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Last time
• Attention


• Seq2Seq + Attention


• The attention abstraction


• Transformers


• Self-attention


• Multi-head attention



Transformers: Problems

• No clear computational model. 

• Can be parallelized on the GPU, but computation is 
still expensive. 

• There is an n^2 memory dependence on sequence 
length --> this severely limits modeled sequence 
length.



Transformers:  
current research

• What is the computational model behind a 
transformer? 

• Can we make transformers cheaper by removing 
the n^2 dependence on length? (e.g, "Longformer") 

• Can we remove the dependence on the attention 
operation? can we replace attention with something 
cheaper?



ViT: Visual Transformer

"with enough data and rich models, things tend to work"



ViT: Visual Transformer



back to seq2seq / enc-dec

• \
(slide by Graham Neubig)

x1  x2   x3  --> y1  y2  .



• \

Given as 
Input
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Given as 
Input
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Given as 
Input

Given as 
Input



• \

Given as 
Input

Given as 
Input

when training LM / Prefix-LM, can model also x2, x3



Masked Attention

• \

How do we decode with a Transformer model?

How do we implement it?

(efficiently)
(at training time)



Masked Attention

• \
(slide by Graham Neubig)



Applications of seq2seq

• previously: translation, summarization, email 
response, dialog...
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Abstract

We describe an approach for unsupervised learning of a generic, distributed sen-
tence encoder. Using the continuity of text from books, we train an encoder-
decoder model that tries to reconstruct the surrounding sentences of an encoded
passage. Sentences that share semantic and syntactic properties are thus mapped
to similar vector representations. We next introduce a simple vocabulary expan-
sion method to encode words that were not seen as part of training, allowing us
to expand our vocabulary to a million words. After training our model, we ex-
tract and evaluate our vectors with linear models on 8 tasks: semantic relatedness,
paraphrase detection, image-sentence ranking, question-type classification and 4
benchmark sentiment and subjectivity datasets. The end result is an off-the-shelf
encoder that can produce highly generic sentence representations that are robust
and perform well in practice. We will make our encoder publicly available.

1 Introduction

Developing learning algorithms for distributed compositional semantics of words has been a long-
standing open problem at the intersection of language understanding and machine learning. In recent
years, several approaches have been developed for learning composition operators that map word
vectors to sentence vectors including recursive networks [1], recurrent networks [2], convolutional
networks [3, 4] and recursive-convolutional methods [5, 6] among others. All of these methods
produce sentence representations that are passed to a supervised task and depend on a class label in
order to backpropagate through the composition weights. Consequently, these methods learn high-
quality sentence representations but are tuned only for their respective task. The paragraph vector
of [7] is an alternative to the above models in that it can learn unsupervised sentence representations
by introducing a distributed sentence indicator as part of a neural language model. The downside is
at test time, inference needs to be performed to compute a new vector.

In this paper we abstract away from the composition methods themselves and consider an alterna-
tive loss function that can be applied with any composition operator. We consider the following
question: is there a task and a corresponding loss that will allow us to learn highly generic sentence
representations? We give evidence for this by proposing a model for learning high-quality sentence
vectors without a particular supervised task in mind. Using word vector learning as inspiration, we
propose an objective function that abstracts the skip-gram model of [8] to the sentence level. That
is, instead of using a word to predict its surrounding context, we instead encode a sentence to predict
the sentences around it. Thus, any composition operator can be substituted as a sentence encoder
and only the objective function becomes modified. Figure 1 illustrates the model. We call our model
skip-thoughts and vectors induced by our model are called skip-thought vectors.

Our model depends on having a training corpus of contiguous text. We chose to use a large collection
of novels, namely the BookCorpus dataset [9] for training our models. These are free books written
by yet unpublished authors. The dataset has books in 16 different genres, e.g., Romance (2,865
books), Fantasy (1,479), Science fiction (786), Teen (430), etc. Table 1 highlights the summary
statistics of the book corpus. Along with narratives, books contain dialogue, emotion and a wide
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• Really cheesy name. 

• Really cool idea.



Figure 1: The skip-thoughts model. Given a tuple (si�1, si, si+1) of contiguous sentences, with si
the i-th sentence of a book, the sentence si is encoded and tries to reconstruct the previous sentence
si�1 and next sentence si+1. In this example, the input is the sentence triplet I got back home. I
could see the cat on the steps. This was strange. Unattached arrows are connected to the encoder
output. Colors indicate which components share parameters. heosi is the end of sentence token.

# of books # of sentences # of words # of unique words mean # of words per sentence
11,038 74,004,228 984,846,357 1,316,420 13

Table 1: Summary statistics of the BookCorpus dataset [9]. We use this corpus to training our
model.

range of interaction between characters. Furthermore, with a large enough collection the training
set is not biased towards any particular domain or application. Table 2 shows nearest neighbours
of sentences from a model trained on the BookCorpus dataset. These results show that skip-thought
vectors learn to accurately capture semantics and syntax of the sentences they encode.

We evaluate our vectors in a newly proposed setting: after learning skip-thoughts, freeze the model
and use the encoder as a generic feature extractor for arbitrary tasks. In our experiments we con-
sider 8 tasks: semantic-relatedness, paraphrase detection, image-sentence ranking and 5 standard
classification benchmarks. In these experiments, we extract skip-thought vectors and train linear
models to evaluate the representations directly, without any additional fine-tuning. As it turns out,
skip-thoughts yield generic representations that perform robustly across all tasks considered.

One difficulty that arises with such an experimental setup is being able to construct a large enough
word vocabulary to encode arbitrary sentences. For example, a sentence from a Wikipedia article
might contain nouns that are highly unlikely to appear in our book vocabulary. We solve this problem
by learning a mapping that transfers word representations from one model to another. Using pre-
trained word2vec representations learned with a continuous bag-of-words model [8], we learn a
linear mapping from a word in word2vec space to a word in the encoder’s vocabulary space. The
mapping is learned using all words that are shared between vocabularies. After training, any word
that appears in word2vec can then get a vector in the encoder word embedding space.

2 Approach

2.1 Inducing skip-thought vectors

We treat skip-thoughts in the framework of encoder-decoder models 1. That is, an encoder maps
words to a sentence vector and a decoder is used to generate the surrounding sentences. Encoder-
decoder models have gained a lot of traction for neural machine translation. In this setting, an
encoder is used to map e.g. an English sentence into a vector. The decoder then conditions on this
vector to generate a translation for the source English sentence. Several choices of encoder-decoder
pairs have been explored, including ConvNet-RNN [10], RNN-RNN [11] and LSTM-LSTM [12].
The source sentence representation can also dynamically change through the use of an attention
mechanism [13] to take into account only the relevant words for translation at any given time. In our
model, we use an RNN encoder with GRU [14] activations and an RNN decoder with a conditional
GRU. This model combination is nearly identical to the RNN encoder-decoder of [11] used in neural
machine translation. GRU has been shown to perform as well as LSTM [2] on sequence modelling
tasks [14] while being conceptually simpler. GRU units have only 2 gates and do not require the use
of a cell. While we use RNNs for our model, any encoder and decoder can be used so long as we
can backpropagate through it.

Assume we are given a sentence tuple (si�1, si, si+1). Let wt
i denote the t-th word for sentence si

and let xt
i denote its word embedding. We describe the model in three parts: the encoder, decoder

and objective function.

1A preliminary version of our model was developed in the context of a computer vision application [9].

2

• Generalize distributional similarity to sentences. 

• Encode: English sentence. 
Decode1: Next sentence. 
Decode2: Previous sentence.



Query and nearest sentence

he ran his hand inside his coat , double-checking that the unopened letter was still there .
he slipped his hand between his coat and his shirt , where the folded copies lay in a brown envelope .

im sure youll have a glamorous evening , she said , giving an exaggerated wink .
im really glad you came to the party tonight , he said , turning to her .

although she could tell he had n’t been too invested in any of their other chitchat , he seemed genuinely curious about this .
although he had n’t been following her career with a microscope , he ’d definitely taken notice of her appearances .

an annoying buzz started to ring in my ears , becoming louder and louder as my vision began to swim .
a weighty pressure landed on my lungs and my vision blurred at the edges , threatening my consciousness altogether .

if he had a weapon , he could maybe take out their last imp , and then beat up errol and vanessa .
if he could ram them from behind , send them sailing over the far side of the levee , he had a chance of stopping them .

then , with a stroke of luck , they saw the pair head together towards the portaloos .
then , from out back of the house , they heard a horse scream probably in answer to a pair of sharp spurs digging deep into its flanks .

“ i ’ll take care of it , ” goodman said , taking the phonebook .
“ i ’ll do that , ” julia said , coming in .

he finished rolling up scrolls and , placing them to one side , began the more urgent task of finding ale and tankards .
he righted the table , set the candle on a piece of broken plate , and reached for his flint , steel , and tinder .

Table 2: In each example, the first sentence is a query while the second sentence is its nearest
neighbour. Nearest neighbours were scored by cosine similarity from a random sample of 500,000
sentences from our corpus.

Encoder. Let w1
i , . . . , w

N
i be the words in sentence si where N is the number of words in the

sentence. At each time step, the encoder produces a hidden state ht
i which can be interpreted as the

representation of the sequence w1
i , . . . , w

t
i . The hidden state hN

i thus represents the full sentence.
To encode a sentence, we iterate the following sequence of equations (dropping the subscript i):

rt = �(Wrx
t +Urh

t�1) (1)
zt = �(Wzx

t +Uzh
t�1) (2)

h̄t = tanh(Wxt +U(rt � ht�1)) (3)
ht = (1� zt)� ht�1 + zt � h̄t (4)

where h̄t is the proposed state update at time t, zt is the update gate, rt is the reset gate (�) denotes
a component-wise product. Both update gates takes values between zero and one.

Decoder. The decoder is a neural language model which conditions on the encoder output hi. The
computation is similar to that of the encoder except we introduce matrices Cz , Cr and C that are
used to bias the update gate, reset gate and hidden state computation by the sentence vector. One
decoder is used for the next sentence si+1 while a second decoder is used for the previous sentence
si�1. Separate parameters are used for each decoder with the exception of the vocabulary matrix V,
which is the weight matrix connecting the decoder’s hidden state for computing a distribution over
words. In what follows we describe the decoder for the next sentence si+1 although an analogous
computation is used for the previous sentence si�1. Let ht

i+1 denote the hidden state of the decoder
at time t. Decoding involves iterating through the following sequence of equations (dropping the
subscript i+ 1):

rt = �(Wd
rx

t�1 +Ud
rh

t�1 +Crhi) (5)
zt = �(Wd

zx
t�1 +Ud

zh
t�1 +Czhi) (6)

h̄t = tanh(Wdxt�1 +Ud(rt � ht�1) +Chi) (7)
ht
i+1 = (1� zt)� ht�1 + zt � h̄t (8)

Given ht
i+1, the probability of word wt

i+1 given the previous t� 1 words and the encoder vector is

P (wt
i+1|w<t

i+1,hi) / exp(vwt
i+1

ht
i+1) (9)

where vwt
i+1

denotes the row of V corresponding to the word of wt
i+1. An analogous computation

is performed for the previous sentence si�1.

Objective. Given a tuple (si�1, si, si+1), the objective optimized is the sum of the log-probabilities
for the forward and backward sentences conditioned on the encoder representation:

X

t

logP (wt
i+1|w<t

i+1,hi) +
X

t

logP (wt
i�1|w<t

i�1,hi) (10)

3

(what can we do with this similarity? can we tame it?)



Alternative Training

discriminative classification



Alternative Training

another option: sentence order prediction



Encoder-Decoder  
with different modalities

The encoded conditioning context need not 
be text, or even a sequence.



Encoder-Decoder  
with different modalities

• Encode: image to vector. 
Decode: a sentence describing the image. 
 
 
 
 
 

• This sort-of works. 
In my opinion, looks more impressive than really is.
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Abstract

Automatically describing the content of an image is a
fundamental problem in artificial intelligence that connects
computer vision and natural language processing. In this
paper, we present a generative model based on a deep re-
current architecture that combines recent advances in com-
puter vision and machine translation and that can be used
to generate natural sentences describing an image. The
model is trained to maximize the likelihood of the target de-
scription sentence given the training image. Experiments
on several datasets show the accuracy of the model and the
fluency of the language it learns solely from image descrip-
tions. Our model is often quite accurate, which we verify
both qualitatively and quantitatively. For instance, while
the current state-of-the-art BLEU-1 score (the higher the
better) on the Pascal dataset is 25, our approach yields 59,
to be compared to human performance around 69. We also
show BLEU-1 score improvements on Flickr30k, from 56 to
66, and on SBU, from 19 to 28. Lastly, on the newly released
COCO dataset, we achieve a BLEU-4 of 27.7, which is the
current state-of-the-art.

1. Introduction

Being able to automatically describe the content of an
image using properly formed English sentences is a very
challenging task, but it could have great impact, for instance
by helping visually impaired people better understand the
content of images on the web. This task is significantly
harder, for example, than the well-studied image classifi-
cation or object recognition tasks, which have been a main
focus in the computer vision community [27]. Indeed, a
description must capture not only the objects contained in
an image, but it also must express how these objects relate
to each other as well as their attributes and the activities
they are involved in. Moreover, the above semantic knowl-
edge has to be expressed in a natural language like English,
which means that a language model is needed in addition to
visual understanding.

Most previous attempts have proposed to stitch together

A group of people 
shopping at an 
outdoor market. 

There are many 
vegetables at the 
fruit stand.

Vision
Deep CNN

Language 
Generating

RNN

Figure 1. NIC, our model, is based end-to-end on a neural net-
work consisting of a vision CNN followed by a language gener-
ating RNN. It generates complete sentences in natural language
from an input image, as shown on the example above.

existing solutions of the above sub-problems, in order to go
from an image to its description [6, 16]. In contrast, we
would like to present in this work a single joint model that
takes an image I as input, and is trained to maximize the
likelihood p(S|I) of producing a target sequence of words
S = {S1, S2, . . .} where each word St comes from a given
dictionary, that describes the image adequately.

The main inspiration of our work comes from recent ad-
vances in machine translation, where the task is to transform
a sentence S written in a source language, into its transla-
tion T in the target language, by maximizing p(T |S). For
many years, machine translation was also achieved by a se-
ries of separate tasks (translating words individually, align-
ing words, reordering, etc), but recent work has shown that
translation can be done in a much simpler way using Re-
current Neural Networks (RNNs) [3, 2, 30] and still reach
state-of-the-art performance. An “encoder” RNN reads the
source sentence and transforms it into a rich fixed-length
vector representation, which in turn in used as the initial
hidden state of a “decoder” RNN that generates the target
sentence.

Here, we propose to follow this elegant recipe, replac-
ing the encoder RNN by a deep convolution neural network
(CNN). Over the last few years it has been convincingly
shown that CNNs can produce a rich representation of the
input image by embedding it to a fixed-length vector, such
that this representation can be used for a variety of vision
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Abstract

Automatically describing the content of an image is a
fundamental problem in artificial intelligence that connects
computer vision and natural language processing. In this
paper, we present a generative model based on a deep re-
current architecture that combines recent advances in com-
puter vision and machine translation and that can be used
to generate natural sentences describing an image. The
model is trained to maximize the likelihood of the target de-
scription sentence given the training image. Experiments
on several datasets show the accuracy of the model and the
fluency of the language it learns solely from image descrip-
tions. Our model is often quite accurate, which we verify
both qualitatively and quantitatively. For instance, while
the current state-of-the-art BLEU-1 score (the higher the
better) on the Pascal dataset is 25, our approach yields 59,
to be compared to human performance around 69. We also
show BLEU-1 score improvements on Flickr30k, from 56 to
66, and on SBU, from 19 to 28. Lastly, on the newly released
COCO dataset, we achieve a BLEU-4 of 27.7, which is the
current state-of-the-art.

1. Introduction

Being able to automatically describe the content of an
image using properly formed English sentences is a very
challenging task, but it could have great impact, for instance
by helping visually impaired people better understand the
content of images on the web. This task is significantly
harder, for example, than the well-studied image classifi-
cation or object recognition tasks, which have been a main
focus in the computer vision community [27]. Indeed, a
description must capture not only the objects contained in
an image, but it also must express how these objects relate
to each other as well as their attributes and the activities
they are involved in. Moreover, the above semantic knowl-
edge has to be expressed in a natural language like English,
which means that a language model is needed in addition to
visual understanding.

Most previous attempts have proposed to stitch together
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Figure 1. NIC, our model, is based end-to-end on a neural net-
work consisting of a vision CNN followed by a language gener-
ating RNN. It generates complete sentences in natural language
from an input image, as shown on the example above.

existing solutions of the above sub-problems, in order to go
from an image to its description [6, 16]. In contrast, we
would like to present in this work a single joint model that
takes an image I as input, and is trained to maximize the
likelihood p(S|I) of producing a target sequence of words
S = {S1, S2, . . .} where each word St comes from a given
dictionary, that describes the image adequately.

The main inspiration of our work comes from recent ad-
vances in machine translation, where the task is to transform
a sentence S written in a source language, into its transla-
tion T in the target language, by maximizing p(T |S). For
many years, machine translation was also achieved by a se-
ries of separate tasks (translating words individually, align-
ing words, reordering, etc), but recent work has shown that
translation can be done in a much simpler way using Re-
current Neural Networks (RNNs) [3, 2, 30] and still reach
state-of-the-art performance. An “encoder” RNN reads the
source sentence and transforms it into a rich fixed-length
vector representation, which in turn in used as the initial
hidden state of a “decoder” RNN that generates the target
sentence.

Here, we propose to follow this elegant recipe, replac-
ing the encoder RNN by a deep convolution neural network
(CNN). Over the last few years it has been convincingly
shown that CNNs can produce a rich representation of the
input image by embedding it to a fixed-length vector, such
that this representation can be used for a variety of vision
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https://www.captionbot.ai/ 

https://www.captionbot.ai/
















Conditioned Generation: 
what's next?

• How can we encode interesting, structured 
conditions? 

• ... and train them well? 

• (this is more probably more of a data problem than 
an architecture problem. It is a very interesting 
problem though.)



Conditioned Generation 
Recap

• Read input into a vector. 

• Learn to produce output based on encoded vector. 

• Good when input/output have different lengths or 
different modalities.



Inverse problems
when one direction is easy but the other is very hard.



https://www.math.uni-frankfurt.de/~harrach/talks/2015Seoul_Introduction_Inverse_Problems.pdf

https://www.math.uni-frankfurt.de/~harrach/talks/2015Seoul_Introduction_Inverse_Problems.pdf


https://www.math.uni-frankfurt.de/~harrach/talks/2015Seoul_Introduction_Inverse_Problems.pdf

X-ray 

CT

https://www.math.uni-frankfurt.de/~harrach/talks/2015Seoul_Introduction_Inverse_Problems.pdf


https://www.math.uni-frankfurt.de/~harrach/talks/2015Seoul_Introduction_Inverse_Problems.pdf

Image coloring
https://github.com/jantic/DeOldify

https://www.math.uni-frankfurt.de/~harrach/talks/2015Seoul_Introduction_Inverse_Problems.pdf
https://github.com/jantic/DeOldify


Inverse Problems
• There are cases when we can perform a 

computation in one direction, but not the other. 

• Opportunity for a deep learning approach! 

• Generate data in easy direction. 

• Train a model on the other direction. 

• For some symbolic tasks: can then sample from 
the model and verify the correctness.



Inverse Problems
• Examples of symbolic / verifiable cases: 

• Easy: C -> asm. Hard: asm -> C. 

• Easy: Derivatives. Hard:  Integrals. 

• Easy: count things in text. 
Hard: generate fluent text that respects counts.



Inverse Problems
• Examples: 

• Easy: C -> asm. Hard: asm -> C. 

• Easy: Derivatives. Hard:  Integrals. 

• Easy: count things in text. 
Hard: generate fluent text that respects counts.



Encoder abstractions.



The Encoder Abstractions

Take your input and transform / encode it.

Feed the encoded result to further processing. 

The encoder is trained with the task. 



The Encoder Abstractions

• Symbol to vector. (lookup table, "embedding-layer") 

• Sentence to vector (n to 1)  [cbow, cnn+pooling, rnn] 

• Sentence to vector-per-word (n to n)  [cnn, bi-RNN]

Three types of encoders:
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Three types of encoders:

bi-RNN+pooling, bi-RNN+concat, ...
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• Sentence to vector (n to 1)  [cbow, cnn+pooling, rnn] 
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Three types of encoders:

Transformer

bi-RNN+pooling, bi-RNN+concat, ...



The Encoder Abstractions

• Symbol to vector. (lookup table, "embedding-layer") 

• Sentence to vector (n to 1)  [cbow, cnn+pooling, rnn] 

• Sentence to vector-per-word (n to n)  [cnn, bi-RNN]

Three types of encoders:

Transformer

bi-RNN+pooling, bi-RNN+concat, ...

Training the encoders with the task is useful.
But what if we don't have enough data?

Can we train a "general" encoder?



The Encoder Abstractions

• Sentence to vector (n to 1)  [cbow, cnn, rnn] 

• Sentence to vector-per-word (n to n)  [bi-RNN]
Transformer

skip-thoughts

elmo/bert



Language Model 
Pre-training



What if we have small 
training data?

• "self-supervised" training with language models. 

• Main idea:  
 
train an encoder (RNN/Transformer/similar) on a language model 
(or similar) objective.  
 
use the resulting encoded representation (RNN states / 
Transformer vector(s)) as representations for the task you care 
about. 
 
(similar to pre-trained word-vectors, but here we are  
 pre-training in-context encoders) 



What if we have small 
training data?

• "self-supervised" training with language models. 

• Main idea:  
 
train an encoder (RNN/Transformer/similar) on a language model 
(or similar) objective.  
 
use the resulting encoded representation (RNN states / 
Transformer vector(s)) as representations for the task you care 
about. 
 
(similar to pre-trained word-vectors, but here we are  
 pre-training in-context encoders) 

"transfer learning"



Terminology

• "static word embeddings" --> produced by e.g. w2v 

• "contextualized word embeddings" --> produced by, 
e.g., bi-RNN or Transformers 

• (note: training of bi-RNN, Transformers also 
produce "static" word embeddings (how?))



main papers  
(starting the trend)

ULMfit

ELMo

BERT



ULMfit

ELMo

BERT
SpanBERT, XLNet, RoBERTA, ...

GPT, GPT2, GPT3

main papers  
(starting the trend)



ULMfit

ELMo

BERT

SpanBERT, XLNet, RoBERTA, ...

GPT, GPT2, GPT3

BARTNext step:

T5



ULmfit, GPT, GPT2,3,... Elmo/BERT T5/BART

Language Model Bidi-LM Encode-Decode



ULmfit, GPT, GPT2,3,... Elmo/BERT T5/BART

Language Model Bidi-LM Encode-Decode

n to 1

0 to n
or

(depending 
on your
p.o.v)

n to n n to m



ULMfit
• Train a strong general domain language model. 

• (3-layer LSTM, with good dropout, learning rate, 
optimizer, etc choices) 

• Fine-tune the pre-trained LM on the in-domain data. 
• Two "tricks" to improve this part, see paper. 

• Classify based on the LM states. Model:

LSTM(x1:n) = h1, ...,hn = H

h̃ = [hn,maxpool(H), avgpool(H)]

ŷ = softmax(MLP (h̃))

Fine-tune the entire thing. (additional trick: gradual unfreezing)

(n to 1)



• Works very well for classification. 

• Can be easily adapted to bi-LSTM (how?) 

• Why does it work?

ULMfit (n to 1)



• Same idea as ULMfit, but with a transformer. 

• (And, like any other LM, can also be used for 
generation)

GPT



• Same idea as ULMfit, but with a transformer. 

• (And, like any other LM, can also be used for 
generation)

GPT

GPT2, GPT3
• Larger transformer (more layers, more heads, wider 

layers) 

• More data





"too dangerous to release"



replications (sort-of) by others





GPT2, GPT3
• Larger transformer (more layers, more heads, wider 

layers) 

• More data



GPT2, GPT3
• Larger transformer (more layers, more heads, wider 

layers) 

• More data

With the huge size of GPT3, we observe some "phase shift" 
in terms of abilities, in particular for learning from prompts.

GPT3 learns structures *very* well. 
Does it also learn meaning?



With the huge size of GPT3, we observe some "phase shift" 
in terms of abilities, in particular for learning from prompts.

GPT3 learns structures *very* well. 
Does it also learn meaning?



(not a very interesting question)



ELMo / BERT

• Not just classification.  
 
We replace word embeddings with 
contextualized word vectors. 

• Each word is represented as its encoded state. 
The in-context word vectors are then fed to further 
tasks.

(n to n)



ELMo
bi-LM



ELMo
bi-LM
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Note: bi-LM (vs bi-RNN)  
Two separate LMs



Note: bi-LM.  
Two separate LMs

full deep bi-LSTM LM will not work. (why?)



Note: bi-LM.  
Two separate LMs

full deep bi-LSTM LM will not work. (why?)

These are a problem!      



BERT
• Several modifications: 

• (1) LSTM --> Transformer 

• (2) additional "skip-thought"-like objective  
    (next sentence prediction) 

• (3) Real bidirectional+deep model.

• with a masked-LM



BERT
real deep bidirectional with masked-LM

[mask]

"play"



BERT
real deep bidirectional with masked-LM

[mask]

Much more expensive to train!
(why?)
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...

v1 v2 v3 v4 v5 v6 v7 v8 v9 vn

the crazy dinosaur and the cute like to cat

h1 h2 h3 h4 h5 h6 h7 h8 h9 hn

Encoder

Predictor

at  fine-tuning / test time
no yes yes no no yes yes no no yes

(different predictor, new task)

armadillo



...

v1 v2 v3 v4 v5 v6 v7 v8 v9 vn

the crazy dinosaur and the cute like to cat

h1 h2 h3 h4 h5 h6 h7 h8 h9 hn

Encoder

Predictor

at  fine-tuning / test time (different predictor, new task)
may predict based on sub-sequences

armadillo



Using pre-trained encoders



Using pre-trained encoders

http://jalammar.github.io/illustrated-bert/

can be 
any encoder

http://jalammar.github.io/illustrated-bert/


LM Pre-training is  
very effective.

ULMfit

ELMo

BERT

Further details: papers and blogs.

http://jalammar.github.io/
illustrated-bert/

http://jalammar.github.io/illustrated-bert/
http://jalammar.github.io/illustrated-bert/


Some more details:  
masked LM, large vocabularies.
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...

v1 v2 v3 v4 v5 v6 v7 v8 v9 vn

the [MASK] dinosaur and the [MASK]armadillo like to cat

h1 h2 h3 h4 h5 h6 h7 h8 h9 hn

Encoder

Predictor

the crazy dinosaur and the cute armadillo like to cat

at (pre)train time objectives

is there a problem here? consider test time.
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masks      random replacements



...

v1 v2 v3 v4 v5 v6 v7 v8 v9 vn

the [MASK] dinosaur and the [MASK]armadillo like to cat

h1 h2 h3 h4 h5 h6 h7 h8 h9 hn

Encoder

Predictor

the crazy dinosaur and the cute armadillo like to cat

at (pre)train time objectives

sit chair

masks      random replacements



dealing with large vocabulary and unknown words

the crazy dinosaur and the cute armadillo like to cat

...

v1 v2 v3 v4 v5 v6 v7 v8 v9 vn

h1 h2 h3 h4 h5 h6 h7 h8 h9 hn

Encoder

Predictor

the crazy dinosaur and the cute armadillo like to cat



dealing with large vocabulary and unknown words

word pieces

...

v1 v2 v3 v4 v5 v6 v7 v8 v9 vn

h1 h2 h3 h4 h5 h6 h7 h8 h9 hn

Encoder

Predictor

cat

the crazy dino        #sa        #ur and the cute      arm   #adi  #llo cat

the crazy dino        #sa        #ur and the cute      arm   #adi  #llo

dinosaur armadillo



the crazy dinosaur and the cute

the crazy dino   #sa   #ur and the cute

dealing with large vocabulary and unknown words
word pieces

Reduce the vocabulary by (deterministically) cutting some 
symbols into smaller pieces. 

In the extreme case --> just use characters as inputs. 
(In the more extreme case --> just use bytes)  

We seek a middle ground: capture frequent larger units. 
Allow a "budget" of k vocabulary items, choose basic units to 
fill this space.  (typical k: 30,000. why? GPU constraints.)

"tokenizer free"



the crazy dinosaur and the cute

the crazy dino   #sa   #ur and the cute

dealing with large vocabulary and unknown words
word pieces

- "Word pieces" (at Google) 
- BPE (rest of the world)

Allow a "budget" of k vocabulary items, choose basic units to 
fill this space.
Algorithms:



dealing with large vocabulary and unknown words
word pieces

- "Word pieces" (at Google) 
- BPE (rest of the world)

Algorithms:



BERT Recap
• Core idea of BERT: "masked language model"

• Another view on this task / idea:  
"sequence denoising" 
"denoising autoencoder".  

• Also in BERT: "next sentence prediction". 

("are these two sentences compatible or not?")

(What does it remind you of?)



BERT Variants



BERT Variants



BERT Variants
BERT-base      BERT-large    ....



BERT Variants
BERT-base      BERT-large    ....

BERT-WWM

(whole-word-masking)



BERT Variants
RoBERTA
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BERT Variants
RoBERTA

• Train for longer. 

• Train on more data. 

• "Do the right thing" with the masking. 
(b/c TF vs PyTorch? technology tools matter!)
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• Train for longer. 

• Train on more data. 

• "Do the right thing" with the masking. 
(b/c TF vs PyTorch? technology tools matter!)

RoBERTA performs much better 
 than BERT on many cases



BERT Variants

RoBERTA performs much better 
 than BERT on many cases



BERT Variants
SpanBERT

• No NSP (like RoBERTa) 

• Mask whole spans. Predict each word from 
boundary + relative position.



BERT Variants
SpanBERT

• No NSP (like RoBERTa) 

• Mask whole spans. Predict each word from 
boundary + relative position.



BERT Variants
ALBERT

• Main idea: larger models with same memory / same 
parameters count 

• Replace NSP with SOP (sentence order prediction)



BERT Variants
ALBERT
Param-count reduction:

Factorizing the embedding matrices:

Instead of one V x H matrix:
one V x E matrix, one E x H matrix

W = U1U2
<latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit><latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit><latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit><latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit>

Do this for both embedding matrices

(what is the maximal rank of the ALBERT embedding matrix 
 vs the regular one?)

(1)



BERT Variants
ALBERT
Param-count reduction:

Factorizing the embedding matrices:

Instead of one V x H matrix:
one V x E matrix, one E x H matrix

W = U1U2
<latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit><latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit><latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit><latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit>

Do this for both embedding matrices

(what is the maximal rank of the ALBERT embedding matrix 
 vs the regular one?)

(1)



BERT Variants
ALBERT
Param-count reduction:

Parameter sharing across layers

(what it sounds like)

(2)



BERT Variants
ALBERT
NSP -> SOP

The NSP task is too simple for the model.

NSP can be "solved" by learning "topical match" between 
the sentences, not necessarily order or deep semantics.

Sentence order prediction: show two sentences, either 
in the right order or in reverse order. Model needs to 
which is which.

SOP is much stronger than NSP



BERT Variants
ALBERT
NSP -> SOP

Param-count reduction:

Parameter sharing across layers(2)
Factorizing the embedding matrices: W = U1U2

<latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit><latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit><latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit><latexit sha1_base64="bfkwdK7XIDTL8vEAEQLmcUVqW28=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9CIUvXisYD8gDWWz3bRLN5uwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubZd2yrt7+weHlaPjtkkyzXiLJTLR3ZAaLoXiLRQoeTfVnMah5J1wfDfzO09cG5GoR5ykPIjpUIlIMIpW8jvkhrT6nq16v1J1a+4cZJV4BalCgWa/8tUbJCyLuUImqTG+56YY5FSjYJJPy73M8JSyMR1y31JFY26CfH7ylJxbZUCiRNtSSObq74mcxsZM4tB2xhRHZtmbif95fobRdZALlWbIFVssijJJMCGz/8lAaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWa59a8h8tq47aIowSncAYX4MEVNOAemtACBgk8wyu8Oei8OO/Ox6J1zSlmTuAPnM8f2LaPpw==</latexit>

(1)



BERT Variants
ELECTRA

Generative --> Discriminative



BERT Variants

ELECTRA

RoBERTA

SpanBERT

ALBERT

DeBERTa <-- current "best"

XLM, XLNet, ...
Many others

Canine <-- char-level model



BERT Variants

ELECTRA

RoBERTA

SpanBERT

ALBERT

DeBERTa

domains -->

XLM, XLNet, ...
Many others

Canine

BERTweet
SciBERT

CamemBERT
AlephBERT

mBERT

languages -->

multilingual -->



BERT Variants

• All encode n input tokens into n output vectors. 

• All share the same main "sequence denoising" 
objective.

(what are the differences? why do they matter? 
can you think of additional variants?)



Beyond GPT and BERT

T5 BART

Generative models / Seq-seq



Beyond GPT and BERT
Generative models / Seq-seq

BERT/MLM GPT/LM

previously seen models:

Images from BART paper



Beyond GPT and BERT

T5 &  BART

Generative models / Seq-seq

Images from BART paper



T5:  
Text to Text Transfer Transformer

• Retain the "denoising" / "cloze completion" 
objective.

• Perform seq2seq (encode->decode) instead of MLM



T5:  
Text to Text Transfer Transformer

• Retain the "denoising" / "cloze completion" 
objective.

• Perform seq2seq (encode->decode) instead of MLM



T5:  
Text to Text Transfer Transformer

• Very large model. 

• Train many supervised text-to-text models jointly.

• Train on very large training data (how?)
Images from T5 paper



T5:  
Text to Text Transfer Transformer

• de-masking / denoising as Text-to-text:



T5:  
Text to Text Transfer Transformer

• de-masking / denoising as Text-to-text:

• Extensive set of experiments:

Images from T5 paper



T5:  
Text to Text Transfer Transformer

• de-masking / denoising as Text-to-text:

Images from T5 paper



T5:  
Text to Text Transfer Transformer

• de-masking / denoising as Text-to-text:

Alternatives:



• ByT5  --> same thing but on bytes and not subwords 

• mT5   --> same things but multilingual

T5:  
Text to Text Transfer Transformer



BART
• various de-noising objectives

Images from BART paper



Using BART / T5

Images from BART paper



Using BART / T5

• And of course, you can also sample from them!



Recap pre-trained LMs

• Train an LM, n-to-n encoder, or n-to-m encoder-
decoder with a denoising LM objective over large 
corpus for a long time. 

• Drop the prediction layer. 

• Get effective general purpose encoder, that can be 
easily "fine-tuned" to other tasks. 

• (why does it work?)



ULmfit, GPT, GPT2,3,... Elmo/BERT T5/BART

Language Model Bidi-LM Encode-Decode

n to 1

0 to n
or

(depending 
on your
p.o.v)

n to n n to m



an abstract network structure: encoder + predictor
Using a Pre-trained Network

y = y1  y2  y3              ...     yn

x = x1  x2  x3              ...     xn



Using a Pre-trained Network

x
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a more concise drawing



the different options
Using a Pre-trained Network
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the different options
Using a Pre-trained Network
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x1  x2  x3    ...    xn

y

another option ("prompt tuning")
Using a Pre-trained Network

add vectors
to the input
and train them.



BERT-ology

• What is captured by a pre-trained masked LM? 

• What things are learned at different layer? 

• What can it learn? what can't it learn? 

• many questions, active research field.



BERT-ology



Cost / "green AI"
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Cost / "green AI"

how do we train smaller / more efficient models?

how do we train models that can learn from fewer data?



Distillation

• Train a smaller network on the output of a larger network. 

• The smaller network mimics the entire output vector, not just the 
argmax prediction. 

• Smaller network can find good solutions, getting close to the 
larger one.

"DistilBERT"



Compression
• Replacing matrices with smaller matrices 

• Replacing 32bit floating point with smaller numbers 

• 8bit 

• 3bit 

• 1bit



Pruning
• Can we identify parameters that can be removed? 

• Can we identify blocks that can we removed?  

• Can identify sub-networks that can be removed?



Lottery Ticket Hypothesis

• Only some of the parameters are important. 

• Popular and easy to read paper. Beyond our 
scope. Read it.



Efficient Fine-tuning
• Can we avoid fine-tuning entire network for each task? 

• Prompt fine-tuning 

• Adapters 

• BitFit   <--- tune only the bias parameters
Wx+ b

<latexit sha1_base64="qcK5e+F+1nBFD1ynYu8893/58QM=">AAACAHicbVDLSgNBEJyNrxhfUQ8evAwGQRDCrgh6DHrxGME8IFnC7GwnGTL7YKZXEpa9+CtePCji1c/w5t84SfagiQUNRVX39HR5sRQabfvbKqysrq1vFDdLW9s7u3vl/YOmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeaPbqd96BKVFFD7gJAY3YINQ9AVnaKRe+ag1pue0izDG2WOpAj9LvaxXrthVewa6TJycVEiOeq/81fUjngQQIpdM645jx+imTKHgErJSN9EQMz5iA+gYGrIAtJvOdmb01Cg+7UfKVIh0pv6eSFmg9STwTGfAcKgXvan4n9dJsH/tpiKME4SQzxf1E0kxotM0qC8UcJQTQxhXwvyV8iFTjKPJrGRCcBZPXibNi6pjV537y0rtJo+jSI7JCTkjDrkiNXJH6qRBOMnIM3klb9aT9WK9Wx/z1oKVzxySP7A+fwDgfpaY</latexit><latexit sha1_base64="qcK5e+F+1nBFD1ynYu8893/58QM=">AAACAHicbVDLSgNBEJyNrxhfUQ8evAwGQRDCrgh6DHrxGME8IFnC7GwnGTL7YKZXEpa9+CtePCji1c/w5t84SfagiQUNRVX39HR5sRQabfvbKqysrq1vFDdLW9s7u3vl/YOmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeaPbqd96BKVFFD7gJAY3YINQ9AVnaKRe+ag1pue0izDG2WOpAj9LvaxXrthVewa6TJycVEiOeq/81fUjngQQIpdM645jx+imTKHgErJSN9EQMz5iA+gYGrIAtJvOdmb01Cg+7UfKVIh0pv6eSFmg9STwTGfAcKgXvan4n9dJsH/tpiKME4SQzxf1E0kxotM0qC8UcJQTQxhXwvyV8iFTjKPJrGRCcBZPXibNi6pjV537y0rtJo+jSI7JCTkjDrkiNXJH6qRBOMnIM3klb9aT9WK9Wx/z1oKVzxySP7A+fwDgfpaY</latexit><latexit sha1_base64="qcK5e+F+1nBFD1ynYu8893/58QM=">AAACAHicbVDLSgNBEJyNrxhfUQ8evAwGQRDCrgh6DHrxGME8IFnC7GwnGTL7YKZXEpa9+CtePCji1c/w5t84SfagiQUNRVX39HR5sRQabfvbKqysrq1vFDdLW9s7u3vl/YOmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeaPbqd96BKVFFD7gJAY3YINQ9AVnaKRe+ag1pue0izDG2WOpAj9LvaxXrthVewa6TJycVEiOeq/81fUjngQQIpdM645jx+imTKHgErJSN9EQMz5iA+gYGrIAtJvOdmb01Cg+7UfKVIh0pv6eSFmg9STwTGfAcKgXvan4n9dJsH/tpiKME4SQzxf1E0kxotM0qC8UcJQTQxhXwvyV8iFTjKPJrGRCcBZPXibNi6pjV537y0rtJo+jSI7JCTkjDrkiNXJH6qRBOMnIM3klb9aT9WK9Wx/z1oKVzxySP7A+fwDgfpaY</latexit><latexit sha1_base64="qcK5e+F+1nBFD1ynYu8893/58QM=">AAACAHicbVDLSgNBEJyNrxhfUQ8evAwGQRDCrgh6DHrxGME8IFnC7GwnGTL7YKZXEpa9+CtePCji1c/w5t84SfagiQUNRVX39HR5sRQabfvbKqysrq1vFDdLW9s7u3vl/YOmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeaPbqd96BKVFFD7gJAY3YINQ9AVnaKRe+ag1pue0izDG2WOpAj9LvaxXrthVewa6TJycVEiOeq/81fUjngQQIpdM645jx+imTKHgErJSN9EQMz5iA+gYGrIAtJvOdmb01Cg+7UfKVIh0pv6eSFmg9STwTGfAcKgXvan4n9dJsH/tpiKME4SQzxf1E0kxotM0qC8UcJQTQxhXwvyV8iFTjKPJrGRCcBZPXibNi6pjV537y0rtJo+jSI7JCTkjDrkiNXJH6qRBOMnIM3klb9aT9WK9Wx/z1oKVzxySP7A+fwDgfpaY</latexit>



Re-use?
• Can we somehow re-use computation? 

• How? 

• Many potential places for re-use, but the details are 
still an open problem.



Multilingual models

• Train same models on multiple languages 

• Impressive cross-lingual transfer results 

• but how / why?



Software

pre-trained encoders, easy to use library.



Vector space alignment



Motivation - Mikolov et al. 2013

• “Exploiting Similarities among 
Languages for Machine 
Translation” - Mikolov, Le & 
Sutskever, 2013


• Observed a similar structure in 
unsupervised embedding 
spaces of different languages, 
after rotation


• Learned a rotation matrix to 
translate words from one 
embedding space to another with 
some success


• Weakly supervised - requires a 
small dictionary (5000 entries)

(also, Haghighi and Klein, 2008)
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• Artetxe, Labake & Agirre, ACL 2017:


• Use numbers as the initial pivot items.


• Do it an an iterative procedure.



argmin
M

X

xi,yi2pairs

||Mxi � yi||22

= argmin
M

||ME1 � E2||22

• Artetxe, Labake & Agirre, ACL 2017:


• Use numbers as the initial pivot items.


• Do it an an iterative procedure.

(also, can be solved exactly with SVD)



Beyond language-to-language

• Words from 1900 to words in 1990


• Words from young speakers to old speakers


• Words from left-wing to right-wing writers


• ....


