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• 1-hot X matrix


• Embedding layer


• (pre-trained) Word Embeddings.
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• Consider the columns of W3.


• Consider the rows of E.
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Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

which is used to replace every logP (wO|wI) term in the Skip-gram objective. Thus the task is to
distinguish the target word wO from draws from the noise distribution Pn(w) using logistic regres-
sion, where there are k negative samples for each data sample. Our experiments indicate that values
of k in the range 5–20 are useful for small training datasets, while for large datasets the k can be as
small as 2–5. The main difference between the Negative sampling and NCE is that NCE needs both
samples and the numerical probabilities of the noise distribution, while Negative sampling uses only
samples. And while NCE approximately maximizes the log probability of the softmax, this property
is not important for our application.

Both NCE and NEG have the noise distributionPn(w) as a free parameter. We investigated a number
of choices for Pn(w) and found that the unigram distribution U(w) raised to the 3/4rd power (i.e.,
U(w)3/4/Z) outperformed significantly the unigram and the uniform distributions, for both NCE
and NEG on every task we tried including language modeling (not reported here).

2.3 Subsampling of Frequent Words

In very large corpora, the most frequent words can easily occur hundreds of millions of times (e.g.,
“in”, “the”, and “a”). Such words usually provide less information value than the rare words. For
example, while the Skip-gram model benefits from observing the co-occurrences of “France” and
“Paris”, it benefits much less from observing the frequent co-occurrences of “France” and “the”, as
nearly every word co-occurs frequently within a sentence with “the”. This idea can also be applied
in the opposite direction; the vector representations of frequent words do not change significantly
after training on several million examples.

To counter the imbalance between the rare and frequent words, we used a simple subsampling ap-
proach: each word wi in the training set is discarded with probability computed by the formula

P (wi) = 1−

√

t

f(wi)
(5)
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Neural Word Embeddings
All embeddings were trained on English

Wikipedia. For DEPS, the corpus was tagged
with parts-of-speech using the Stanford tagger
(Toutanova et al., 2003) and parsed into labeled
Stanford dependencies (de Marneffe and Man-
ning, 2008) using an implementation of the parser
described in (Goldberg and Nivre, 2012). All to-
kens were converted to lowercase, and words and
contexts that appeared less than 100 times were
filtered. This resulted in a vocabulary of about
175,000 words, with over 900,000 distinct syntac-
tic contexts. We report results for 300 dimension
embeddings, though similar trends were also ob-
served with 600 dimensions.

4.1 Qualitative Evaluation

Our first evaluation is qualitative: we manually in-
spect the 5 most similar words (by cosine similar-
ity) to a given set of target words (Table 1).

The first target word, Batman, results in similar
sets across the different setups. This is the case for
many target words. However, other target words
show clear differences between embeddings.

In Hogwarts - the school of magic from the
fictional Harry Potter series - it is evident that
BOW contexts reflect the domain aspect, whereas
DEPS yield a list of famous schools, capturing
the semantic type of the target word. This ob-
servation holds for Turing3 and many other nouns
as well; BOW find words that associate with w,
while DEPS find words that behave like w. Turney
(2012) described this distinction as domain simi-
larity versus functional similarity.

The Florida example presents an ontologi-
cal difference; bag-of-words contexts generate
meronyms (counties or cities within Florida),
while dependency-based contexts provide cohy-
ponyms (other US states). We observed the same
behavior with other geographical locations, partic-
ularly with countries (though not all of them).

The next two examples demonstrate that simi-
larities induced from DEPS share a syntactic func-
tion (adjectives and gerunds), while similarities
based on BOW are more diverse. Finally, we ob-
serve that while both BOW5 and BOW2 yield top-
ical similarities, the larger window size result in
more topicality, as expected.

3DEPS generated a list of scientists whose name ends with
“ing”. This is may be a result of occasional POS-tagging
errors. Still, the embedding does a remarkable job and re-
trieves scientists, despite the noisy POS. The list contains
more mathematicians without “ing” further down.

Target Word BOW5 BOW2 DEPS

batman

nightwing superman superman
aquaman superboy superboy
catwoman aquaman supergirl
superman catwoman catwoman
manhunter batgirl aquaman

hogwarts

dumbledore evernight sunnydale
hallows sunnydale collinwood
half-blood garderobe calarts
malfoy blandings greendale
snape collinwood millfield

turing

nondeterministic non-deterministic pauling
non-deterministic finite-state hotelling
computability nondeterministic heting
deterministic buchi lessing
finite-state primality hamming

florida

gainesville fla texas
fla alabama louisiana
jacksonville gainesville georgia
tampa tallahassee california
lauderdale texas carolina

object-oriented

aspect-oriented aspect-oriented event-driven
smalltalk event-driven domain-specific
event-driven objective-c rule-based
prolog dataflow data-driven
domain-specific 4gl human-centered

dancing

singing singing singing
dance dance rapping
dances dances breakdancing
dancers breakdancing miming
tap-dancing clowning busking

Table 1: Target words and their 5 most similar words, as in-
duced by different embeddings.

We also tried using the subsampling option
(Mikolov et al., 2013b) with BOW contexts (not
shown). Since word2vec removes the subsam-
pled words from the corpus before creating the
window contexts, this option effectively increases
the window size, resulting in greater topicality.

4.2 Quantitative Evaluation

We supplement the examples in Table 1 with
quantitative evaluation to show that the qualita-
tive differences pointed out in the previous sec-
tion are indeed widespread. To that end, we use
the WordSim353 dataset (Finkelstein et al., 2002;
Agirre et al., 2009). This dataset contains pairs of
similar words that reflect either relatedness (top-
ical similarity) or similarity (functional similar-
ity) relations.4 We use the embeddings in a re-
trieval/ranking setup, where the task is to rank the
similar pairs in the dataset above the related ones.

The pairs are ranked according to cosine sim-
ilarities between the embedded words. We then
draw a recall-precision curve that describes the
embedding’s affinity towards one subset (“sim-
ilarity”) over another (“relatedness”). We ex-
pect DEPS’s curve to be higher than BOW2’s
curve, which in turn is expected to be higher than

4Some word pairs are judged to exhibit both types of sim-
ilarity, and were ignored in this experiment.
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[word similarity example]



• We trained a language model.


• We ended up with vector representations of words.


• These representations are useful -- they encode 
various aspects of word similarity.

Neural Word Embeddings
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• Training the language model is expensive. (Why?)


• Predicting a word based on previous words is nice, 
but can we do better?


• If all we care about are the word vectors...

towards word2vec



• Radically simplify the neural LM.


• Very fast training.


• Obtain good word representations.

Word2Vec



word2vec



word2vec

I dog
I cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler,

mixed-breed, doberman, pig
I sheep

I cattle, goats, cows, chickens, sheeps, hogs, donkeys,
herds, shorthorn, livestock

I november
I october, december, april, june, february, july, september,

january, august, march
I jerusalem

I tiberias, jaffa, haifa, israel, palestine, nablus, damascus
katamon, ramla, safed

I teva
I pfizer, schering-plough, novartis, astrazeneca,

glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme,
pharmacia



• instead of predicting word based on previous words...


• ...predict word based on surrounding words.

Collobert and Weston model

10.4. WORD EMBEDDING ALGORITHMS 113

which each dimension corresponds to a specific context the word occurs in, the dimensions
in the distributed representation are not interpretable, and specific dimensions do not nec-
essarily correspond to specific concepts. The distributed nature of the representation means
that a given aspect of meaning may be captured by (distributed over) a combination of
many dimensions, and that a given dimension may contribute to capturing several aspects
of meaning.6

Consider the language modeling network in equation (9.3) in chapter 9. The context of
a word is the kgram of words preceding it. Each word is associated with a vector, and their
concatenation is encoded into a dhid dimensional vector h using a non-linear transformation.
The vector h is then multiplied by a matrix W2 in which each column corresponds to a
word, and interactions between h and columns in W2 determine the probabilities of the
di↵erent words given the context. The columns ofW2 (as well as the rows of the embeddings
matrix E) are distributed representations of words: the training process determines good
values to the embeddings such that they produce correct probability estimates for a word
in the context of a kgram, capturing the “meaning” of the words in the columns of W2

associated with them.

Collobert and Weston

The design of the network in equation 9.3 is driven by the language modeling task, which
poses two important requirements: the need to produce a probability distributions over
words, and the need to condition on contexts that can be combined using the chain-rule of
probability to produce sentence-level probability estimates. The need to produce a proba-
bility distribution dictates the need to compute an expensive normalization term involving
all the words in the output vocabulary, while the need to decompose according to the
chain-rule restricts the conditioning context to preceding kgrams.

If we only care about the resulting representations, both of the constraints can be
relaxed, as was done by Collobert and Weston [2008] in a model which was refined and
presented in greater depth by Bengio et al. [2009]. The first change introduced by the
Collobert and Weston was changing the context of a word from the preceding kgram (the
words to its left) to a word-window surrounding the it (i.e. computing P (w3|w1w22w4w5)
instead of P (w5|w1w2w3w42)). The generalization to other kinds of fixed-sized contexts
c1:k is straightforward.

The second change introduced by Collobert and Weston is to abandon the probabilis-
tic output requirement. Instead of computing a probability distribution over target words
given a context, their model only attempts to assign a score to each word, such that the
correct word scores above incorrect ones. This removes the need to perform the computa-

6We note that in many ways the explicit distributional representations is also “distributed”: di↵erent aspects
of the meaning of a word are captured by groups of contexts the word occurs in, and a given context can
contribute to di↵erent aspects of meaning. Moreover, after performing dimensionality reduction over the word-
context matrix, the dimensions are no longer easily interpretable.
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• Getting rid of the softmax over the vocabulary:


• probabilities --> scores


• score the quality of a sequence, not all the words


• ranking based loss

Collobert and Weston model
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Collobert and Weston model

score(D,A,⇤, C, F ;G) = g(xU)v

x = (E[D] �E[A] �E[G] �E[C] �E[F ])
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0)))

How do you train this?
(discuss)



from Collobert and Weston 
to Word2Vec

• Back to probabilities
• Simplify the scoring function
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Word2Vec
• Back to probabilities

P (D = 1|w, c) = �(s(w, c)) =
1
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X
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P (D = 0|w, c) = 1� P (D = 1|w, c)
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Word2Vec
• Simplify the score function:

CBOW
Skip-grams

what is c?
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• Simplify the score function:

score(w; c1, ..., ck) = (
kX

i=1

E[ci]) ·E
0
[w]

CBOW
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Word2Vec replaces the margin-based ranking objective with a probabilistic one. Consider
a set D of correct word-context pairs, and a set D̄ of incorrect word-context pairs. The goal
of the algorithm is to estimate the probability P (D = 1|w, c) that the word-context pair
came from the correct set D. This should be high (1) for pairs from D and low (0) for pairs
from D̄. The probability constraint dictates that P (D = 1|w, c) = 1� P (D = 0|w, c). The
probability function is modeled as a sigmoid over the score s(w, c):

P (D = 1|w, c) =
1

1 + e�s(w,c)
(10.6)

The corpus-wide objective of the algorithm is to maximize the log-likelihood of the
data D [ D̄:

L(⇥;D, D̄) =
X

(w,c)2D

logP (D = 1|w, c) +
X

(w,c)2D̄

logP (D = 0|w, c) (10.7)

The positive examples D are generated from a corpus. The negative examples D̄ can
be generated in many ways. In Word2Vec, they are generated by the following process:
for each good pair (w, c) 2 D, sample k words w1:k and add each of (wi, c) as a negative
example to D̄. This results in the negative samples data D̄ being k times larger than D.
The number of negative samples k is a parameter of the algorithm.

The negative words w can be sampled according to their corpus based frequency
#(w)P
w0 #(w0) , or, as done in the Word2Vec implementation, according to a smoothed version

in which the counts are raised to the power of 3

4
before normalizing: #(w)

0.75
P

w0 #(w0)0.75 . This
second version gives more relative weight to less frequent words, and results in better word
similarities in practice.

CBOW Other than changing the objective from margin-based to a probabilistic one,
Word2Vec also considerably simplify the definition of the word-context scoring function,
s(w, c). For a multi-word context c1:k, the CBOW variant of Word2Vec defines the context
vector c to be a sum of the embedding vectors of the context components: c =

Pk
i=1

ci. It
then defines the score to be simply s(w, c) = w · c, resulting in:

P (D = 1|w, c1:k) =
1

1 + e�(w·c1+w·c2+...+w·ck)

The CBOW variant loses the order information between the context’s elements. In
return, it allows the use of variable-length contexts. However, note that for contexts with
bound length, the CBOW can still retain the order information by including the relative
position as part of the content element itself, i.e. by assigning di↵erent embedding vector
to context elements in di↵erent relative positions.

Skip-Gram The skip-gram variant of Word2Vec scoring decouples the dependence
between the context elements even further. For a k-elements context c1:k, the skip-gram



Word2Vec
• Simplify the score function:

116 10. PRE-TRAINED WORD REPRESENTATIONS

variant assumes that the elements ci in the context are independent from each other,
essentially treating them as k di↵erent contexts. I.e., a word-context pair (w, ci:k) will be
represented in D as k di↵erent contexts: (w, c1), . . . , (w, ck). The scoring function s(w, c) is
defined as in the CBOW version, but now each context is single embedding vector:

P (D = 1|w, ci) =
1

1 + e�w·ci

P (D = 1|w, c1:k) =
kY

i=1

P (D = 1|w, ci) =
kY

1=i

1

1 + e�w·ci

logP (D = 1|w, c1:k) = log
kX

i=1

1

1 + e�w·ci

(10.8)

While introducing strong independence assumptions between the elements of the
context, the skip-gram variant is very e↵ective in practice, and very commonly used.

10.4.3 CONNECTING THE WORLDS

Both the distributional “count-based” method and the distributed “neural” ones are based
on the distributional hypothesis, attempting capture the similarity between words based on
the similarity between the contexts in which they occur. In fact, Levy and Goldberg [2014]
show that the ties between the two worlds are deeper than appear at first sight.

The training of Word2Vec models result in two embedding matrices, EW 2
R|VW |⇥demb and EC 2 R|VC |⇥demb representing the words and the contexts respectively.
The context embeddings are discarded after training, and the word embeddings are kept.
However, imagine keeping the context embedding matrix EC and consider the product
EW ⇥EC>

= M0 2 R|VW |⇥|VC |. Viewed this way, Word2Vec is factorizing an implicit
word-context matrix M0. What are the elements of matrix M0? An entry M0

[w,c] corre-
sponds to the dot product of the word and context embedding vectors w · c. Levy and
Goldberg show that for the combination of skip-grams contexts and the negative sam-
pling objective with k negative samples, the global objective is minimized by setting
w · c = M0

[w,c] = PMI(w, c)� log k. That is, Word2Vec is implicitly factorizing a ma-
trix which is closely related to the well-known word-context PMI matrix! Remarkably, it
does so without ever explicitly constructing the matrix M0.7

7If the optimal assignment was satisfiable, the skip-grams with negative-sampling (SGNS) solution is the same
as the SVD over word-context matrix solution. Of course, the low dimensionality demb of w and c may make
it impossible to satisfy w · c = PMI(w, c)� log k for all w and c pairs, and the optimization procedure will
attempt to find the best achievable solution, while paying a price for each deviation from the optimal assignment.
This is where the SGNS and the SVD objectives di↵er – SVD puts a quadratic penalty on each deviation, while
SGNS uses a more complex penalty term.

Skip-grams:
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Skip-grams:

L(⇥;D, D̄) =
X

(w,c)2D

logP (D = 1|w, c) +
X

(w0,c)2D̄

logP (D = 0|w0, c)



Word2Vec
• How to train a word2vec model? (discuss)
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"FastText"
Represent a word by the sum of its char ngrams.
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vwhere =
<latexit sha1_base64="cLdkzOvJFiGW+v/P2UaWlDlN1Sg=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgv2ANpTNdtIu3WzC7qZSQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupv5rTEqzWP5aCYJ+hEdSB5yRo2VOuNe9jREhVNy0ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5ufPCVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhNd+xmWSGpRssShMBTExmf1P+lwhM2JiCWWK21sJG1JFmbEplWwI3vLLq6R5UfXcqvdwWand5nEU4QRO4Rw8uIIa3EMdGsAghmd4hTfHOC/Ou/OxaC04+cwx/IHz+QMyLZEt</latexit><latexit sha1_base64="cLdkzOvJFiGW+v/P2UaWlDlN1Sg=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgv2ANpTNdtIu3WzC7qZSQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupv5rTEqzWP5aCYJ+hEdSB5yRo2VOuNe9jREhVNy0ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5ufPCVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhNd+xmWSGpRssShMBTExmf1P+lwhM2JiCWWK21sJG1JFmbEplWwI3vLLq6R5UfXcqvdwWand5nEU4QRO4Rw8uIIa3EMdGsAghmd4hTfHOC/Ou/OxaC04+cwx/IHz+QMyLZEt</latexit><latexit sha1_base64="cLdkzOvJFiGW+v/P2UaWlDlN1Sg=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgv2ANpTNdtIu3WzC7qZSQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupv5rTEqzWP5aCYJ+hEdSB5yRo2VOuNe9jREhVNy0ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5ufPCVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhNd+xmWSGpRssShMBTExmf1P+lwhM2JiCWWK21sJG1JFmbEplWwI3vLLq6R5UfXcqvdwWand5nEU4QRO4Rw8uIIa3EMdGsAghmd4hTfHOC/Ou/OxaC04+cwx/IHz+QMyLZEt</latexit><latexit sha1_base64="cLdkzOvJFiGW+v/P2UaWlDlN1Sg=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgv2ANpTNdtIu3WzC7qZSQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupv5rTEqzWP5aCYJ+hEdSB5yRo2VOuNe9jREhVNy0ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5ufPCVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhNd+xmWSGpRssShMBTExmf1P+lwhM2JiCWWK21sJG1JFmbEplWwI3vLLq6R5UfXcqvdwWand5nEU4QRO4Rw8uIIa3EMdGsAghmd4hTfHOC/Ou/OxaC04+cwx/IHz+QMyLZEt</latexit> E["<where>"] + E["<where"] + .....

"<where>" "<where", "where>", "<wher", "where",  
"here>", "<whe", "wher", "here", "ere>", "<wh", ....

where =

Represent a word by the sum of its char ngrams.



• What are the benefits of FastText? Where do we expect it to be better?


• When do we expect it to work worse?


• Can you think of a generalization of it to non-human-language tasks?


• Can you think of non-human-language-tasks where it will hurt and not 
help?


• Can you think of a human languages where it may hurt?

"FastText"

"<where>" "<where", "where>", "<wher", "where",  
"here>", "<whe", "wher", "here", "ere>", "<wh", ....

Represent a word by the sum of its char ngrams.



"FastText"

"<where>" "<where", "where>", "<wher", "where",  
"here>", "<whe", "wher", "here", "ere>", "<wh", ....

Represent a word by the sum of its char ngrams.

vwhere =
<latexit sha1_base64="cLdkzOvJFiGW+v/P2UaWlDlN1Sg=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgv2ANpTNdtIu3WzC7qZSQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupv5rTEqzWP5aCYJ+hEdSB5yRo2VOuNe9jREhVNy0ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5ufPCVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhNd+xmWSGpRssShMBTExmf1P+lwhM2JiCWWK21sJG1JFmbEplWwI3vLLq6R5UfXcqvdwWand5nEU4QRO4Rw8uIIa3EMdGsAghmd4hTfHOC/Ou/OxaC04+cwx/IHz+QMyLZEt</latexit><latexit sha1_base64="cLdkzOvJFiGW+v/P2UaWlDlN1Sg=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgv2ANpTNdtIu3WzC7qZSQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupv5rTEqzWP5aCYJ+hEdSB5yRo2VOuNe9jREhVNy0ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5ufPCVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhNd+xmWSGpRssShMBTExmf1P+lwhM2JiCWWK21sJG1JFmbEplWwI3vLLq6R5UfXcqvdwWand5nEU4QRO4Rw8uIIa3EMdGsAghmd4hTfHOC/Ou/OxaC04+cwx/IHz+QMyLZEt</latexit><latexit sha1_base64="cLdkzOvJFiGW+v/P2UaWlDlN1Sg=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgv2ANpTNdtIu3WzC7qZSQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupv5rTEqzWP5aCYJ+hEdSB5yRo2VOuNe9jREhVNy0ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5ufPCVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhNd+xmWSGpRssShMBTExmf1P+lwhM2JiCWWK21sJG1JFmbEplWwI3vLLq6R5UfXcqvdwWand5nEU4QRO4Rw8uIIa3EMdGsAghmd4hTfHOC/Ou/OxaC04+cwx/IHz+QMyLZEt</latexit><latexit sha1_base64="cLdkzOvJFiGW+v/P2UaWlDlN1Sg=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgv2ANpTNdtIu3WzC7qZSQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupv5rTEqzWP5aCYJ+hEdSB5yRo2VOuNe9jREhVNy0ytX3Ko7B1klXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkvdVGNC2YgOsGOppBFqP5ufPCVnVumTMFa2pCFz9fdERiOtJ1FgOyNqhnrZm4n/eZ3UhNd+xmWSGpRssShMBTExmf1P+lwhM2JiCWWK21sJG1JFmbEplWwI3vLLq6R5UfXcqvdwWand5nEU4QRO4Rw8uIIa3EMdGsAghmd4hTfHOC/Ou/OxaC04+cwx/IHz+QMyLZEt</latexit> E["<where>"] + E["<where"] + .....

Isn't this very expensive to run at inference time?

Why or why not?

Think:



Other word vectors
• Other contexts are also possible.


• Other algorithms are also possible.


• GloVe


• NCE


• SVD


• Implementations:


• word2vec, word2vecf, GloVe, gensim, your own...



Using Word Vectors

• Use for initializing the word embeddings in other 
models. ("pre-training". more soon.)


• Use for finding similar words. (how?)


• Find a word similar to a group of words. (how?)


• Find the word that does not belong to a group. (how?)



Working with Dense Vectors

Word Similarity

I Similarity is calculated using cosine similarity :

sim( ~dog, ~cat) =
~dog · ~cat

|| ~dog|| || ~cat ||

I For normalized vectors (||x || = 1), this is equivalent to a
dot product:

sim( ~dog, ~cat) = ~dog · ~cat

I Normalize the vectors when loading them.



Working with Dense Vectors
Finding the most similar words to ~dog

I Compute the similarity from word ~v to all other words.
I This is a single matrix-vector product: W · ~v>

I Result is a |V | sized vector of similarities.
I Take the indices of the k -highest values.
I FAST! for 180k words, d=300: ⇠30ms



Working with Dense Vectors

Most Similar Words, in python+numpy code
W,words = load_and_normalize_vectors("vecs.txt")
# W and words are numpy arrays.
w2i = {w:i for i,w in enumerate(words)}

dog = W[w2i[’dog’]] # get the dog vector

sims = W.dot(dog) # compute similarities

most_similar_ids = sims.argsort()[-1:-10:-1]
sim_words = words[most_similar_ids]



Working with Dense Vectors

Similarity to a group of words

I “Find me words most similar to cat, dog and cow”.
I Calculate the pairwise similarities and sum them:

W · ~cat + W · ~dog + W · ~cow

I Now find the indices of the highest values as before.

I Matrix-vector products are wasteful. Better option:

W · ( ~cat + ~dog + ~cow)



tagging + pre-training

The brown fox jumped over

NOUN

brown fox jumped over the

VERB

fox jumped over the lazy

PREP

we can use the E we

got from LM training

to initialize E for the

POS tagging task.

(why is that helpful?)



Pre-training
• A large part of the success of feed-forward 

networks in NLP comes from the use of pre-trained 
word embeddings.


• Pre-trained embeddings are an easy way to 
perform semi-supervised learning (or transfer 
learning).


• But notice: fine-tuning the pre-trained embeddings 
means that some features change, while most stay 
the same...



Pre-training

• Define an auxiliary task that you suspect is 
correlated with your prediction problem.


• Train a model to perform this task.


• Take features representations from this model as 
inputs to another model.



Pre-training
• In word2vec, auxiliary tasks are "predict word based on a 

window of size k around it" (CBOW) or "predict 
neighboring words in a window of k around a focus word" 
(skipgram).


• More generally, "predict word based on some context of 
the word".


• This is useful, as we can get tons of training data for free.


• The choice of contexts determines the resulting word 
representations.



Some possible contexts
• Window of k around a word.  

(smaller k: more syntactic. Larger k: more semantic)

• Positional window around a word. 
(more syntactic)


• Aligned words in a different language. Requires parallel corpus 

(synonyms, paraphrases)


• Neighbors in a dependency tree. Requires parser. 
(functional similarity)



Effect of Context
Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies
Dumbledore Sunnydale

hallows Collinwood
Hogwarts half-blood Calarts

;,ĂƌƌǇ�WŽƚƚĞƌ Ɛ͛�ƐĐŚŽŽůͿ Malfoy Greendale
Snape Millfield

Related to 
Harry Potter Schools

͞�ĞƉĞŶĚĞŶĐǇ-�ĂƐĞĚ�tŽƌĚ��ŵďĞĚĚŝŶŐƐ͟
Levy & Goldberg, ACL 2014Levy and Goldberg 2014


Dependency-based word embeddings



Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies
nondeterministic Pauling
non-deterministic Hotelling

Turing computability Heting
(computer scientist) deterministic Lessing

finite-state Hamming
Related to 

computability Scientists

͞�ĞƉĞŶĚĞŶĐǇ-�ĂƐĞĚ�tŽƌĚ��ŵďĞĚĚŝŶŐƐ͟
Levy & Goldberg, ACL 2014

Effect of Context

Levy and Goldberg 2014

Dependency-based word embeddings



Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies
singing singing
dance rapping

dancing dances breakdancing
(dance gerund) dancers miming

tap-dancing busking
Related to

dance Gerunds

͞�ĞƉĞŶĚĞŶĐǇ-�ĂƐĞĚ�tŽƌĚ��ŵďĞĚĚŝŶŐƐ͟
Levy & Goldberg, ACL 2014

Effect of Context

Levy and Goldberg 2014

Dependency-based word embeddings



• no layers.


• no softmax. (so negative sampling.)


• cbow or skipgrams objectives.


• many implementations available.


• more in the NLP course.

Word2Vec


