Word-embeddings
and Word2Vec

Yoav Goldberg



L ast [Ime

Language modeling.
1-hot X matrix
Embedding layer

(pre-trained) Word Embeddings.



Neural LM dou

softmax([J)

dout
T R
what's in W3? W? + b°
i R
g(OW? + b?)
columns of W3 \ R
correspond
to vocab items! g(OW?! +b')
T R%n
B, ok, oKy, oy
/I\

encode(Ty—4,Th—3, Th—2, Th—1)



| as
|
.- Neural Word. Embeqldlngs -
esaore
melr everKne,]@st
't:er eac seve%”y FOOBE
: illion
SIS _—— white ne other " bhese who 2
5 | W&Ss 'g Tr' Ybid . what Where -~ o |
suc whi
B F@derd.ltﬁé.ﬁﬁrﬁant hi vikaen but and
beerlmng g0 natiomaied this . bol ce
come 8&) play M b&th while .o if
best o piyabrlrlucly N
show 0 growRdH
from £ B9ck same form vc‘g center r:;igint thefhy
0~  make ot K&t dafted off h°meum§ % ceﬂﬂ_hgaé map well toggh sayy
getpuse ondown highw Wonddn‘R?u ey "‘ﬁmmﬁf\bt ago vyesterday
want stre life part N
found dous seaséﬂ g
aroundyy uring police gam - bus (e (ol " it times
ver before 0 court Im case ears .
kn®@F to gcre%vneg " until Sincemarke(t)money M them gawgﬁ?alght
ipgttike OWAd fficials wa ,
-5 aboq};“?ﬁQ th%ro&gh placegomg nevecrompagrl\ilsd time _
nfg o used people -
of  for o even tLey e
oy up ko e
a
not . still
nt jUS{ i
at an she
-10 — _
daks
hade t
would
&higrdd
-15 | | | | |
-15 -10 -5 0 5 10

15



Neural Word Embeddings

1
A
£
1 . 4
. ! ! crel
few | £
'e =Tl
| i !
=
L B Mro =12}
| } L W L
T8 1 } |
- A -~ A
- | 1\
T !
¢ il | Irr '
Nree C “i1iqil i al
i1 £
-
cevera




1.5

0.5

-0.5

-1.5

Neural Word Embeddings

Country and Capital Vectors Projected by PCA

| | | |
Chinas
Beijing
B Russias
Japanx
n Moscow
Turkey< >Ankara ><Tokyo
Polandk
- Germxanyx
France Warsaw
< —>Berlin
— ltaly< Paris
Athens
Greeces A
. Spairnx Rome
B Portu>< al Madrid
g Lisbon
] ] ] ] ] ]
-2 1.5 -1 -0.5 0.5 1 1.5




Neural Word Embeddings

Target Word | BOW5
nightwing
aquaman
batman catwoman
superman
manhunter
dumbledore
hallows
hogwarts half-blood
malfoy

snape
nondeterministic
non-deterministic
turing computability
deterministic
finite-state
gainesville

fla

florida jacksonville
tampa
lauderdale
aspect-oriented
smalltalk
object-oriented | event-driven
prolog
domain-specific
singing

dance

dancing dances

dancers
tap-dancing




[word similarity example]



Neural Word Embeddings

 We trained a language model.

 We ended up with vector representations of words.

* These representations are useful -- they encode
various aspects of word similarity.



Neural LM

softmax([J)

How are the softmax

scores determined?

K

g(OW? + b?)

g(OW?' + b')

o By, g0 B, ok,

/I\

encode(Ty—4,Th—3, Th—2, Th—1)

L —4

Egdout

Egdout



Neural LM

How are the softmax |
scores determined? /

K

softmax([J)

OE[

OE[ OE[

T3] Th—2] Th—1]

/I\

encode(Ty—4, T3, Tk—2,Tk—1)

$k—4]

Egdout

Egdout



Neural LM

each column of W3
corresponds to
1 a word

How are the softmax
scores determined?

a vector representation -
of the context




towards word2vec

* Training the language model is expensive. (Why?)

* Predicting a word based on previous words Is nice,
but can we do better?

e |f all we care about are the word vectors...



Wora2Vec

* Radically simplity the neural LM.
e Very fast training.

e Obtain good word representations.



word2vec

NS

WIKIPEDIA

wait a few hours

dog = (0.12,-0.32,0.92,0.43,-0.3 ...)
cat = (0.15,-0.29,0.90,0.39,-0.32 ...)

chair = (0.8,0.9,-0.76,0.29,0.52 ...)

get a |V|xd matrix W where each
row is a vector for a word




word2vec

» dog

» cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler,
mixed-breed, doberman, pig

» sheep

» cattle, goats, cows, chickens, sheeps, hogs, donkeys,
herds, shorthorn, livestock

» november

» october, december, april, june, february, july, september,
january, august, march

» |erusalem

» tiberias, jaffa, haifa, israel, palestine, nablus, damascus
katamon, ramla, safed

» feva

» pfizer, schering-plough, novartis, astrazeneca,
glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme,
pharmacia



Collobert and Weston model

* instead of predicting word based on previous words...

e ...predict word based on surrounding words.

P(ws|wiwowswy

) —>  P(wslwiws

w4w5)



Collobert and Weston model

* (GGetting rid of the softmax over the vocabulary:
e probabillities --> scores
* score the quality of a sequence, not all the words

* ranking based loss



Collobert and Weston model

score(D, A,[1,C, F;G) = g(xU)v
x = (Ejp] o B4 0 Ej) o E[c] 0 E[py)




Collobert and Weston model

score(D, A,[1,C, F;G) = g(xU)v
x = (E(p) © E(4] 0 E(g) 0 Ejc) © E(p))

/
score(cy, co, [, €3, cq;w) > score(cy, co, [, c3,cq;w") + 1

/ N

observed worad random word




Collobert and Weston model

score(D, A,

score(cy, Ca,

,C,F;G) = g(xU)v

X = (E[D] O E[A] O E[G] O E[C’] O E[F])

,C3, C4; W) > score(cy, Ca,

/

observed worad

/
763,64;TU)‘|‘1

™\

random word

L(w,c,w") = max(0,1 — (score(ci.p;w) — score(cr.p;w')))



How do you train this?

score(D, A,

score(cy, Ca,

(discuss)

,C3, C4; W) > score(cy, Ca,

/

observed word

/
,c3,cqsw' ) + 1

AN

random word

L(w,c,w") = max(0,1 — (score(cy.p; w) — score(cr.p;w')))



from Collobert and Weston
to Word2Vec

* Back to probabilities

e Simplity the scoring function



Wora2Vec

* Back to probabilities

L(w,c,w") = max(0,1 — (score(ci.p;w) — score(cr.p;w')))

v

P(D = 1|lw,c) = o(s(w,c)) !

— 1 _|_6—S(w,c)




Wora2Vec

* Back to probabilities

1
1+ e—s(w,c)

P(D = 1|w,c) = o(s(w,c)) =

L(O;D,D) = Z log P(D = 1|w, c) + Z log P(D = 0|w', ¢)
(w,c)eD (w’,c)eD



Wora2Vec

* Back to probabilities

good word+context pairs bad word+context pairs

1
1+ e—s(w,c)

P(D = 1|w;c) = o(s(w,c)) =

L(O;D,D) = Z log P(D = 1|w, c) + Z log P(D = 0|w', ¢)
(w,c)eD (w’,c)eD



Wora2Vec

* Back to probabilities

P(D =0|w,c) =1— P(D = 1|w, ¢)

1
1+ e—s(w,c)

P(D = 1|w,c) = o(s(w,c)) =

L(O;D,D) = Z log P(D = 1|w, c) + Z log P(D = 0|w', ¢)
(w,c)eD (w’,c)eD



Wora2Vec

e Simplity the score function:

CBOW
Skip-grams



Wora2Vec

e Simplity the score function:

CBOW

Skip-grams

P(D = 1|w,

c)

1

a(s(w,@]) = 15 o—s(@lo)

what is ¢?




Wora2Vec

e Simplity the score function:

CBOW .

score(w; cy, ..., Ck) = (Z E[Ci]) ’ Efw]
i=1

1
P(D =1|lw,c1.x) =

1 _|_ 6—(W'C1 —I—W°Cz—|—...—|—W-Ck)



Wora2Vec

e Simplity the score function:

Skip-grams:
1
P(D — ]"w?Ci) — 1 _|_ e~ W-Cj
k k 1
P(D =1lw,c1) = | [ P(D = 1w, ¢;) = | | e
1=1 1=1

k
Z 1
Og ( ’w7 Cl-k) Og — 1 _l_ e—W.Ci



Wora2Vec

e Simplity the score function:

Skip-grams:

L(O;D,D) = Z log P(D = 1|w, c) + Z log P(D = 0Jw', ¢)
(w,c)eD (w’,c)eD

1 1
— arg m(;dX log 1 4+ e—Ve Vw | Z log( 1 4+ eVeVw )
(w,c)€D (w,c)eD’



Wora2Vec

ow to train a word2vec model? (discuss)



‘Fastlext’

Enriching Word Vectors with Subword Information

Piotr Bojanowski®*and Edouard Grave®*and Armand Joulin and Tomas Mikolov
Facebook Al Research
{bojanowski, egrave,ajoulin,tmikolov}@fb.com

1 1
— | |
g 3 ey 5, )
(w,c)€D (w,c)eD’



‘Fastlext’

Represent a word by the sum of its char ngrams.




‘Fastlext’

Represent a word by the sum of its char ngrams.

Where — '"<where>" "<where", "where>", "<wher", "where",
"here>", "<whe", "wher", "here", "ere>", "<wh", ....

Vwhere = E["<where>"] + E['<where’] + .....

1 1
= ] ]
BIg MAax 08 7 n e—”c@ Z og( 1 + ev@
(w,c)€D (w,c)eD’



‘Fastlext’

Represent a word by the sum of its char ngrams.

"<wwhere>" "<where", "where>", "<wher", "where",
"here>", "<whe", "wher", "here", "ere>", "<wh", ....

What are the benefits of FastText? Where do we expect it to be better?

 \When do we expect it to work worse”

Can you think of a generalization of it to non-human-language tasks”

Can you think of non-human-language-tasks where it will hurt and not
help?

Can you think of a human languages where it may hurt”



‘Fastlext’

Represent a word by the sum of its char ngrams.

"<wwhere>" "<where", "where>", "<wher", "where",
"here>", "<whe", "wher", "here", "ere>", "<wh", ....

Vwhere = E["<where>"] + E['<where’] + .....

Think:
Isn't this very expensive to run at inference time”?

Why or why not”



Other word vectors

* Other contexts are also possible.

» Other algorithms are also possible.
* GloVe
 NCE
« SVD

* Implementations:

* word2vec, word2vect, GloVe, gensim, your own...



Using Word Vectors

Use for initializing the word embeddings in other
models. ("pre-training”. more soon.)

Use for finding similar words. (how?)
Find a word similar to a group of words. (how?)

Find the word that does not belong to a group. (how?)



Working with Dense Vectors

Word Similarity
» Similarity is calculated using cosine similarity::
dog - cat
|dogl| [|cat]]

sim(dog, cat) =

» For normalized vectors (||x|| = 1), this is equivalent to a
dot product:

sim(dog, cat) = dog - cat

» Normalize the vectors when loading them.



Working with Dense Vectors

Finding the most similar words to d5g

» Compute the similarity from word v to all other words.
» This is a single matrix-vector product: W .- v'

d
cat
chair
june
|Vlsun H = [ 09 -03 -0.1-09 0.3 0.2 |
bark dog § %g c:é;) g gb
= ® 7 x
eat
W ' = similarities
IVIXd dx1 1X1VI

» Resultis a | V| sized vector of similarities.
» Take the indices of the k-highest values.
» FAST! for 180k words, d=300: ~30ms



Working with Dense Vectors

Most Similar Words, in python+numpy code

W,words = load_and normalize vectors ("vecs.txt™)
# W and words are numpy arrays.

w21 = {w:1 for 1,w in enumerate (words) }

dog = W[w2i['dog”]] # get the dog vector

sims = W.dot (dog) # compute similarities
most_similar_ids = sims.argsort () [-1:-10:-1]

sim words = words|[most similar i1ds]



Working with Dense Vectors

Similarity to a group of words

» “Find me words most similar to cat, dog and cow”.
» Calculate the pairwise similarities and sum them:

W . cat+ W - dog+ W - cow
» Now find the indices of the highest values as before.
» Matrix-vector products are wasteful. Better option:

W - (cat + dog + cow)



tagging + pre-training

we can use the E we

got from LM training
to initialize E for the
POS tagging task.

(why is that helptul?)

NOUN

The brown fox jumped over

VERB

brown fox jumped over the

PREP

fox jumped over the lazy




Pre-training

* Alarge part of the success of feed-forward
networks in NLP comes from the use of pre-trained
word embeddings.

* Pre-trained embeddings are an easy way to

perform semi-supervised learning (or transter
learning).

* But notice: fine-tuning the pre-trained embeddings
means that some features change, while most stay
the same...



Pre-training

* Define an auxiliary task that you suspect is
correlated with your prediction problem.

e Jrain a model to perform this task.

* [Jake features representations from this model as
iInputs to another model.



Pre-training

In word2vec, auxiliary tasks are "predict word based on a
window of size k around it" (CBOW) or "predict
neighboring words in a window of k around a focus word"
(skipgram).

More generally, "predict word based on some context of
the word".

This is useful, as we can get tons of training data for free.

The choice of contexts determines the resulting word
representations.



Some possible contexts

 Window of k around a word.
(smaller k: more syntactic. Larger k: more semantic)

 Positional window around a word.
(more syntactic)

¢ Allgﬂ@d words in a different Ianguage. Requires parallel corpus
(synonyms, paraphrases)

* Neighbors In a dependency tree. requires parser
(functional similarity)



Fffect of Context

Target Word Bag of Words (k=5) Dependencies
Dumbledore Sunnydale
hallows Collinwood
Hogwarts half-blood Calarts
(Harry Potter’s school) Malfoy Greendale
Shape Millfield
Related to schools

Harry Potter

Levy and Goldberg 2014
Dependency-based word embeddings



Fffect of Context

Target Word Bag of Words (k=5) Dependencies
nondeterministic Pauling
non-deterministic Hotelling

Turing computability Heting
(computer scientist) deterministic Lessing
finite-state Hamming
Related to L.
Scientists

computability

Levy and Goldberg 2014
Dependency-based word embeddings



Fffect of Context

Target Word Bag of Words (k=5) Dependencies
singing singing
dance rapping

dancing dances breakdancing
(dance gerund) dancers miming
tap-dancing busking
Reit::leto Gerunds

Levy and Goldberg 2014
Dependency-based word embeddings



Wora2Vec

no layers.

no softmax. (so negative sampling.)
cbow or skipgrams objectives.
many implementations available.

more In the NLP course.



