing Trick

• We have > 10^9 different ngrams.

• We can afford ~10^6 different embeddings.

• Map each ngram to a number in [0, 10^6]

• Use the corresponding embedding vector.

• Clashes will happen, but it will probably be ok.

• Even safer: map each ngram to two numbers using
two different hash functions, sum the vectors.

Hashing Trick

• What are the benefits of using bag of ngrams?

• What are the benefits of using ConvNet (ngram
detector)?

• Does it matter if the vocabulary size is small or
large?

Hashing Trick vs ConvNets

(discuss)

