
MLPs, Representations, 
Ngram Language Models

Yoav Goldberg



Linear Classifier

f(x) = W · x+ b

Binary:

Multi class:

f(x) = w · x+ b



Linear Classifier

f(x) = W · x+ b

Binary:

Multi class:

f(x) = w · x+ b sign(w · x+ b)



Linear Classifier

f(x) = W · x+ b

Binary:

Multi class:

f(x) = w · x+ b sign(w · x+ b)

�(x) =
1

1 + e�x

2.3. LINEAR MODELS 19

Figure 2.3 shows a plot of the sigmoid function. It is monotonically increasing, and
maps the value 0 to 1.

Figure 2.3: �(x)

When used with a suitable loss function (discussed in section 2.7.1) the binary pre-
dictions made through the log-linear model can be interpreted as class membership prob-
ability estimates �(f(x)) = P (ŷ = 1 | x) of x belonging to the positive class. We also get
P (ŷ = 0 | x) = 1� P (ŷ = 1 | x) = 1� �(f(x)). The closer the value is to 0 or 1 the more
certain the model is in its class membership prediction, with the value of 0.5 indicating
model uncertainty.

2.3.3 MULTI-CLASS CLASSIFICATION

The previous examples were of binary classification, where we had two possible classes.
Binary-classification cases exist, but most classification problems are of a multi-class na-
ture, in which we should assign an example to one of k di↵erent classes. For example, we
are given a document and asked to classify it into one of 6 possible languages: English,
French, German, Italian, Spanish, Other. A possible solution is to consider six weight vec-
tors wEn

,wFr
, . . . and biases, one for each language, and predict the language resulting in

the highest score:7

ŷ = f(x) = argmax
L2{En,Fr,Gr,It,Sp,O}

x ·wL + b
L (2.6)

The six sets of parameters wL 2 R784
, b

L can be arranged as a matrix W 2 R784⇥6

and vector b 2 R6, and the equation re-written as:

7There are many ways to model multi-class classification, including binary-to-multiclass reductions. These are
beyond the scope of this book, but a good overview can be found in Allwein et al. [2000].
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C H A P T E R 3

From Linear Models to
Multi-layer Perceptrons

3.1 LIMITATIONS OF LINEAR MODELS: THE XOR PROBLEM
The hypothesis class of linear (and log-linear) models is severely restricted. For example,
it cannot represent the XOR function, defined as:

xor(0, 0) = 0

xor(1, 0) = 1

xor(0, 1) = 1

xor(1, 1) = 0

That is, there is no parameterization w 2 R2
, b 2 R such that:

(0, 0) ·w + b < 0

(0, 1) ·w + b � 0

(1, 0) ·w + b � 0

(1, 1) ·w + b < 0

To see why, consider the following plot of the XOR function, where blue Os denote
the positive class and green Xs the negative class.
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It is clear that no straight line can separate the two classes.

3.2 NON-LINEAR INPUT TRANSFORMATIONS

However, if we transform the points by feeding each of them through the non-linear function
�(x1, x2) = [x1 ⇥ x2, x1 + x2], the XOR problem becomes linearly separable:

The function � mapped the data into a representation that is suitable for linear
classification. Having � at our disposal, we can now easily train a linear classifier to solve
the XOR problem.

ŷ = f(x) = �(x)W + b

In general, one can successfully train a linear classifier over a dataset which is not
linearly separable by defining a function that will map the data to a representation in which
it is linearly separable, and then train a linear classifier on the resulting representation. In
the XOR example the transformed data has the same dimensions as the original one, but
often in order to make the data linearly separable one needs to map it to a space with a
much higher dimension.

This solution has one glaring problem, though: we need to manually define the func-
tion �, a process which is dependent on the particular dataset, and requires a lot of human
intuition.

3.3 KERNEL METHODS

Kernelized Support Vectors Machines (SVMs) [Boser and et al., 1992] and Kernel Methods
in general [Shawe-Taylor and Cristianini, 2004], approach this problem by defining a set of
generic mappings, each of them mapping the data into very high dimensional – and some-
times even infinite – spaces, and then performing linear classification in the transformed
space. Working in very high dimensional spaces significantly increase the probability of
finding a suitable linear separator.

One example mapping is the polynomial mapping, �(x) = (x)d. For d = 2 we get
�(x1, x2) = (x1x1, x1x2, x2x1, x2x2). This gives us all combinations of the two variables,
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ŷ = f(x) = �(x)W + b

In general, one can successfully train a linear classifier over a dataset which is not
linearly separable by defining a function that will map the data to a representation in which
it is linearly separable, and then train a linear classifier on the resulting representation. In
the XOR example the transformed data has the same dimensions as the original one, but
often in order to make the data linearly separable one needs to map it to a space with a
much higher dimension.

This solution has one glaring problem, though: we need to manually define the func-
tion �, a process which is dependent on the particular dataset, and requires a lot of human
intuition.

3.3 KERNEL METHODS

Kernelized Support Vectors Machines (SVMs) [Boser and et al., 1992] and Kernel Methods
in general [Shawe-Taylor and Cristianini, 2004], approach this problem by defining a set of
generic mappings, each of them mapping the data into very high dimensional – and some-
times even infinite – spaces, and then performing linear classification in the transformed
space. Working in very high dimensional spaces significantly increase the probability of
finding a suitable linear separator.

One example mapping is the polynomial mapping, �(x) = (x)d. For d = 2 we get
�(x1, x2) = (x1x1, x1x2, x2x1, x2x2). This gives us all combinations of the two variables,

3.2. NON-LINEAR INPUT TRANSFORMATIONS 35

It is clear that no straight line can separate the two classes.

3.2 NON-LINEAR INPUT TRANSFORMATIONS

However, if we transform the points by feeding each of them through the non-linear function
�(x1, x2) = [x1 ⇥ x2, x1 + x2], the XOR problem becomes linearly separable:

The function � mapped the data into a representation that is suitable for linear
classification. Having � at our disposal, we can now easily train a linear classifier to solve
the XOR problem.
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f(x) = w · �(x) + b
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ŷ = f(x) = �(x)W + b

In general, one can successfully train a linear classifier over a dataset which is not
linearly separable by defining a function that will map the data to a representation in which
it is linearly separable, and then train a linear classifier on the resulting representation. In
the XOR example the transformed data has the same dimensions as the original one, but
often in order to make the data linearly separable one needs to map it to a space with a
much higher dimension.

This solution has one glaring problem, though: we need to manually define the func-
tion �, a process which is dependent on the particular dataset, and requires a lot of human
intuition.

3.3 KERNEL METHODS

Kernelized Support Vectors Machines (SVMs) [Boser and et al., 1992] and Kernel Methods
in general [Shawe-Taylor and Cristianini, 2004], approach this problem by defining a set of
generic mappings, each of them mapping the data into very high dimensional – and some-
times even infinite – spaces, and then performing linear classification in the transformed
space. Working in very high dimensional spaces significantly increase the probability of
finding a suitable linear separator.

One example mapping is the polynomial mapping, �(x) = (x)d. For d = 2 we get
�(x1, x2) = (x1x1, x1x2, x2x1, x2x2). This gives us all combinations of the two variables,

�(x) = g(W0 · x+ b0)

g(x) = max(x, 0)



Multilayer Networks 



Linear Classifier

f(x) = W · x+ b

Binary:

Multi class:

f(x) = w · x+ b �(w · x+ b)

sign(w · x+ b)

argmax
i

softmax(W · x+ b)[i]



Non-Linear Classifier

f✓(x) = wg(W0 · x+ b0) + b



Non-Linear Classifier

f✓(x)

44 4. FEED FORWARD NEURAL NETWORKS

NNMLP2(x) =y

h1 =g
1(xW1 + b1)

h2 =g
2(h1W2 + b2)

y =h2W3

When applying dropout training to MLP2, we randomly set some of the values of h1

and h2 to 0 at each training round:

NNMLP2(x) =y

h1 =g
1(xW1 + b1)

m1 ⇠Bernouli(r1)

h̃1 =m1 � h1

h2 =g
2(h̃1W2 + b2)

m2 ⇠Bernouli(r2)

h̃2 =m2 � h2

y =h̃2W3

(4.7)

Here, m1 and m2 are random masking vectors with the dimensions of h1 and h2 respec-
tively, and � is the element-wise multiplication operation. The values of the elements in
the masking vectors are either 0 or 1, and are drawn from a Bernouli distribution with
parameter r (usually r = 0.5). The values corresponding to zeros in the masking vectors
are then zeroed out, replacing the hidden layers h with h̃ before passing them on to the
next layer.

Work by Wager et al. [2013] establishes a strong connection between the dropout
method and L2 regularization. Another view links dropout to model averaging and ensemble
techniques.

The dropout technique is one of the key factors contributing to very strong results of
neural-network methods on image classification tasks [Krizhevsky et al., 2012], especially
when combined with ReLU activation units [Dahl et al., 2013]. The dropout technique is
e↵ective also in NLP applications of neural networks.

4.7 EMBEDDING LAYERS
As will be further discussed in chapter 8, when the input to the neural network contains
symbolic categorical features (e.g. features that take on of k distinct symbols, such as

=

Multi-layer Perceptron (MLP):
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are then zeroed out, replacing the hidden layers h with h̃ before passing them on to the
next layer.

Work by Wager et al. [2013] establishes a strong connection between the dropout
method and L2 regularization. Another view links dropout to model averaging and ensemble
techniques.

The dropout technique is one of the key factors contributing to very strong results of
neural-network methods on image classification tasks [Krizhevsky et al., 2012], especially
when combined with ReLU activation units [Dahl et al., 2013]. The dropout technique is
e↵ective also in NLP applications of neural networks.

4.7 EMBEDDING LAYERS
As will be further discussed in chapter 8, when the input to the neural network contains
symbolic categorical features (e.g. features that take on of k distinct symbols, such as

=

Multi-layer Perceptron (MLP):
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Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):
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Sigmoid The sigmoid activation function �(x) = 1/(1 + e
�x), also called the logistic

function, is an S-shaped function, transforming each value x into the range [0, 1]. The
sigmoid was the canonical non-linearity for neural networks since their inception, but is
currently considered to be deprecated for use in internal layers of neural networks, as the
choices listed below prove to work much better empirically.

Hyperbolic tangent (tanh) The hyperbolic tangent tanh(x) = e2x�1

e2x+1
activation func-

tion is an S-shaped function, transforming the values x into the range [�1, 1].

Hard tanh The hard-tanh activation function is an approximation of the tanh function
which is faster to compute and take derivatives of:

hardtanh(x) =

8
><

>:

�1 x < �1

1 x > 1

x otherwise

(4.5)

Rectifier (ReLU) The Rectifier activation function [Glorot et al., 2011], also known as
the rectified linear unit is a very simple activation function that is easy to work with and
was shown many times to produce excellent results.6 The ReLU unit clips each value x < 0
at 0. Despite its simplicity, it performs well for many tasks, especially when combined with
the dropout regularization technique (see Section 4.6).

ReLU(x) = max(0, x) =

(
0 x < 0

x otherwise
(4.6)

As a rule of thumb, ReLU units work better than tanh, and tanh works better than
sigmoid.

Figure 4.3 show the shapes of the di↵erent activations functions, together with the
shapes of their derivatives.

4.5 LOSS FUNCTIONS

When training a neural network (more on training in chapter 5 below), much like when
training a linear classifier, one defines a loss function L(ŷ,y), stating the loss of predicting
ŷ when the true output is y. The training objective is then to minimize the loss across
the di↵erent training examples. The loss L(ŷ,y) assigns a numerical score (a scalar) to

6The technical advantages of the ReLU over the sigmoid and tanh activation functions is that it does not
involve expensive-to-compute functions, and more importantly that it does not saturate. The sigmoid and tanh
activation are capped at 1, and the gradients at this region of the functions are near zero, driving the entire
gradient near zero. The ReLU activation does not have this problem, making it especially suitable for networks
with multiple layers, which are susceptible to the vanishing gradients problem when trained with the saturating
units.
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Sigmoid The sigmoid activation function �(x) = 1/(1 + e
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function, is an S-shaped function, transforming each value x into the range [0, 1]. The
sigmoid was the canonical non-linearity for neural networks since their inception, but is
currently considered to be deprecated for use in internal layers of neural networks, as the
choices listed below prove to work much better empirically.
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Rectifier (ReLU) The Rectifier activation function [Glorot et al., 2011], also known as
the rectified linear unit is a very simple activation function that is easy to work with and
was shown many times to produce excellent results.6 The ReLU unit clips each value x < 0
at 0. Despite its simplicity, it performs well for many tasks, especially when combined with
the dropout regularization technique (see Section 4.6).

ReLU(x) = max(0, x) =

(
0 x < 0

x otherwise
(4.6)

As a rule of thumb, ReLU units work better than tanh, and tanh works better than
sigmoid.

Figure 4.3 show the shapes of the di↵erent activations functions, together with the
shapes of their derivatives.

4.5 LOSS FUNCTIONS

When training a neural network (more on training in chapter 5 below), much like when
training a linear classifier, one defines a loss function L(ŷ,y), stating the loss of predicting
ŷ when the true output is y. The training objective is then to minimize the loss across
the di↵erent training examples. The loss L(ŷ,y) assigns a numerical score (a scalar) to

6The technical advantages of the ReLU over the sigmoid and tanh activation functions is that it does not
involve expensive-to-compute functions, and more importantly that it does not saturate. The sigmoid and tanh
activation are capped at 1, and the gradients at this region of the functions are near zero, driving the entire
gradient near zero. The ReLU activation does not have this problem, making it especially suitable for networks
with multiple layers, which are susceptible to the vanishing gradients problem when trained with the saturating
units.
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Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):
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Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):
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Sigmoid The sigmoid activation function �(x) = 1/(1 + e
�x), also called the logistic

function, is an S-shaped function, transforming each value x into the range [0, 1]. The
sigmoid was the canonical non-linearity for neural networks since their inception, but is
currently considered to be deprecated for use in internal layers of neural networks, as the
choices listed below prove to work much better empirically.

Hyperbolic tangent (tanh) The hyperbolic tangent tanh(x) = e2x�1

e2x+1
activation func-

tion is an S-shaped function, transforming the values x into the range [�1, 1].

Hard tanh The hard-tanh activation function is an approximation of the tanh function
which is faster to compute and take derivatives of:

hardtanh(x) =
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�1 x < �1

1 x > 1

x otherwise

(4.5)

Rectifier (ReLU) The Rectifier activation function [Glorot et al., 2011], also known as
the rectified linear unit is a very simple activation function that is easy to work with and
was shown many times to produce excellent results.6 The ReLU unit clips each value x < 0
at 0. Despite its simplicity, it performs well for many tasks, especially when combined with
the dropout regularization technique (see Section 4.6).

ReLU(x) = max(0, x) =

(
0 x < 0

x otherwise
(4.6)

As a rule of thumb, ReLU units work better than tanh, and tanh works better than
sigmoid.

Figure 4.3 show the shapes of the di↵erent activations functions, together with the
shapes of their derivatives.

4.5 LOSS FUNCTIONS

When training a neural network (more on training in chapter 5 below), much like when
training a linear classifier, one defines a loss function L(ŷ,y), stating the loss of predicting
ŷ when the true output is y. The training objective is then to minimize the loss across
the di↵erent training examples. The loss L(ŷ,y) assigns a numerical score (a scalar) to

6The technical advantages of the ReLU over the sigmoid and tanh activation functions is that it does not
involve expensive-to-compute functions, and more importantly that it does not saturate. The sigmoid and tanh
activation are capped at 1, and the gradients at this region of the functions are near zero, driving the entire
gradient near zero. The ReLU activation does not have this problem, making it especially suitable for networks
with multiple layers, which are susceptible to the vanishing gradients problem when trained with the saturating
units.
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Rectifier (ReLU) The Rectifier activation function [Glorot et al., 2011], also known as
the rectified linear unit is a very simple activation function that is easy to work with and
was shown many times to produce excellent results.6 The ReLU unit clips each value x < 0
at 0. Despite its simplicity, it performs well for many tasks, especially when combined with
the dropout regularization technique (see Section 4.6).

ReLU(x) = max(0, x) =

(
0 x < 0

x otherwise
(4.6)

As a rule of thumb, ReLU units work better than tanh, and tanh works better than
sigmoid.

Figure 4.3 show the shapes of the di↵erent activations functions, together with the
shapes of their derivatives.

4.5 LOSS FUNCTIONS

When training a neural network (more on training in chapter 5 below), much like when
training a linear classifier, one defines a loss function L(ŷ,y), stating the loss of predicting
ŷ when the true output is y. The training objective is then to minimize the loss across
the di↵erent training examples. The loss L(ŷ,y) assigns a numerical score (a scalar) to

6The technical advantages of the ReLU over the sigmoid and tanh activation functions is that it does not
involve expensive-to-compute functions, and more importantly that it does not saturate. The sigmoid and tanh
activation are capped at 1, and the gradients at this region of the functions are near zero, driving the entire
gradient near zero. The ReLU activation does not have this problem, making it especially suitable for networks
with multiple layers, which are susceptible to the vanishing gradients problem when trained with the saturating
units.
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Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):



How many layers to use? 
And how wide should they be?
• No hard and fast rules. 

• In vision, we see that "deeper is better". 

• Not always the case in text / sequences (though with 
transformers, we may be starting to see this). 

• Can think of each layer as transforming the previous 
layer (remember the xor example). 

• Narrower layers "compress" the information in the 
previous layer. Wider layers introduce redundancies.



Dropout

• At each iteration, select a random subset of 
"neurons" and "drop" them.

• Like training 2n different networks. 

• Prevents co-adaptation of neurons (prevents 
neurons from depending on each other).
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NNMLP2(x) =y

h1 =g
1(xW1 + b1)

h2 =g
2(h1W2 + b2)

y =h2W3

When applying dropout training to MLP2, we randomly set some of the values of h1

and h2 to 0 at each training round:

NNMLP2(x) =y

h1 =g
1(xW1 + b1)

m1 ⇠Bernouli(r1)

h̃1 =m1 � h1

h2 =g
2(h̃1W2 + b2)

m2 ⇠Bernouli(r2)

h̃2 =m2 � h2

y =h̃2W3

(4.7)

Here, m1 and m2 are random masking vectors with the dimensions of h1 and h2 respec-
tively, and � is the element-wise multiplication operation. The values of the elements in
the masking vectors are either 0 or 1, and are drawn from a Bernouli distribution with
parameter r (usually r = 0.5). The values corresponding to zeros in the masking vectors
are then zeroed out, replacing the hidden layers h with h̃ before passing them on to the
next layer.

Work by Wager et al. [2013] establishes a strong connection between the dropout
method and L2 regularization. Another view links dropout to model averaging and ensemble
techniques.

The dropout technique is one of the key factors contributing to very strong results of
neural-network methods on image classification tasks [Krizhevsky et al., 2012], especially
when combined with ReLU activation units [Dahl et al., 2013]. The dropout technique is
e↵ective also in NLP applications of neural networks.

4.7 EMBEDDING LAYERS
As will be further discussed in chapter 8, when the input to the neural network contains
symbolic categorical features (e.g. features that take on of k distinct symbols, such as

44 4. FEED FORWARD NEURAL NETWORKS

NNMLP2(x) =y

h1 =g
1(xW1 + b1)

h2 =g
2(h1W2 + b2)

y =h2W3

When applying dropout training to MLP2, we randomly set some of the values of h1

and h2 to 0 at each training round:

NNMLP2(x) =y

h1 =g
1(xW1 + b1)

m1 ⇠Bernouli(r1)

h̃1 =m1 � h1

h2 =g
2(h̃1W2 + b2)

m2 ⇠Bernouli(r2)

h̃2 =m2 � h2

y =h̃2W3

(4.7)

Here, m1 and m2 are random masking vectors with the dimensions of h1 and h2 respec-
tively, and � is the element-wise multiplication operation. The values of the elements in
the masking vectors are either 0 or 1, and are drawn from a Bernouli distribution with
parameter r (usually r = 0.5). The values corresponding to zeros in the masking vectors
are then zeroed out, replacing the hidden layers h with h̃ before passing them on to the
next layer.

Work by Wager et al. [2013] establishes a strong connection between the dropout
method and L2 regularization. Another view links dropout to model averaging and ensemble
techniques.

The dropout technique is one of the key factors contributing to very strong results of
neural-network methods on image classification tasks [Krizhevsky et al., 2012], especially
when combined with ReLU activation units [Dahl et al., 2013]. The dropout technique is
e↵ective also in NLP applications of neural networks.

4.7 EMBEDDING LAYERS
As will be further discussed in chapter 8, when the input to the neural network contains
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• With a (log) linear model, initialization doesn't 

matter much. 

• With MLPs or more complex networks, initialization 
is crucial for achieving good performance.
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20 2. LEARNING BASICS AND LINEAR MODELS

ŷ = f(x) = x ·W + b

ŷ = argmax
i

ŷ[i]
(2.7)

Here ŷ 2 R6 is a vector of the scores assigned by the model to each language, and we
again determine the predicted language by taking the argmax over the entries of ŷ.

2.4 REPRESENTATIONS

Consider the vector ŷ resulting from applying equation 2.7 of a trained model to a doc-
ument. The vector can be considered as a representation of the document, capturing the
properties of the document that are important to us, namely the scores of the di↵erent
languages. The representation ŷ contains strictly more information than the prediction
ŷ = argmaxi ŷ[i]: for example, ŷ can be used to distinguish documents in which the main
language in German, but which also contain a sizeable amount of French words. By clus-
tering documents based on their vector representations as assigned by the model, we could
perhaps discover documents written in regional dialects, or by multilingual authors.

The vectors x containing the normalized letter-bigram counts for the documents are
also representations of the documents, arguably containing a similar kind of information
to the vectors ŷ. However, the representations in ŷ is more compact (6 entries instead of
784) and more specialized for the language prediction objective (clustering by the vectors x
would likely reveal document similarities that are not due to a particular mix of languages,
but perhaps due to the document’s topic or writing styles).

The trained matrix W 2 R784⇥6 can also be considered as containing learned repre-
sentations. Each of the 6 columns of the matrix correspond to a particular language, and
can be taken to be a 784-dimensional vector representation of this language in terms of its
characteristic letter-bigram patterns. We can then cluster the 6 language vectors according
to their similarity. Similarly, each of the 784 rows of W correspond to a particular letter-
bigram, and provides a 6-dimensional vector representation of that bigram in terms of the
languages it prompts.

Representations are central to deep learning. In fact, one could argue that the main
power of deep-learning is the ability to learn good representations. In the linear case, the
representations are interpretable, in the sense that we can assign a meaningful interpreta-
tion to each dimension in the representation vector (e.g., each dimension corresponds to a
particular language or letter-bigram). This is in general not the case – deep learning models
often learn a cascade of representations of the input that build on top of each other, in order
to best model the problem at hand, and these representations are often not interpretable
– we do not know which properties of the input they capture. However, they are still very
useful for making predictions. Moreover, at the boundaries of the model, i.e. at the input

2.3. LINEAR MODELS 17

We usually have many more than two features. Moving to a language setup, consider
the task of distinguishing documents written in English from documents written in Ger-
man. It turns out that letter frequencies make for quite good predictors (features) for this
task. Even more informative are counts of letter bigrams, i.e. pairs of consecutive letters.
Assuming we have an alphabet of 28 letters (a-z, space, and a special symbol for all other
characters including digits, punctuations, etc) we represent a document as a 28⇥ 28 di-
mensional vector x 2 R784, where each entry x[i] represents a count of a particular letter
combination in the document, normalized by the document’s length. For example, denoting
by xab the entry of x corresponding to the letter-bigram ab:

xab =
#ab

|D| (2.3)

where #ab is the number of times the bigram ab appears in the document, and |D| is the
total number of bigrams in the document (the document’s length).

Figure 2.2: Character-bigram histograms for documents in English (left, blue) and German

(right, green). Underscores denote spaces.

Figure 2.2 shows such bigram histograms for several German and English texts. For
readability, we only show the top frequent character-bigrams and not the entire feature

Language Identification  
for 6 languages based on  
letter bigram counts.
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language in German, but which also contain a sizeable amount of French words. By clus-
tering documents based on their vector representations as assigned by the model, we could
perhaps discover documents written in regional dialects, or by multilingual authors.

The vectors x containing the normalized letter-bigram counts for the documents are
also representations of the documents, arguably containing a similar kind of information
to the vectors ŷ. However, the representations in ŷ is more compact (6 entries instead of
784) and more specialized for the language prediction objective (clustering by the vectors x
would likely reveal document similarities that are not due to a particular mix of languages,
but perhaps due to the document’s topic or writing styles).

The trained matrix W 2 R784⇥6 can also be considered as containing learned repre-
sentations. Each of the 6 columns of the matrix correspond to a particular language, and
can be taken to be a 784-dimensional vector representation of this language in terms of its
characteristic letter-bigram patterns. We can then cluster the 6 language vectors according
to their similarity. Similarly, each of the 784 rows of W correspond to a particular letter-
bigram, and provides a 6-dimensional vector representation of that bigram in terms of the
languages it prompts.

Representations are central to deep learning. In fact, one could argue that the main
power of deep-learning is the ability to learn good representations. In the linear case, the
representations are interpretable, in the sense that we can assign a meaningful interpreta-
tion to each dimension in the representation vector (e.g., each dimension corresponds to a
particular language or letter-bigram). This is in general not the case – deep learning models
often learn a cascade of representations of the input that build on top of each other, in order
to best model the problem at hand, and these representations are often not interpretable
– we do not know which properties of the input they capture. However, they are still very
useful for making predictions. Moreover, at the boundaries of the model, i.e. at the input

assume 28 letters (including space). 

 the vector x is 784 dimensional vector. 

each entry is the count for a particular letter pair.
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also representations of the documents, arguably containing a similar kind of information
to the vectors ŷ. However, the representations in ŷ is more compact (6 entries instead of
784) and more specialized for the language prediction objective (clustering by the vectors x
would likely reveal document similarities that are not due to a particular mix of languages,
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sentations. Each of the 6 columns of the matrix correspond to a particular language, and
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characteristic letter-bigram patterns. We can then cluster the 6 language vectors according
to their similarity. Similarly, each of the 784 rows of W correspond to a particular letter-
bigram, and provides a 6-dimensional vector representation of that bigram in terms of the
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tion to each dimension in the representation vector (e.g., each dimension corresponds to a
particular language or letter-bigram). This is in general not the case – deep learning models
often learn a cascade of representations of the input that build on top of each other, in order
to best model the problem at hand, and these representations are often not interpretable
– we do not know which properties of the input they capture. However, they are still very
useful for making predictions. Moreover, at the boundaries of the model, i.e. at the input

consider the values ŷ
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ŷ = f(x) = x ·W + b

ŷ = argmax
i

ŷ[i]
(2.7)

Here ŷ 2 R6 is a vector of the scores assigned by the model to each language, and we
again determine the predicted language by taking the argmax over the entries of ŷ.

2.4 REPRESENTATIONS

Consider the vector ŷ resulting from applying equation 2.7 of a trained model to a doc-
ument. The vector can be considered as a representation of the document, capturing the
properties of the document that are important to us, namely the scores of the di↵erent
languages. The representation ŷ contains strictly more information than the prediction
ŷ = argmaxi ŷ[i]: for example, ŷ can be used to distinguish documents in which the main
language in German, but which also contain a sizeable amount of French words. By clus-
tering documents based on their vector representations as assigned by the model, we could
perhaps discover documents written in regional dialects, or by multilingual authors.

The vectors x containing the normalized letter-bigram counts for the documents are
also representations of the documents, arguably containing a similar kind of information
to the vectors ŷ. However, the representations in ŷ is more compact (6 entries instead of
784) and more specialized for the language prediction objective (clustering by the vectors x
would likely reveal document similarities that are not due to a particular mix of languages,
but perhaps due to the document’s topic or writing styles).

The trained matrix W 2 R784⇥6 can also be considered as containing learned repre-
sentations. Each of the 6 columns of the matrix correspond to a particular language, and
can be taken to be a 784-dimensional vector representation of this language in terms of its
characteristic letter-bigram patterns. We can then cluster the 6 language vectors according
to their similarity. Similarly, each of the 784 rows of W correspond to a particular letter-
bigram, and provides a 6-dimensional vector representation of that bigram in terms of the
languages it prompts.

Representations are central to deep learning. In fact, one could argue that the main
power of deep-learning is the ability to learn good representations. In the linear case, the
representations are interpretable, in the sense that we can assign a meaningful interpreta-
tion to each dimension in the representation vector (e.g., each dimension corresponds to a
particular language or letter-bigram). This is in general not the case – deep learning models
often learn a cascade of representations of the input that build on top of each other, in order
to best model the problem at hand, and these representations are often not interpretable
– we do not know which properties of the input they capture. However, they are still very
useful for making predictions. Moreover, at the boundaries of the model, i.e. at the input

consider the 6 columns of W  
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20 2. LEARNING BASICS AND LINEAR MODELS

ŷ = f(x) = x ·W + b

ŷ = argmax
i

ŷ[i]
(2.7)

Here ŷ 2 R6 is a vector of the scores assigned by the model to each language, and we
again determine the predicted language by taking the argmax over the entries of ŷ.

2.4 REPRESENTATIONS

Consider the vector ŷ resulting from applying equation 2.7 of a trained model to a doc-
ument. The vector can be considered as a representation of the document, capturing the
properties of the document that are important to us, namely the scores of the di↵erent
languages. The representation ŷ contains strictly more information than the prediction
ŷ = argmaxi ŷ[i]: for example, ŷ can be used to distinguish documents in which the main
language in German, but which also contain a sizeable amount of French words. By clus-
tering documents based on their vector representations as assigned by the model, we could
perhaps discover documents written in regional dialects, or by multilingual authors.

The vectors x containing the normalized letter-bigram counts for the documents are
also representations of the documents, arguably containing a similar kind of information
to the vectors ŷ. However, the representations in ŷ is more compact (6 entries instead of
784) and more specialized for the language prediction objective (clustering by the vectors x
would likely reveal document similarities that are not due to a particular mix of languages,
but perhaps due to the document’s topic or writing styles).

The trained matrix W 2 R784⇥6 can also be considered as containing learned repre-
sentations. Each of the 6 columns of the matrix correspond to a particular language, and
can be taken to be a 784-dimensional vector representation of this language in terms of its
characteristic letter-bigram patterns. We can then cluster the 6 language vectors according
to their similarity. Similarly, each of the 784 rows of W correspond to a particular letter-
bigram, and provides a 6-dimensional vector representation of that bigram in terms of the
languages it prompts.

Representations are central to deep learning. In fact, one could argue that the main
power of deep-learning is the ability to learn good representations. In the linear case, the
representations are interpretable, in the sense that we can assign a meaningful interpreta-
tion to each dimension in the representation vector (e.g., each dimension corresponds to a
particular language or letter-bigram). This is in general not the case – deep learning models
often learn a cascade of representations of the input that build on top of each other, in order
to best model the problem at hand, and these representations are often not interpretable
– we do not know which properties of the input they capture. However, they are still very
useful for making predictions. Moreover, at the boundaries of the model, i.e. at the input

consider the 784 rows of W 
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20 2. LEARNING BASICS AND LINEAR MODELS

ŷ = f(x) = x ·W + b

ŷ = argmax
i

ŷ[i]
(2.7)

Here ŷ 2 R6 is a vector of the scores assigned by the model to each language, and we
again determine the predicted language by taking the argmax over the entries of ŷ.

2.4 REPRESENTATIONS

Consider the vector ŷ resulting from applying equation 2.7 of a trained model to a doc-
ument. The vector can be considered as a representation of the document, capturing the
properties of the document that are important to us, namely the scores of the di↵erent
languages. The representation ŷ contains strictly more information than the prediction
ŷ = argmaxi ŷ[i]: for example, ŷ can be used to distinguish documents in which the main
language in German, but which also contain a sizeable amount of French words. By clus-
tering documents based on their vector representations as assigned by the model, we could
perhaps discover documents written in regional dialects, or by multilingual authors.

The vectors x containing the normalized letter-bigram counts for the documents are
also representations of the documents, arguably containing a similar kind of information
to the vectors ŷ. However, the representations in ŷ is more compact (6 entries instead of
784) and more specialized for the language prediction objective (clustering by the vectors x
would likely reveal document similarities that are not due to a particular mix of languages,
but perhaps due to the document’s topic or writing styles).

The trained matrix W 2 R784⇥6 can also be considered as containing learned repre-
sentations. Each of the 6 columns of the matrix correspond to a particular language, and
can be taken to be a 784-dimensional vector representation of this language in terms of its
characteristic letter-bigram patterns. We can then cluster the 6 language vectors according
to their similarity. Similarly, each of the 784 rows of W correspond to a particular letter-
bigram, and provides a 6-dimensional vector representation of that bigram in terms of the
languages it prompts.

Representations are central to deep learning. In fact, one could argue that the main
power of deep-learning is the ability to learn good representations. In the linear case, the
representations are interpretable, in the sense that we can assign a meaningful interpreta-
tion to each dimension in the representation vector (e.g., each dimension corresponds to a
particular language or letter-bigram). This is in general not the case – deep learning models
often learn a cascade of representations of the input that build on top of each other, in order
to best model the problem at hand, and these representations are often not interpretable
– we do not know which properties of the input they capture. However, they are still very
useful for making predictions. Moreover, at the boundaries of the model, i.e. at the input

think of x as a sum of one-hot vectors. 

what is xW ?



Representations

what happens if we add layers?

ŷ = g(xW)U

W 2 R784⇥30 U 2 R30⇥6



Language Modeling



Let's talk about sequences

• Predicting how a sequence will continue.



תל א_



ראיתי כלב ח_



מה אתה _



Language Model

p(xi|x1, ..., xi�1)



Language Model:  
Markov Assumption

p(xi|x1, ..., xi�1) ⇡ p(xi|xi�4, xi�3, xi�2, xi�1)



Language Model:  
Markov Assumption

p(xi|x1, ..., xi�1) ⇡ p(xi|xi�4, xi�3, xi�2, xi�1)

(condition only on last n items)

this is called n-gram language model



Language Model
• LM can also be used to assign a probability to a 

sequence.

p(x1, ..., xn) =pLM (x1|*S*, *S*)
⇥ pLM (x2|*S*, x1)

⇥ pLM (x3|x1, x2)

⇥ pLM (x4|x2, x3)

· · ·
⇥ pLM (xn|xn�2, xn�1)



Language Model

• Very useful (used in Speech Recognition, Machine 
Translation.. and many others). 

• Does not have to be over natural language. 

• Huge research topic. We'll see a neural LM.



Neural LM

p(xk|xk�4, xk�3, xk�2, xk�1) = softmax(MLP(x))

x = encode(xk�4, xk�3, xk�2, xk�1)



Neural LM

p(xk|xk�4, xk�3, xk�2, xk�1) = softmax(MLP(x))

x = encode(xk�4, xk�3, xk�2, xk�1)

softmax(g(g(xW1 + b1)W2 + b2)W3 + b3)



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)

Rdin

Rd1

Rd2

Rdout

Rdout



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)

Rdin

Rd1

Rd2

Rdout

Rdout



Encoding k elements

We have k elements in a vocabulary of size |V|

encode(x1, x2, x3, x4)



Encoding k elements

We have k elements in a vocabulary of size |V|

encode(x1, x2, x3, x4)

4 10

V={A,B,C,D,E,F,G,H,I,J}



Encoding k elements
encode(D,A,G,C)

A= 
B= 
C= 
D= 
E= 
F= 
G= 
H= 
I= 
J=

[1,0,0,0,0,0,0,0,0,0] 
[0,1,0,0,0,0,0,0,0,0] 
[0,0,1,0,0,0,0,0,0,0] 
[0,0,0,1,0,0,0,0,0,0] 
[0,0,0,0,1,0,0,0,0,0] 
[0,0,0,0,0,1,0,0,0,0] 
[0,0,0,0,0,0,1,0,0,0] 
[0,0,0,0,0,0,0,1,0,0] 
[0,0,0,0,0,0,0,0,1,0] 
[0,0,0,0,0,0,0,0,0,1]



Encoding k elements
encode(D,A,G,C)

A= 
B= 
C= 
D= 
E= 
F= 
G= 
H= 
I= 
J=

[1,0,0,0,0,0,0,0,0,0] 
[0,1,0,0,0,0,0,0,0,0] 
[0,0,1,0,0,0,0,0,0,0] 
[0,0,0,1,0,0,0,0,0,0] 
[0,0,0,0,1,0,0,0,0,0] 
[0,0,0,0,0,1,0,0,0,0] 
[0,0,0,0,0,0,1,0,0,0] 
[0,0,0,0,0,0,0,1,0,0] 
[0,0,0,0,0,0,0,0,1,0] 
[0,0,0,0,0,0,0,0,0,1]

vD + vA + vG + vC

[0,0,0,1,0,0,0,0,0,0] 
+ 

[1,0,0,0,0,0,0,0,0,0] 
+ 

[0,0,0,0,0,0,1,0,0,0] 
+ 

[0,0,1,0,0,0,0,0,0,0] 
= 

[1,0,0,1,0,0,1,0,0,0]



Encoding k elements
encode(D,A,G,C)

A= 
B= 
C= 
D= 
E= 
F= 
G= 
H= 
I= 
J=

[1,0,0,0,0,0,0,0,0,0] 
[0,1,0,0,0,0,0,0,0,0] 
[0,0,1,0,0,0,0,0,0,0] 
[0,0,0,1,0,0,0,0,0,0] 
[0,0,0,0,1,0,0,0,0,0] 
[0,0,0,0,0,1,0,0,0,0] 
[0,0,0,0,0,0,1,0,0,0] 
[0,0,0,0,0,0,0,1,0,0] 
[0,0,0,0,0,0,0,0,1,0] 
[0,0,0,0,0,0,0,0,0,1]

vD + vA + vG + vC

[0,0,0,1,0,0,0,0,0,0] 
+ 

[1,0,0,0,0,0,0,0,0,0] 
+ 

[0,0,0,0,0,0,1,0,0,0] 
+ 

[0,0,1,0,0,0,0,0,0,0] 
= 

[1,0,1,1,0,0,1,0,0,0]

what does this miss?



Encoding k elements
encode(D,A,G,C)

A= 
B= 
C= 
D= 
E= 
F= 
G= 
H= 
I= 
J=

[1,0,0,0,0,0,0,0,0,0] 
[0,1,0,0,0,0,0,0,0,0] 
[0,0,1,0,0,0,0,0,0,0] 
[0,0,0,1,0,0,0,0,0,0] 
[0,0,0,0,1,0,0,0,0,0] 
[0,0,0,0,0,1,0,0,0,0] 
[0,0,0,0,0,0,1,0,0,0] 
[0,0,0,0,0,0,0,1,0,0] 
[0,0,0,0,0,0,0,0,1,0] 
[0,0,0,0,0,0,0,0,0,1]

vD � vA � vG � vC



Encoding k elements
encode(D,A,G,C)

[0,0,0,1,0,0,0,0,0,0] 
o 

[1,0,0,0,0,0,0,0,0,0] 
o 

[0,0,0,0,0,0,1,0,0,0] 
o 

[0,0,1,0,0,0,0,0,0,0] 
= 

[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0]

vD � vA � vG � vC

| | |



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)

Rdin

Rd1

Rd2

Rdout

Rdout



(vD + vA + vG + vC)W

[-0.32, 0.09, 0.33,-0.44] 
[ 0.29, 0.02,-0.46,-0.39] 
[-0.46, 0.24,-0.16, 0.08] 
[-0.15,-0.31, 0.34, 0.00] 
[-0.10,-0.37, 0.01, 0.40] 
[-0.28,-0.26,-0.24, 0.31] 
[-0.32,-0.42,-0.21, 0.18] 
[-0.09,-0.01, 0.06, 0.14] 
[ 0.28,-0.02,-0.39, 0.12] 
[ 0.23,-0.22,-0.14, 0.28]

A= 
B= 
C= 
D= 
E= 
F= 
G= 
H= 
I= 
J=

W

[0,0,0,1,0,0,0,0,0,0] 
+ 

[1,0,0,0,0,0,0,0,0,0] 
+ 

[0,0,0,0,0,0,1,0,0,0] 
+ 

[0,0,1,0,0,0,0,0,0,0] 
= 

[1,0,0,1,0,0,1,0,0,0]



(vD + vA + vG + vC)W

= vD ·W+ vA ·W+ vG ·W+ vC ·W

[-0.32, 0.09, 0.33,-0.44] 
[ 0.29, 0.02,-0.46,-0.39] 
[-0.46, 0.24,-0.16, 0.08] 
[-0.15,-0.31, 0.34, 0.00] 
[-0.10,-0.37, 0.01, 0.40] 
[-0.28,-0.26,-0.24, 0.31] 
[-0.32,-0.42,-0.21, 0.18] 
[-0.09,-0.01, 0.06, 0.14] 
[ 0.28,-0.02,-0.39, 0.12] 
[ 0.23,-0.22,-0.14, 0.28]

A= 
B= 
C= 
D= 
E= 
F= 
G= 
H= 
I= 
J=

W

[0,0,0,1,0,0,0,0,0,0] 
+ 

[1,0,0,0,0,0,0,0,0,0] 
+ 

[0,0,0,0,0,0,1,0,0,0] 
+ 

[0,0,1,0,0,0,0,0,0,0] 
= 

[1,0,0,1,0,0,1,0,0,0]



(vD + vA + vG + vC)W

sum of rows in W

each row corresponds to a certain vocabulary item.

= vD ·W+ vA ·W+ vG ·W+ vC ·W



(vD � vA � vG � vC)W



(vD � vA � vG � vC)W

still sum of rows in W
 but W has 4x many rows.



[ 0.42,-0.15, 0.12, 0.02] 
[ 0.28,-0.15,-0.11, 0.32] 
[ 0.15,-0.24, 0.23, 0.41] 
[-0.12,-0.24, 0.12,-0.34] 
[-0.42,-0.21, 0.08, 0.40] 
[ 0.20, 0.11,-0.31, 0.33] 
[ 0.07,-0.05, 0.16, 0.23] 
[ 0.28, 0.03, 0.22,-0.49] 
[ 0.08, 0.39,-0.25, 0.27] 
[ 0.10,-0.42,-0.37, 0.35] 
[-0.00, 0.41, 0.19, 0.49] 
[ 0.24, 0.48, 0.34,-0.42] 
[-0.46, 0.22, 0.24,-0.21] 
[-0.11,-0.48, 0.18,-0.22] 
[-0.32, 0.10,-0.41,-0.43] 
[ 0.32, 0.02,-0.22, 0.06] 
[-0.31,-0.36, 0.09, 0.39] 
[ 0.01,-0.22,-0.09,-0.15] 
[ 0.01, 0.10,-0.16,-0.21] 
[-0.24, 0.40,-0.34,-0.13] 
[-0.23,-0.38, 0.02, 0.32] 
[-0.34, 0.04,-0.18,-0.00] 
[ 0.40,-0.02, 0.10,-0.16] 
[ 0.13,-0.07,-0.19,-0.01] 
[ 0.40, 0.27,-0.33, 0.36] 
[ 0.04,-0.13,-0.43, 0.39] 
[ 0.44, 0.38, 0.03,-0.39] 
[ 0.41,-0.23, 0.33,-0.08] 
[-0.50,-0.16,-0.42,-0.27] 
[-0.15, 0.41, 0.46,-0.16] 
[-0.11, 0.03, 0.20, 0.50] 
[ 0.16,-0.34, 0.20,-0.21] 
[ 0.05,-0.13,-0.23,-0.31] 
[ 0.13,-0.02, 0.38,-0.09] 
[ 0.30, 0.39, 0.10, 0.38] 
[-0.16,-0.31,-0.02,-0.34] 
[ 0.06,-0.04, 0.02,-0.32] 
[ 0.25, 0.30, 0.29, 0.24] 
[ 0.40,-0.17,-0.18,-0.19] 
[ 0.27, 0.33,-0.42,-0.07]

A(-3)= 
B(-3)= 
C(-3)= 
D(-3)= 
E(-3)= 
F(-3)= 
G(-3)= 
H(-3)= 
I(-3)= 
J(-3)= 
A(-2)= 
B(-2)= 
C(-2)= 
D(-2)= 
E(-2)= 
F(-2)= 
G(-2)= 
H(-2)= 
I(-2)= 
J(-2)= 
A(-1)= 
B(-1)= 
C(-1)= 
D(-1)= 
E(-1)= 
F(-1)= 
G(-1)= 
H(-1)= 
I(-1)= 
J(-1)= 
A(+0)= 
B(+0)= 
C(+0)= 
D(+0)= 
E(+0)= 
F(+0)= 
G(+0)= 
H(+0)= 
I(+0)= 
J(+0)= 

[0,0,0,1,0,0,0,0,0,0] 
o 

[1,0,0,0,0,0,0,0,0,0] 
o 

[0,0,0,0,0,0,1,0,0,0] 
o 

[0,0,1,0,0,0,0,0,0,0] 
= 

[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0]



(vD � vA � vG � vC)W

still sum of rows in W
 but W has 4x many rows.

= vD ·W0 + vA ·W00 + vG ·W000 + vC ·W0000

alternatively:



(vD � vA � vG � vC)W

still sum of rows in W
 but W has 4x many rows.

= vD ·W0 + vA ·W00 + vG ·W000 + vC ·W0000

alternatively:

W = W0 �W00 �W000 �W0000



[ 0.42,-0.15, 0.12, 0.02] 
[ 0.28,-0.15,-0.11, 0.32] 
[ 0.15,-0.24, 0.23, 0.41] 
[-0.12,-0.24, 0.12,-0.34] 
[-0.42,-0.21, 0.08, 0.40] 
[ 0.20, 0.11,-0.31, 0.33] 
[ 0.07,-0.05, 0.16, 0.23] 
[ 0.28, 0.03, 0.22,-0.49] 
[ 0.08, 0.39,-0.25, 0.27] 
[ 0.10,-0.42,-0.37, 0.35] 
[-0.00, 0.41, 0.19, 0.49] 
[ 0.24, 0.48, 0.34,-0.42] 
[-0.46, 0.22, 0.24,-0.21] 
[-0.11,-0.48, 0.18,-0.22] 
[-0.32, 0.10,-0.41,-0.43] 
[ 0.32, 0.02,-0.22, 0.06] 
[-0.31,-0.36, 0.09, 0.39] 
[ 0.01,-0.22,-0.09,-0.15] 
[ 0.01, 0.10,-0.16,-0.21] 
[-0.24, 0.40,-0.34,-0.13] 
[-0.23,-0.38, 0.02, 0.32] 
[-0.34, 0.04,-0.18,-0.00] 
[ 0.40,-0.02, 0.10,-0.16] 
[ 0.13,-0.07,-0.19,-0.01] 
[ 0.40, 0.27,-0.33, 0.36] 
[ 0.04,-0.13,-0.43, 0.39] 
[ 0.44, 0.38, 0.03,-0.39] 
[ 0.41,-0.23, 0.33,-0.08] 
[-0.50,-0.16,-0.42,-0.27] 
[-0.15, 0.41, 0.46,-0.16] 
[-0.11, 0.03, 0.20, 0.50] 
[ 0.16,-0.34, 0.20,-0.21] 
[ 0.05,-0.13,-0.23,-0.31] 
[ 0.13,-0.02, 0.38,-0.09] 
[ 0.30, 0.39, 0.10, 0.38] 
[-0.16,-0.31,-0.02,-0.34] 
[ 0.06,-0.04, 0.02,-0.32] 
[ 0.25, 0.30, 0.29, 0.24] 
[ 0.40,-0.17,-0.18,-0.19] 
[ 0.27, 0.33,-0.42,-0.07]

A(-3)= 
B(-3)= 
C(-3)= 
D(-3)= 
E(-3)= 
F(-3)= 
G(-3)= 
H(-3)= 
I(-3)= 
J(-3)= 
A(-2)= 
B(-2)= 
C(-2)= 
D(-2)= 
E(-2)= 
F(-2)= 
G(-2)= 
H(-2)= 
I(-2)= 
J(-2)= 
A(-1)= 
B(-1)= 
C(-1)= 
D(-1)= 
E(-1)= 
F(-1)= 
G(-1)= 
H(-1)= 
I(-1)= 
J(-1)= 
A(+0)= 
B(+0)= 
C(+0)= 
D(+0)= 
E(+0)= 
F(+0)= 
G(+0)= 
H(+0)= 
I(+0)= 
J(+0)= 

W'

W''

W'''

W''''

[0,0,0,1,0,0,0,0,0,0] 

o 

[1,0,0,0,0,0,0,0,0,0] 

o 

[0,0,0,0,0,0,1,0,0,0] 

o 

[0,0,1,0,0,0,0,0,0,0]



• 1-hot times matrix: row selection 

• sum of 1-hot times matrix: row selection + sum 

• concat of 1-hot: like using 1-hot from larger vocab



• Very common in neural network land: 

• associate each vocabulary item with a row in 
matrix E of dense vectors (dim of row << |V| )

• concat or sum rows of E for input.

"Embedding Layer"



"Embedding Layer"
encode(D,A,G,C)

= E[D] �E[A] �E[G] �E[C]

[-0.32, 0.09, 0.33,-0.44] 
[ 0.29, 0.02,-0.46,-0.39] 
[-0.46, 0.24,-0.16, 0.08] 
[-0.15,-0.31, 0.34, 0.00] 
[-0.10,-0.37, 0.01, 0.40] 
[-0.28,-0.26,-0.24, 0.31] 
[-0.32,-0.42,-0.21, 0.18] 
[-0.09,-0.01, 0.06, 0.14] 
[ 0.28,-0.02,-0.39, 0.12] 
[ 0.23,-0.22,-0.14, 0.28]

A= 
B= 
C= 
D= 
E= 
F= 
G= 
H= 
I= 
J=

E
[-0.15,-0.31, 0.34, 0.00,-0.32, 0.09, 0.33,-0.44,-0.32,-0.42,-0.21, 0.18,-0.46, 0.24,-0.16, 0.08] 



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)

Rdin

Rd1

Rd2

Rdout

Rdout

E[xk�4] �E[xk�3] �E[xk�2] �E[xk�1]



"Embedding Layer"
encode(D,A,G,C)

= E[D] �E[A] �E[G] �E[C]

A= 
B= 
C= 
D= 
E= 
F= 
G= 
H= 
I= 
J=

E

how does this relate to what  
we had before?

[-0.15,-0.31, 0.34, 0.00,-0.32, 0.09, 0.33,-0.44,-0.32,-0.42,-0.21, 0.18,-0.46, 0.24,-0.16, 0.08] [-0.32, 0.09, 0.33,-0.44] 
[ 0.29, 0.02,-0.46,-0.39] 
[-0.46, 0.24,-0.16, 0.08] 
[-0.15,-0.31, 0.34, 0.00] 
[-0.10,-0.37, 0.01, 0.40] 
[-0.28,-0.26,-0.24, 0.31] 
[-0.32,-0.42,-0.21, 0.18] 
[-0.09,-0.01, 0.06, 0.14] 
[ 0.28,-0.02,-0.39, 0.12] 
[ 0.23,-0.22,-0.14, 0.28]

(E[D] �E[A] �E[G] �E[C])W

what is

?



"Embedding Layer"
(E[D] �E[A] �E[G] �E[C])W

same row in E regardless of position in the sequence. 

but W will transform this row differently for each position.



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)

Rdin

Rd1

Rd2

Rdout

Rdout

E[xk�4] �E[xk�3] �E[xk�2] �E[xk�1]



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)

Rdin

Rd1

Rd2

Rdout

Rdout

E[xk�4] �E[xk�3] �E[xk�2] �E[xk�1]

what's in W1? 
what's in W2? 
what's in W3?



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)

E[xk�4] �E[xk�3] �E[xk�2] �E[xk�1]

Neural LM
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Abstract
A goal of statistical language modeling is to learn the joint probability function of sequences of
words in a language. This is intrinsically difficult because of the curse of dimensionality: a word
sequence on which the model will be tested is likely to be different from all the word sequences seen
during training. Traditional but very successful approaches based on n-grams obtain generalization
by concatenating very short overlapping sequences seen in the training set. We propose to fight the
curse of dimensionality by learning a distributed representation for words which allows each
training sentence to inform the model about an exponential number of semantically neighboring
sentences. The model learns simultaneously (1) a distributed representation for each word along
with (2) the probability function for word sequences, expressed in terms of these representations.
Generalization is obtained because a sequence of words that has never been seen before gets high
probability if it is made of words that are similar (in the sense of having a nearby representation) to
words forming an already seen sentence. Training such large models (with millions of parameters)
within a reasonable time is itself a significant challenge. We report on experiments using neural
networks for the probability function, showing on two text corpora that the proposed approach
significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to
take advantage of longer contexts.
Keywords: Statistical language modeling, artificial neural networks, distributed representation,
curse of dimensionality

1. Introduction

A fundamental problem that makes language modeling and other learning problems difficult is the
curse of dimensionality. It is particularly obvious in the case when one wants to model the joint
distribution between many discrete random variables (such as words in a sentence, or discrete at-
tributes in a data-mining task). For example, if one wants to model the joint distribution of 10
consecutive words in a natural language with a vocabulary V of size 100,000, there are potentially
10000010 � 1 = 1050� 1 free parameters. When modeling continuous variables, we obtain gen-
eralization more easily (e.g. with smooth classes of functions like multi-layer neural networks or
Gaussian mixture models) because the function to be learned can be expected to have some lo-
cal smoothness properties. For discrete spaces, the generalization structure is not as obvious: any
change of these discrete variables may have a drastic impact on the value of the function to be esti-

c�2003 Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin.

Pretty much same model, 
But fewer layers.



Neural LM

• What is the cost of increasing the history length?



Neural LM

• We can use a trained LM for scoring a given 
sentence. (how?)



Neural LM

• We can use a trained LM for comparing two given 
sentences. (how?)



Neural LM

• We can use a trained LM for generating new 
sentences. (how?)



Neural LM

• We can use K trained LMs for k-class 
classification. (how?)



Neural LM

• We can use K trained LMs for k-class 
classification. (how?) p(w1, w1, ..., wn|LM1)

p(w1, w1, ..., wn|LM2)

p(w1, w1, ..., wn|LM3)

ŷ = argmax
k

p(w1, w1, ..., wn|LMk)



sequence prediction tasks

• In LM: 

• predict word i based on k previous words. 

• But we could also predict label based on k items. 

• which tasks can this be used for?



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)

E[xk�4] �E[xk�3] �E[xk�2] �E[xk�1]

Neural LM
softmax over words

window of prev words



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)

E[xk�4] �E[xk�3] �E[xk�2] �E[xk�1]

Sequence Prediction
softmax over k classes

sequence items



classification

ACGCGCTCGATCG

GTGCGCTCGAACG

ACGCGTTCTACCG

V

V

X



tagging

The   brown  fox  jumped  over  the  lazy  dog
DET   ADJ  NOUN VERB   PREP DET ADJ NOUN



tagging

The brown fox jumped over

NOUN

brown fox jumped over the

VERB

fox jumped over the lazy

PREP

Window-based
 approach



back to LM



Training a language model

• Set dimensions of E, W3, according to vocab size.  

• Initial random values for E, W1, W2, W3, b1, b2, b3 

• For every n-tuple in some text: 

• try to predict last item based on prev n-1 

• use cross-entropy loss.



What happens after 
training?

• Consider the columns of W3. 

• Consider the rows of E.



softmax(⇤)

"
⇤W3 + b3

"
g(⇤W2 + b2)

"
g(⇤W1 + b1)

"
x

"
encode(xk�4, xk�3, xk�2, xk�1)

Rdin

Rd1

Rd2

Rdout

Rdout

E[xk�4] �E[xk�3] �E[xk�2] �E[xk�1]

what's in W3?

columns of W3
correspond

 to vocab items!



What happens after 
training?

• Consider the columns of W3. 

• Consider the rows of E.



• Consider the columns of W3. 

• Consider the rows of E.

Neural Word Embeddings



Neural Word Embeddings



Neural Word Embeddings
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Country and Capital Vectors Projected by PCA
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Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

which is used to replace every logP (wO|wI) term in the Skip-gram objective. Thus the task is to
distinguish the target word wO from draws from the noise distribution Pn(w) using logistic regres-
sion, where there are k negative samples for each data sample. Our experiments indicate that values
of k in the range 5–20 are useful for small training datasets, while for large datasets the k can be as
small as 2–5. The main difference between the Negative sampling and NCE is that NCE needs both
samples and the numerical probabilities of the noise distribution, while Negative sampling uses only
samples. And while NCE approximately maximizes the log probability of the softmax, this property
is not important for our application.

Both NCE and NEG have the noise distributionPn(w) as a free parameter. We investigated a number
of choices for Pn(w) and found that the unigram distribution U(w) raised to the 3/4rd power (i.e.,
U(w)3/4/Z) outperformed significantly the unigram and the uniform distributions, for both NCE
and NEG on every task we tried including language modeling (not reported here).

2.3 Subsampling of Frequent Words

In very large corpora, the most frequent words can easily occur hundreds of millions of times (e.g.,
“in”, “the”, and “a”). Such words usually provide less information value than the rare words. For
example, while the Skip-gram model benefits from observing the co-occurrences of “France” and
“Paris”, it benefits much less from observing the frequent co-occurrences of “France” and “the”, as
nearly every word co-occurs frequently within a sentence with “the”. This idea can also be applied
in the opposite direction; the vector representations of frequent words do not change significantly
after training on several million examples.

To counter the imbalance between the rare and frequent words, we used a simple subsampling ap-
proach: each word wi in the training set is discarded with probability computed by the formula

P (wi) = 1−

√

t

f(wi)
(5)

4



Neural Word Embeddings
All embeddings were trained on English

Wikipedia. For DEPS, the corpus was tagged
with parts-of-speech using the Stanford tagger
(Toutanova et al., 2003) and parsed into labeled
Stanford dependencies (de Marneffe and Man-
ning, 2008) using an implementation of the parser
described in (Goldberg and Nivre, 2012). All to-
kens were converted to lowercase, and words and
contexts that appeared less than 100 times were
filtered. This resulted in a vocabulary of about
175,000 words, with over 900,000 distinct syntac-
tic contexts. We report results for 300 dimension
embeddings, though similar trends were also ob-
served with 600 dimensions.

4.1 Qualitative Evaluation

Our first evaluation is qualitative: we manually in-
spect the 5 most similar words (by cosine similar-
ity) to a given set of target words (Table 1).

The first target word, Batman, results in similar
sets across the different setups. This is the case for
many target words. However, other target words
show clear differences between embeddings.

In Hogwarts - the school of magic from the
fictional Harry Potter series - it is evident that
BOW contexts reflect the domain aspect, whereas
DEPS yield a list of famous schools, capturing
the semantic type of the target word. This ob-
servation holds for Turing3 and many other nouns
as well; BOW find words that associate with w,
while DEPS find words that behave like w. Turney
(2012) described this distinction as domain simi-
larity versus functional similarity.

The Florida example presents an ontologi-
cal difference; bag-of-words contexts generate
meronyms (counties or cities within Florida),
while dependency-based contexts provide cohy-
ponyms (other US states). We observed the same
behavior with other geographical locations, partic-
ularly with countries (though not all of them).

The next two examples demonstrate that simi-
larities induced from DEPS share a syntactic func-
tion (adjectives and gerunds), while similarities
based on BOW are more diverse. Finally, we ob-
serve that while both BOW5 and BOW2 yield top-
ical similarities, the larger window size result in
more topicality, as expected.

3DEPS generated a list of scientists whose name ends with
“ing”. This is may be a result of occasional POS-tagging
errors. Still, the embedding does a remarkable job and re-
trieves scientists, despite the noisy POS. The list contains
more mathematicians without “ing” further down.

Target Word BOW5 BOW2 DEPS

batman

nightwing superman superman
aquaman superboy superboy
catwoman aquaman supergirl
superman catwoman catwoman
manhunter batgirl aquaman

hogwarts

dumbledore evernight sunnydale
hallows sunnydale collinwood
half-blood garderobe calarts
malfoy blandings greendale
snape collinwood millfield

turing

nondeterministic non-deterministic pauling
non-deterministic finite-state hotelling
computability nondeterministic heting
deterministic buchi lessing
finite-state primality hamming

florida

gainesville fla texas
fla alabama louisiana
jacksonville gainesville georgia
tampa tallahassee california
lauderdale texas carolina

object-oriented

aspect-oriented aspect-oriented event-driven
smalltalk event-driven domain-specific
event-driven objective-c rule-based
prolog dataflow data-driven
domain-specific 4gl human-centered

dancing

singing singing singing
dance dance rapping
dances dances breakdancing
dancers breakdancing miming
tap-dancing clowning busking

Table 1: Target words and their 5 most similar words, as in-
duced by different embeddings.

We also tried using the subsampling option
(Mikolov et al., 2013b) with BOW contexts (not
shown). Since word2vec removes the subsam-
pled words from the corpus before creating the
window contexts, this option effectively increases
the window size, resulting in greater topicality.

4.2 Quantitative Evaluation

We supplement the examples in Table 1 with
quantitative evaluation to show that the qualita-
tive differences pointed out in the previous sec-
tion are indeed widespread. To that end, we use
the WordSim353 dataset (Finkelstein et al., 2002;
Agirre et al., 2009). This dataset contains pairs of
similar words that reflect either relatedness (top-
ical similarity) or similarity (functional similar-
ity) relations.4 We use the embeddings in a re-
trieval/ranking setup, where the task is to rank the
similar pairs in the dataset above the related ones.

The pairs are ranked according to cosine sim-
ilarities between the embedded words. We then
draw a recall-precision curve that describes the
embedding’s affinity towards one subset (“sim-
ilarity”) over another (“relatedness”). We ex-
pect DEPS’s curve to be higher than BOW2’s
curve, which in turn is expected to be higher than

4Some word pairs are judged to exhibit both types of sim-
ilarity, and were ignored in this experiment.
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• We trained a language model. 

• We ended up with vector representations of words. 

• These representations are useful -- they encode 
various aspects of word similarity.

Neural Word Embeddings



tagging + pre-training

The brown fox jumped over

NOUN

brown fox jumped over the

VERB

fox jumped over the lazy

PREP

we can use the E we 
got from LM training 
to initialize E for the 
POS tagging task.

(why is that helpful?)



pre-training

• This is a sort of semi-supervised learning  
or multi-task learning. 

• We learn from "unannotated" data. 

• We then use the representations on tasks with 
annotated data.



• We trained a language model. 

• We ended up with vector representations of words. 

• These representations are useful -- they encode 
various aspects of word similarity. 

• A form of semi-supervised learning.

• More next week.

Neural Word Embeddings


