
Neural Attention

Yoav Goldberg

Before we start,

some things to consider

• What makes a model slow?

• Which operations take more time?

• Which operations will be faster on GPU / CPU?

• Should I use CPU or GPU for this problem?

• Can I find an efficient parallel implementation for this
architecture?

• Data-parallel vs. Model-parallel

Residual Connections
before we start:

Neural Networks for Vision

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����

/HFWXUH���
&RQYROXWLRQDO�1HXUDO�1HWZRUNV

�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\����������

,PDJH1HW�/DUJH�6FDOH�9LVXDO�5HFRJQLWLRQ�&KDOOHQJH��,/695&��ZLQQHUV

)LUVW�&11�EDVHG�ZLQQHU

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\����������

,PDJH1HW�/DUJH�6FDOH�9LVXDO�5HFRJQLWLRQ�&KDOOHQJH��,/695&��ZLQQHUV

'HHSHU�1HWZRUNV

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������

&DVH�6WXG\��9**1HW

��

�[��FRQY�����

3RRO

�[��FRQY����

�[��FRQY����

,QSXW

�[��FRQY�����

3RRO

�[��FRQY�����

�[��FRQY�����

3RRO

�[��FRQY�����

�[��FRQY�����

3RRO

�[��FRQY�����

�[��FRQY�����

3RRO

)&�����

)&�����

6RIWPD[

)&�����

�[��FRQY�����

�[��FRQY�����

�[��FRQY�����

3RRO

�[��FRQY�����

��[���FRQY����

,QSXW

3RRO

�[��FRQY�����

�[��FRQY�����

3RRO

)&�����

)&�����

6RIWPD[

)&�����

3RRO

,QSXW

3RRO

3RRO

3RRO

3RRO

6RIWPD[

�[��FRQY�����

�[��FRQY�����

�[��FRQY�����

�[��FRQY�����

�[��FRQY�����

�[��FRQY�����

�[��FRQY����

�[��FRQY����

�[��FRQY�����

�[��FRQY�����

�[��FRQY�����

�[��FRQY�����

�[��FRQY�����

�[��FRQY�����

)&�����

)&�����

)&�����>6LPRQ\DQ�DQG�=LVVHUPDQ������@

6PDOO�ILOWHUV��'HHSHU�QHWZRUNV
�
��OD\HUV��$OH[1HW��
�!���������OD\HUV��9**��1HW�

2QO\��[��&219�VWULGH����SDG��
DQG���[��0$;�322/�VWULGH��

������WRS���HUURU�LQ�,/695&¶���
�=)1HW�
�!������WRS���HUURU�LQ�,/695&¶�� $OH[1HW 9**�� 9**��

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\����������

&DVH�6WXG\��*RRJ/H1HW
>6]HJHG\�HW�DO�������@

,QFHSWLRQ�PRGXOH

³,QFHSWLRQ�PRGXOH´��GHVLJQ�D�
JRRG�ORFDO�QHWZRUN�WRSRORJ\�
�QHWZRUN�ZLWKLQ�D�QHWZRUN��DQG�
WKHQ�VWDFN�WKHVH�PRGXOHV�RQ�
WRS�RI�HDFK�RWKHU

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\����������

&DVH�6WXG\��5HV1HW
>+H�HW�DO�������@

9HU\�GHHS�QHWZRUNV�XVLQJ�UHVLGXDO�
FRQQHFWLRQV
�
� ����OD\HU�PRGHO�IRU�,PDJH1HW
� ,/695&¶���FODVVLILFDWLRQ�ZLQQHU�

�������WRS���HUURU�
� 6ZHSW�DOO�FODVVLILFDWLRQ�DQG�

GHWHFWLRQ�FRPSHWLWLRQV�LQ�
,/695&¶���DQG�&2&2¶���

,QSXW

6RIWPD[

�[��FRQY����

�[��FRQY��������

)&�����

3RRO

�[��FRQY����

�[��FRQY����
�[��FRQY����

�[��FRQY����
�[��FRQY����

�[��FRQY�����
�[��FRQY���������

�[��FRQY�����
�[��FRQY�����

�[��FRQY�����
�[��FRQY�����

��
�

�[��FRQY����
�[��FRQY����

�[��FRQY����
�[��FRQY����

�[��FRQY����
�[��FRQY����

3RRO

UHOX

5HVLGXDO�EORFN

FRQY

FRQY

;
LGHQWLW\

)�[����[

)�[�

UHOX

;

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\����������

&DVH�6WXG\��5HV1HW
>+H�HW�DO�������@

9HU\�GHHS�QHWZRUNV�XVLQJ�UHVLGXDO�
FRQQHFWLRQV
�
� ����OD\HU�PRGHO�IRU�,PDJH1HW
� ,/695&¶���FODVVLILFDWLRQ�ZLQQHU�

�������WRS���HUURU�
� 6ZHSW�DOO�FODVVLILFDWLRQ�DQG�

GHWHFWLRQ�FRPSHWLWLRQV�LQ�
,/695&¶���DQG�&2&2¶���

,QSXW

6RIWPD[

�[��FRQY����

�[��FRQY��������

)&�����

3RRO

�[��FRQY����

�[��FRQY����
�[��FRQY����

�[��FRQY����
�[��FRQY����

�[��FRQY�����
�[��FRQY���������

�[��FRQY�����
�[��FRQY�����

�[��FRQY�����
�[��FRQY�����

��
�

�[��FRQY����
�[��FRQY����

�[��FRQY����
�[��FRQY����

�[��FRQY����
�[��FRQY����

3RRO

UHOX

5HVLGXDO�EORFN

FRQY

FRQY

;
LGHQWLW\

)�[����[

)�[�

UHOX

;

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\����������

7U
DL
QL
QJ
�H
UU
RU

,WHUDWLRQV

���OD\HU

���OD\HU

7H
VW
�H
UU
RU

,WHUDWLRQV

���OD\HU

���OD\HU

&DVH�6WXG\��5HV1HW
>+H�HW�DO�������@

:KDW�KDSSHQV�ZKHQ�ZH�FRQWLQXH�VWDFNLQJ�GHHSHU�OD\HUV�RQ�D�³SODLQ´�FRQYROXWLRQDO�
QHXUDO�QHWZRUN"

4��:KDW¶V�VWUDQJH�DERXW�WKHVH�WUDLQLQJ�DQG�WHVW�FXUYHV"
>+LQW��ORRN�DW�WKH�RUGHU�RI�WKH�FXUYHV@

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\����������

7U
DL
QL
QJ
�H
UU
RU

,WHUDWLRQV

���OD\HU

���OD\HU

7H
VW
�H
UU
RU

,WHUDWLRQV

���OD\HU

���OD\HU

&DVH�6WXG\��5HV1HW
>+H�HW�DO�������@

:KDW�KDSSHQV�ZKHQ�ZH�FRQWLQXH�VWDFNLQJ�GHHSHU�OD\HUV�RQ�D�³SODLQ´�FRQYROXWLRQDO�
QHXUDO�QHWZRUN"

4��:KDW¶V�VWUDQJH�DERXW�WKHVH�WUDLQLQJ�DQG�WHVW�FXUYHV"
>+LQW��ORRN�DW�WKH�RUGHU�RI�WKH�FXUYHV@

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\����������

&DVH�6WXG\��5HV1HW
>+H�HW�DO�������@

:KDW�KDSSHQV�ZKHQ�ZH�FRQWLQXH�VWDFNLQJ�GHHSHU�OD\HUV�RQ�D�³SODLQ´�FRQYROXWLRQDO�
QHXUDO�QHWZRUN"

���OD\HU�PRGHO�SHUIRUPV�ZRUVH�RQ�ERWK�WUDLQLQJ�DQG�WHVW�HUURU
�!�7KH�GHHSHU�PRGHO�SHUIRUPV�ZRUVH��EXW�LW¶V�QRW�FDXVHG�E\�RYHUILWWLQJ�

7U
DL
QL
QJ
�H
UU
RU

,WHUDWLRQV

���OD\HU

���OD\HU

7H
VW
�H
UU
RU

,WHUDWLRQV

���OD\HU

���OD\HU

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\����������

&DVH�6WXG\��5HV1HW
>+H�HW�DO�������@

+\SRWKHVLV��WKH�SUREOHP�LV�DQ�RSWLPL]DWLRQ�SUREOHP��GHHSHU�PRGHOV�DUH�KDUGHU�WR�
RSWLPL]H

7KH�GHHSHU�PRGHO�VKRXOG�EH�DEOH�WR�SHUIRUP�DW�
OHDVW�DV�ZHOO�DV�WKH�VKDOORZHU�PRGHO�

$�VROXWLRQ�E\�FRQVWUXFWLRQ�LV�FRS\LQJ�WKH�OHDUQHG�
OD\HUV�IURP�WKH�VKDOORZHU�PRGHO�DQG�VHWWLQJ�
DGGLWLRQDO�OD\HUV�WR�LGHQWLW\�PDSSLQJ�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\����������

&DVH�6WXG\��5HV1HW
>+H�HW�DO�������@

6ROXWLRQ��8VH�QHWZRUN�OD\HUV�WR�ILW�D�UHVLGXDO�PDSSLQJ�LQVWHDG�RI�GLUHFWO\�WU\LQJ�WR�ILW�D�
GHVLUHG�XQGHUO\LQJ�PDSSLQJ

FRQY

FRQY

UHOX

³3ODLQ´�OD\HUV
;

+�[�

UHOX

5HVLGXDO�EORFN

FRQY

FRQY

;
LGHQWLW\

)�[����[

)�[�

UHOX

;

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������

UHOX

��

&DVH�6WXG\��5HV1HW
>+H�HW�DO�������@

6ROXWLRQ��8VH�QHWZRUN�OD\HUV�WR�ILW�D�UHVLGXDO�PDSSLQJ�LQVWHDG�RI�GLUHFWO\�WU\LQJ�WR�ILW�D�
GHVLUHG�XQGHUO\LQJ�PDSSLQJ

5HVLGXDO�EORFN

FRQY

FRQY

;
LGHQWLW\

)�[����[

)�[�

UHOX

FRQY

FRQY

UHOX

³3ODLQ´�OD\HUV
;;

+�[�

8VH�OD\HUV�WR�
ILW�UHVLGXDO�
)�[�� �+�[����[�
LQVWHDG�RI�
+�[��GLUHFWO\

+�[�� �)�[����[

��

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� 0D\��������

UHOX

��

&DVH�6WXG\��5HV1HW
>+H�HW�DO�������@

6ROXWLRQ��8VH�QHWZRUN�OD\HUV�WR�ILW�D�UHVLGXDO�PDSSLQJ�LQVWHDG�RI�GLUHFWO\�WU\LQJ�WR�ILW�D�
GHVLUHG�XQGHUO\LQJ�PDSSLQJ

5HVLGXDO�EORFN

FRQY

FRQY

;
LGHQWLW\

)�[����[

)�[�

UHOX

FRQY

FRQY

UHOX

³3ODLQ´�OD\HUV
;;

+�[�

8VH�OD\HUV�WR�
ILW�UHVLGXDO�
)�[�� �+�[����[�
LQVWHDG�RI�
+�[��GLUHFWO\

+�[�� �)�[����[

��

"copy x and add some change to it"

back to sequences

Previously
• Mapping from a sequence to a single decision.

• with RNN acceptors.

• Mapping from two sequences to a single decision.

• with Siamese network.

• Mapping from a sequence to a sequence of same length.

• with RNN transducer, or with biRNN.

• Mapping from length m to length n with a seq2seq
(encoder decoder) architecture.

• encoder RNN, decoder RNN.

RNN Language Model 
 for Conditioned generation

17.2. CONDITIONED GENERATION (ENCODER - DECODER) 181

p(tj+1 = k | t̂1:j , c) = f(RNN(v1:j))

vi = [̂ti; c]

t̂j ⇠ p(tj | t̂1:j�1, c)

(17.5)

or, using the recursive definition:

p(tj+1 = k | t̂1:j , c) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c])

t̂j ⇠ p(ti | t̂1:j�1, c)

(17.6)

At each stage of the generation process the context vector c is concatenated to the
input t̂j, and the concatenation is fed into the RNN, resulting in the next prediction. Figure
17.2 illustrates the architecture.

17.2.1 SEQUENCE TO SEQUENCE MODELS

The context c can have many forms. A particularly popular one takes c to be itself a
sequence, most commonly a piece of text. This gives rise to the sequence to sequence condi-
tioned generation framework, also called the encoder-decoder framework [Cho et al., 2014a,
Sutskever et al., 2014].

In sequence to sequence conditioned generation, we have a source sequence x1:n (for
example reflecting a sentence in French) and we are interested in generating a target output
sequence t1:m (for example the translation of the sentence into English). This works by
encoding the source sentence x1:n into a vector using an encoder function c = Enc(x1:n),
commonly an RNN: c = RNNenc(x1:n). A conditioned generator RNN (decoder) is then
used to generate the desired output t1:m according to equation 17.5. The architecture is
illustrated in Figure 17.3.

This setup is useful for mapping sequences of length n to sequences of length m. The
encoder summarizes the source sentence as a vector c, and the decoder RNN is then used
to predict (using a language modeling objective) the target sequence words conditioned on
the previously predicted words as well as the encoded sentence c. The encoder and decoder
RNNs are trained jointly. The supervision happens only for the decoder RNN, but the
gradients are propagated all the way back to the encoder RNN (see Figure 17.4).

17.2.2 APPLICATIONS

The sequence-to-sequence approach is very general, and can potentially fit any case where
a mapping from an input sequence to an output sequence is needed. We list some example
use cases from the literature.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

RNN Language Model 
 for Conditioned generation

17.2. CONDITIONED GENERATION (ENCODER - DECODER) 181

p(tj+1 = k | t̂1:j , c) = f(RNN(v1:j))

vi = [̂ti; c]

t̂j ⇠ p(tj | t̂1:j�1, c)

(17.5)

or, using the recursive definition:

p(tj+1 = k | t̂1:j , c) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c])

t̂j ⇠ p(ti | t̂1:j�1, c)

(17.6)

At each stage of the generation process the context vector c is concatenated to the
input t̂j, and the concatenation is fed into the RNN, resulting in the next prediction. Figure
17.2 illustrates the architecture.

17.2.1 SEQUENCE TO SEQUENCE MODELS

The context c can have many forms. A particularly popular one takes c to be itself a
sequence, most commonly a piece of text. This gives rise to the sequence to sequence condi-
tioned generation framework, also called the encoder-decoder framework [Cho et al., 2014a,
Sutskever et al., 2014].

In sequence to sequence conditioned generation, we have a source sequence x1:n (for
example reflecting a sentence in French) and we are interested in generating a target output
sequence t1:m (for example the translation of the sentence into English). This works by
encoding the source sentence x1:n into a vector using an encoder function c = Enc(x1:n),
commonly an RNN: c = RNNenc(x1:n). A conditioned generator RNN (decoder) is then
used to generate the desired output t1:m according to equation 17.5. The architecture is
illustrated in Figure 17.3.

This setup is useful for mapping sequences of length n to sequences of length m. The
encoder summarizes the source sentence as a vector c, and the decoder RNN is then used
to predict (using a language modeling objective) the target sequence words conditioned on
the previously predicted words as well as the encoded sentence c. The encoder and decoder
RNNs are trained jointly. The supervision happens only for the decoder RNN, but the
gradients are propagated all the way back to the encoder RNN (see Figure 17.4).

17.2.2 APPLICATIONS

The sequence-to-sequence approach is very general, and can potentially fit any case where
a mapping from an input sequence to an output sequence is needed. We list some example
use cases from the literature.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

RNN Language Model 
 for Conditioned generation

17.2. CONDITIONED GENERATION (ENCODER - DECODER) 181

p(tj+1 = k | t̂1:j , c) = f(RNN(v1:j))

vi = [̂ti; c]

t̂j ⇠ p(tj | t̂1:j�1, c)

(17.5)

or, using the recursive definition:

p(tj+1 = k | t̂1:j , c) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c])

t̂j ⇠ p(ti | t̂1:j�1, c)

(17.6)

At each stage of the generation process the context vector c is concatenated to the
input t̂j, and the concatenation is fed into the RNN, resulting in the next prediction. Figure
17.2 illustrates the architecture.

17.2.1 SEQUENCE TO SEQUENCE MODELS

The context c can have many forms. A particularly popular one takes c to be itself a
sequence, most commonly a piece of text. This gives rise to the sequence to sequence condi-
tioned generation framework, also called the encoder-decoder framework [Cho et al., 2014a,
Sutskever et al., 2014].

In sequence to sequence conditioned generation, we have a source sequence x1:n (for
example reflecting a sentence in French) and we are interested in generating a target output
sequence t1:m (for example the translation of the sentence into English). This works by
encoding the source sentence x1:n into a vector using an encoder function c = Enc(x1:n),
commonly an RNN: c = RNNenc(x1:n). A conditioned generator RNN (decoder) is then
used to generate the desired output t1:m according to equation 17.5. The architecture is
illustrated in Figure 17.3.

This setup is useful for mapping sequences of length n to sequences of length m. The
encoder summarizes the source sentence as a vector c, and the decoder RNN is then used
to predict (using a language modeling objective) the target sequence words conditioned on
the previously predicted words as well as the encoded sentence c. The encoder and decoder
RNNs are trained jointly. The supervision happens only for the decoder RNN, but the
gradients are propagated all the way back to the encoder RNN (see Figure 17.4).

17.2.2 APPLICATIONS

The sequence-to-sequence approach is very general, and can potentially fit any case where
a mapping from an input sequence to an output sequence is needed. We list some example
use cases from the literature.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

Sequence to Sequence

conditioned generation

182 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c

< s >

s0

predict

y1

the

RD,OD

concat

E[the]

c

the

s1

predict

y2

black

RD,OD

concat

E[black]

c

black

s2

predict

y3

fox

RD,OD

concat

E[fox]

c

fox

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

RE,OE

E[<s>]

< s >

RE,OE

E[a]

a

RE,OE

E[conditioning]

conditioning

RE,OE

E[sequence]

sequence

RE,OE

E[</s>]

< /s >

Figure 17.3: Sequence-to-Sequence RNN generator.

Machine Translation The sequence-to-sequence approach was shown to be surprisingly
e↵ective for Machine Translation [Sutskever et al., 2014] using deep LSTM RNNs. In order
for the technique to work, Sutskever et al found it e↵ective to input the source sentence in
reverse, such that xn corresponds to the first word of the sentence. In this way, it is easier
for the second RNN to establish the relation between the first word of the source sentence
to the first word of the target sentence.

Email Auto-response Here, the task is to map an email, that can be potentially long,
into a short answer such as Yes, I’ll do it, Great, see you on Wednesday or It won’t work
out. Kannan et al. [2016] describe an implementation of the auto-response feature for the
Google Inbox product. The core of the solution is a straight-forward sequence to sequence
conditioned generation model based on an LSTM encoder that reads in the email, and an
LSTM decoder that generates an appropriate response. This component is trained on many

182 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c

< s >

s0

predict

y1

the

RD,OD

concat

E[the]

c

the

s1

predict

y2

black

RD,OD

concat

E[black]

c

black

s2

predict

y3

fox

RD,OD

concat

E[fox]

c

fox

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

RE,OE

E[<s>]

< s >

RE,OE

E[a]

a

RE,OE

E[conditioning]

conditioning

RE,OE

E[sequence]

sequence

RE,OE

E[</s>]

< /s >

Figure 17.3: Sequence-to-Sequence RNN generator.

Machine Translation The sequence-to-sequence approach was shown to be surprisingly
e↵ective for Machine Translation [Sutskever et al., 2014] using deep LSTM RNNs. In order
for the technique to work, Sutskever et al found it e↵ective to input the source sentence in
reverse, such that xn corresponds to the first word of the sentence. In this way, it is easier
for the second RNN to establish the relation between the first word of the source sentence
to the first word of the target sentence.

Email Auto-response Here, the task is to map an email, that can be potentially long,
into a short answer such as Yes, I’ll do it, Great, see you on Wednesday or It won’t work
out. Kannan et al. [2016] describe an implementation of the auto-response feature for the
Google Inbox product. The core of the solution is a straight-forward sequence to sequence
conditioned generation model based on an LSTM encoder that reads in the email, and an
LSTM decoder that generates an appropriate response. This component is trained on many

This is also called

 "Encoder Decoder"

architecture.

Encoder

Decoder

Sequence to Sequence

conditioned generation

Encoder-Decoder Example:
Auto-encoder

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1106–1115,

Beijing, China, July 26-31, 2015. c�2015 Association for Computational Linguistics

A Hierarchical Neural Autoencoder for Paragraphs and Documents

Jiwei Li, Minh-Thang Luong and Dan Jurafsky
Computer Science Department, Stanford University, Stanford, CA 94305, USA

jiweil, lmthang, jurafsky@stanford.edu

Abstract

Natural language generation of coherent
long texts like paragraphs or longer doc-
uments is a challenging problem for re-
current networks models. In this paper,
we explore an important step toward this
generation task: training an LSTM (Long-
short term memory) auto-encoder to pre-
serve and reconstruct multi-sentence para-
graphs. We introduce an LSTM model that
hierarchically builds an embedding for a
paragraph from embeddings for sentences
and words, then decodes this embedding
to reconstruct the original paragraph. We
evaluate the reconstructed paragraph us-
ing standard metrics like ROUGE and En-
tity Grid, showing that neural models are
able to encode texts in a way that preserve
syntactic, semantic, and discourse coher-
ence. While only a first step toward gener-
ating coherent text units from neural mod-
els, our work has the potential to signifi-
cantly impact natural language generation
and summarization1.

1 Introduction

Generating coherent text is a central task in natural
language processing. A wide variety of theories
exist for representing relationships between text
units, such as Rhetorical Structure Theory (Mann
and Thompson, 1988) or Discourse Representa-
tion Theory (Lascarides and Asher, 1991), for ex-
tracting these relations from text units (Marcu,
2000; LeThanh et al., 2004; Hernault et al., 2010;
Feng and Hirst, 2012, inter alia), and for extract-
ing other coherence properties characterizing the
role each text unit plays with others in a discourse
(Barzilay and Lapata, 2008; Barzilay and Lee,

1Code for models described in this paper are available at
www.stanford.edu/˜jiweil/.

2004; Elsner and Charniak, 2008; Li and Hovy,
2014, inter alia). However, applying these to text
generation remains difficult. To understand how
discourse units are connected, one has to under-
stand the communicative function of each unit,
and the role it plays within the context that en-
capsulates it, recursively all the way up for the
entire text. Identifying increasingly sophisticated
human-developed features may be insufficient for
capturing these patterns. But developing neural-
based alternatives has also been difficult. Al-
though neural representations for sentences can
capture aspects of coherent sentence structure (Ji
and Eisenstein, 2014; Li et al., 2014; Li and Hovy,
2014), it’s not clear how they could help in gener-
ating more broadly coherent text.

Recent LSTM models (Hochreiter and Schmid-
huber, 1997) have shown powerful results on gen-
erating meaningful and grammatical sentences in
sequence generation tasks like machine translation
(Sutskever et al., 2014; Bahdanau et al., 2014; Lu-
ong et al., 2015) or parsing (Vinyals et al., 2014).
This performance is at least partially attributable
to the ability of these systems to capture local
compositionally: the way neighboring words are
combined semantically and syntactically to form
meanings that they wish to express.

Could these models be extended to deal with
generation of larger structures like paragraphs or
even entire documents? In standard sequence-
to-sequence generation tasks, an input sequence
is mapped to a vector embedding that represents
the sequence, and then to an output string of
words. Multi-text generation tasks like summa-
rization could work in a similar way: the sys-
tem reads a collection of input sentences, and
is then asked to generate meaningful texts with
certain properties (such as—for summarization—
being succinct and conclusive). Just as the local
semantic and syntactic compositionally of words
can be captured by LSTM models, can the com-

1106

Figure 1: Standard Sequence to Sequence Model.

Figure 2: Hierarchical Sequence to Sequence Model.

Figure 3: Hierarchical Sequence to Sequence Model with Attention.

3.4 Model 3: Hierarchical LSTM with
Attention

Attention models adopt a look-back strategy by
linking the current decoding stage with input sen-
tences in an attempt to consider which part of the

input is most responsible for the current decoding
state. This attention version of hierarchical model
is inspired by similar work in image caption gen-
eration and machine translation (Xu et al., 2015;
Bahdanau et al., 2014).

Let H = {hs
1(e), hs

2(e), ..., hs
N (e)} be the

1109

• Encode: English sentence. 
Decode: Same English sentence.

encoded vector is a "generic sentence representation"

Sequence to Sequence

conditioned generation

182 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c

< s >

s0

predict

y1

the

RD,OD

concat

E[the]

c

the

s1

predict

y2

black

RD,OD

concat

E[black]

c

black

s2

predict

y3

fox

RD,OD

concat

E[fox]

c

fox

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

RE,OE

E[<s>]

< s >

RE,OE

E[a]

a

RE,OE

E[conditioning]

conditioning

RE,OE

E[sequence]

sequence

RE,OE

E[</s>]

< /s >

Figure 17.3: Sequence-to-Sequence RNN generator.

Machine Translation The sequence-to-sequence approach was shown to be surprisingly
e↵ective for Machine Translation [Sutskever et al., 2014] using deep LSTM RNNs. In order
for the technique to work, Sutskever et al found it e↵ective to input the source sentence in
reverse, such that xn corresponds to the first word of the sentence. In this way, it is easier
for the second RNN to establish the relation between the first word of the source sentence
to the first word of the target sentence.

Email Auto-response Here, the task is to map an email, that can be potentially long,
into a short answer such as Yes, I’ll do it, Great, see you on Wednesday or It won’t work
out. Kannan et al. [2016] describe an implementation of the auto-response feature for the
Google Inbox product. The core of the solution is a straight-forward sequence to sequence
conditioned generation model based on an LSTM encoder that reads in the email, and an
LSTM decoder that generates an appropriate response. This component is trained on many

What's the (obvious?)

problem with this

approach?

Attention
a.k.a "soft alignment"

182 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c

< s >

s0

predict

y1

the

RD,OD

concat

E[the]

c

the

s1

predict

y2

black

RD,OD

concat

E[black]

c

black

s2

predict

y3

fox

RD,OD

concat

E[fox]

c

fox

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

RE,OE

E[<s>]

< s >

RE,OE

E[a]

a

RE,OE

E[conditioning]

conditioning

RE,OE

E[sequence]

sequence

RE,OE

E[</s>]

< /s >

Figure 17.3: Sequence-to-Sequence RNN generator.

Machine Translation The sequence-to-sequence approach was shown to be surprisingly
e↵ective for Machine Translation [Sutskever et al., 2014] using deep LSTM RNNs. In order
for the technique to work, Sutskever et al found it e↵ective to input the source sentence in
reverse, such that xn corresponds to the first word of the sentence. In this way, it is easier
for the second RNN to establish the relation between the first word of the source sentence
to the first word of the target sentence.

Email Auto-response Here, the task is to map an email, that can be potentially long,
into a short answer such as Yes, I’ll do it, Great, see you on Wednesday or It won’t work
out. Kannan et al. [2016] describe an implementation of the auto-response feature for the
Google Inbox product. The core of the solution is a straight-forward sequence to sequence
conditioned generation model based on an LSTM encoder that reads in the email, and an
LSTM decoder that generates an appropriate response. This component is trained on many

Encoder

Decoder

Sequence to Sequence

conditioned generation

main idea:

encoding

a single vector is

too restrictive.

Attention

• Instead of the encoder producing a single vector
for the sentence, it will produce a one vector for
each word.

182 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c

< s >

s0

predict

y1

the

RD,OD

concat

E[the]

c

the

s1

predict

y2

black

RD,OD

concat

E[black]

c

black

s2

predict

y3

fox

RD,OD

concat

E[fox]

c

fox

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

RE,OE

E[<s>]

< s >

RE,OE

E[a]

a

RE,OE

E[conditioning]

conditioning

RE,OE

E[sequence]

sequence

RE,OE

E[</s>]

< /s >

Figure 17.3: Sequence-to-Sequence RNN generator.

Machine Translation The sequence-to-sequence approach was shown to be surprisingly
e↵ective for Machine Translation [Sutskever et al., 2014] using deep LSTM RNNs. In order
for the technique to work, Sutskever et al found it e↵ective to input the source sentence in
reverse, such that xn corresponds to the first word of the sentence. In this way, it is easier
for the second RNN to establish the relation between the first word of the source sentence
to the first word of the target sentence.

Email Auto-response Here, the task is to map an email, that can be potentially long,
into a short answer such as Yes, I’ll do it, Great, see you on Wednesday or It won’t work
out. Kannan et al. [2016] describe an implementation of the auto-response feature for the
Google Inbox product. The core of the solution is a straight-forward sequence to sequence
conditioned generation model based on an LSTM encoder that reads in the email, and an
LSTM decoder that generates an appropriate response. This component is trained on many

Encoder

Decoder

Sequence to Sequence

conditioned generation

182 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c

< s >

s0

predict

y1

the

RD,OD

concat

E[the]

c

the

s1

predict

y2

black

RD,OD

concat

E[black]

c

black

s2

predict

y3

fox

RD,OD

concat

E[fox]

c

fox

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

RE,OE

E[<s>]

< s >

RE,OE

E[a]

a

RE,OE

E[conditioning]

conditioning

RE,OE

E[sequence]

sequence

RE,OE

E[</s>]

< /s >

Figure 17.3: Sequence-to-Sequence RNN generator.

Machine Translation The sequence-to-sequence approach was shown to be surprisingly
e↵ective for Machine Translation [Sutskever et al., 2014] using deep LSTM RNNs. In order
for the technique to work, Sutskever et al found it e↵ective to input the source sentence in
reverse, such that xn corresponds to the first word of the sentence. In this way, it is easier
for the second RNN to establish the relation between the first word of the source sentence
to the first word of the target sentence.

Email Auto-response Here, the task is to map an email, that can be potentially long,
into a short answer such as Yes, I’ll do it, Great, see you on Wednesday or It won’t work
out. Kannan et al. [2016] describe an implementation of the auto-response feature for the
Google Inbox product. The core of the solution is a straight-forward sequence to sequence
conditioned generation model based on an LSTM encoder that reads in the email, and an
LSTM decoder that generates an appropriate response. This component is trained on many

Decoder

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

182 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c

< s >

s0

predict

y1

the

RD,OD

concat

E[the]

c

the

s1

predict

y2

black

RD,OD

concat

E[black]

c

black

s2

predict

y3

fox

RD,OD

concat

E[fox]

c

fox

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

RE,OE

E[<s>]

< s >

RE,OE

E[a]

a

RE,OE

E[conditioning]

conditioning

RE,OE

E[sequence]

sequence

RE,OE

E[</s>]

< /s >

Figure 17.3: Sequence-to-Sequence RNN generator.

Machine Translation The sequence-to-sequence approach was shown to be surprisingly
e↵ective for Machine Translation [Sutskever et al., 2014] using deep LSTM RNNs. In order
for the technique to work, Sutskever et al found it e↵ective to input the source sentence in
reverse, such that xn corresponds to the first word of the sentence. In this way, it is easier
for the second RNN to establish the relation between the first word of the source sentence
to the first word of the target sentence.

Email Auto-response Here, the task is to map an email, that can be potentially long,
into a short answer such as Yes, I’ll do it, Great, see you on Wednesday or It won’t work
out. Kannan et al. [2016] describe an implementation of the auto-response feature for the
Google Inbox product. The core of the solution is a straight-forward sequence to sequence
conditioned generation model based on an LSTM encoder that reads in the email, and an
LSTM decoder that generates an appropriate response. This component is trained on many

Decoder

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

182 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c

< s >

s0

predict

y1

the

RD,OD

concat

E[the]

c

the

s1

predict

y2

black

RD,OD

concat

E[black]

c

black

s2

predict

y3

fox

RD,OD

concat

E[fox]

c

fox

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

RE,OE

E[<s>]

< s >

RE,OE

E[a]

a

RE,OE

E[conditioning]

conditioning

RE,OE

E[sequence]

sequence

RE,OE

E[</s>]

< /s >

Figure 17.3: Sequence-to-Sequence RNN generator.

Machine Translation The sequence-to-sequence approach was shown to be surprisingly
e↵ective for Machine Translation [Sutskever et al., 2014] using deep LSTM RNNs. In order
for the technique to work, Sutskever et al found it e↵ective to input the source sentence in
reverse, such that xn corresponds to the first word of the sentence. In this way, it is easier
for the second RNN to establish the relation between the first word of the source sentence
to the first word of the target sentence.

Email Auto-response Here, the task is to map an email, that can be potentially long,
into a short answer such as Yes, I’ll do it, Great, see you on Wednesday or It won’t work
out. Kannan et al. [2016] describe an implementation of the auto-response feature for the
Google Inbox product. The core of the solution is a straight-forward sequence to sequence
conditioned generation model based on an LSTM encoder that reads in the email, and an
LSTM decoder that generates an appropriate response. This component is trained on many

Decoder

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

but how do we feed
this sequence

to the decoder?

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

we can combine the different outputs

 into a single vector

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

we can combine the different outputs

 into a single vector

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

we can combine the different outputs

 into a single vector

what???

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

we can combine the different outputs

 into a single vector

a different single vector
 at each decoder input.

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

a different single vector
 at each decoder input.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

a different single vector
 at each decoder input.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

a different single vector
 at each decoder input.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

a different single vector
 at each decoder input.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

based on the  
decoder state

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

a different single vector
 at each decoder input.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

based on the  
decoder state

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

a different single vector
 at each decoder input.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

based on the  
decoder state

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

a different single vector
 at each decoder input.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

based on the  
decoder state

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

↵j
[1] ↵j

[2]
↵j
[3]

↵j
[4]

↵j
[5]

cj

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

↵j
[1] ↵j

[2]
↵j
[3]

↵j
[4]

↵j
[5]

cj

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

↵j
[1] ↵j

[2]
↵j
[3]

↵j
[4]

↵j
[5]

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

↵j
[1] ↵j

[2]
↵j
[3]

↵j
[4]

↵j
[5]

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

Sequence to Sequence

conditioned generation

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

↵j
[1] ↵j

[2]
↵j
[3]

↵j
[4]

↵j
[5]

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)decoder state

17.4. CONDITIONED GENERATION WITH ATTENTION 189

In the context of machine translation, one can think of MLPatt as computing a soft align-
ment between the current decoder state sj (capturing the recently produced foreign words)
and each of the source sentence components ci.

The complete attend function is then:

attend(c1:n, t̂1:j) = cj

cj =
nX

i=1

↵
j
[i] · ci

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

↵̄
j
[i] = MLPatt([sj; ci])

(17.9)

and the entire sequence-to-sequence generation with attention is given by:

p(tj+1 = k | t̂1:j ,x1:n) = f(Odec(sj+1))

sj+1 = Rdec(sj, [̂tj; c
j])

cj =
nX

i=1

↵
j
[i] · ci

c1:n = biRNN?
enc

(x1:n)

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

↵̄
j
[i] = MLPatt([sj; ci])

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

f(z) = softmax(MLPout(z))

MLPatt([sj; ci]) = v tanh([sj; ci]U + b)

(17.10)

A sketch of the architecture is given in Figure 17.5.
Why use the biRNN encoder to translate the conditioning sequence x1:n into the con-

text vectors c1:n instead of letting the attention mechanism look directly at x1:n? Couldn’t
we just use cj =

Pn
i=1

↵
j
[i] · xi and ↵̄

j
[i] = MLPatt([sj;xi])? We could, but we get important

benefits from the encoding process. First, the biRNN vectors ci represent the items xi in
their sentential context, that is, they represent a window focused around the input item xi

and not the item itself. Second, by having a trainable encoding component that is trained
jointly with the decoder, the encoder and decoder evolve together and the network can learn

encoder-decoder 
 with attention

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

encoder-decoder 
 with attention

encoder-decoder 
 with attention

• Encoder encodes a sequence of vectors, c1,...,cn

• At each decoding stage, an MLP assigns a
relevance score to each Encoder vector.

• The relevance score is based on ci and the state sj

• Weighted-sum (based on relevance) is used to
produce the conditioning context for decoder step j.

encoder-decoder 
 with attention

• Decoder "pays attention" to different parts of the
encoded sequence at each stage.

• The attention mechanism is "soft" -- it is a mixture
of encoder states.

encoder-decoder 
 with attention

• The encoder acts as a read-only memory for the
decoder.

• The decoder chooses what to read at each stage.

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

encoder-decoder 
 with attention

Attention

• Attention is very effective for sequence-to-
sequence tasks.

• Current state-of-the-art systems all use attention. 
(this is basically how Machine Translation works)

Attention

• Attention also makes models somewhat more
interpretable. 
 
(we can see where the model is "looking" at each
stage of the prediction process)

Attention

Attention

Complexity

• Encoder decoder:

• Encoder-decoder with attention:

• Encoder decoder: O(n + m)

• Encoder-decoder with attention: O(n x m)

Complexity

• Encoder decoder: O(n + m)

• Encoder-decoder with attention: O(n x m)

Complexity

Where/how can you parallelize?
in train time?
in test time?

Beyond Seq2Seq
• Can think of a general design pattern in neural nets:

• Input: sequence, query

• Encode the input into a sequence of vectors

• Attend to the encoded vectors, based on
query (weighted sum, determined by query)

• Predict based on the attended vector

Attention More Abstractly

• Input sequence x1,...,xn

• Query vector q

• Attention weights a [1,...,n] 
 = softmax(score(q,x1), ..., score(q,xn))

• Result vector v = sum ai*xi  
 = sum softmax(score(q,x1), ..., score(q,xn))[i]*xi

How to Attend?
• MLP:

• dot product:

• biaffine transform: 
 
 

ug(W1v +W2q)

v: attended vec, q: query vec

How to Attend?
• MLP:

• dot product:

• biaffine transform: 
 
 

ug(W1v +W2q)

v · q

v: attended vec, q: query vec

How to Attend?
• MLP:

• dot product:

• biaffine transform: 
 
 

ug(W1v +W2q)

v · q

v: attended vec, q: query vec

Scaled dot product:
v · q

/
p
dim(v)

<latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit>

How to Attend?
• MLP:

• dot product:

• biaffine transform: 
 
 

ug(W1v +W2q)

v · q

v>Wq

v: attended vec, q: query vec

Scaled dot product:
v · q

/
p
dim(v)

<latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit>

How to Attend?
• MLP:

• dot product:

• biaffine transform: 
 
 

ug(W1v +W2q)

v · q

v>Wq

v: attended vec, q: query vec

Pros? Cons?

Scaled dot product:
v · q

/
p
dim(v)

<latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit>

attention: more graphically

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

we can combine the different outputs

 into a single vector

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

a different single vector
 at each decoder input.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

s0

c1 c2 c3 c4 c5

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

a different single vector
 at each decoder input.

180 17. CONDITIONED GENERATION

R,O

concat

E[<s>]

c

< s >

s0

predict

y1

the

R,O

concat

E[the]

c

the

s1

predict

y2

black

R,O

concat

E[black]

c

black

s2

predict

y3

fox

R,O

concat

E[fox]

c

fox

s3

predict

y4

jumped

R,O

concat

E[jumped]

c

jumped

s4

predict

y5

< /s >

Figure 17.2: Conditioned RNN generator.

This is modeled in the RNN framework as:

p(tj+1 = k | t̂1:j) = f(RNN(̂t1:j))

t̂j ⇠ p(tj | t̂1:j�1)
(17.2)

or, if using the more detailed recursive definition:

p(tj+1 = k | t̂1:j) = f(O(sj+1))

sj+1 = R(̂tj, sj)

t̂j ⇠ p(tj | t̂1:j�1)

(17.3)

where f is a parameterized function that maps the RNN state to a distribution over words,
for example f(x) = softmax(xW + b) or f(x) = softmax(MLP(x)).

In the conditioned generation framework, the next token is generated based on the
previously generated tokens, and an additional conditioning context c.

t̂j+1 ⇠ p(tj+1 = k | t̂1:j , c) (17.4)

When using the RNN framework, the context c is represented as a vector c:

s1

c1 c2 c3 c4 c5

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

↵j
[1] ↵j

[2]
↵j
[3]

↵j
[4]

↵j
[5]

cj

c1 c2 c3 c4 c5

sj

Encoder

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

17.4. CONDITIONED GENERATION WITH ATTENTION 187

More concretely, the encoder-decoder with attention architecture encodes a length n

input sequence x1:n using a biRNN, producing n vectors c1:n:

c1:n = Enc(x1:n) = biRNN?(x1:n)

The generator (decoder) can then use these vectors as a read-only memory representing
the conditioning sentence: at any stage j of the generation process, it chooses which of the
vectors c1:n it should attend to, resulting in a focused context vector cj = attend(c1:n, t̂1:j).

The focused context vector cj is then used for conditioning the generation at step j:

p(tj+1 = k | t̂1:j ,x1:n) = f(O(sj+1))

sj+1 = R(sj, [̂tj; c
j])

cj = attend(c1:n, t̂1:j)

t̂j ⇠ p(tj | t̂1:j�1,x1:n)

(17.7)

In terms of representation power, this architectures subsumes the previous encoder-decoder
architecture: by setting attend(c1:n, t̂1:j) = cn, we get equation 17.6.

How does the function attend(·, ·) look like? As you may have guessed by this point, it
is a trainable, parameterized function. This text follows the attention mechanism described
by Bahdanau et al. [2014], who were the first to introduce attention in the context of
sequence to sequence generation.3 While this particular attention mechanism is popular
and works well, many variants are possible. The work of Luong et al. [2015] explores some
of them in the context of machine translation.

The implemented attention mechanism is soft, meaning that at each stage the decoder
sees a weighted average of the vectors c1:n, where the weights are chosen by the attention
mechanism.

More formally, at stage j the soft attention produces a mixture vector cj:

cj =
nX

i=1

↵
j
[i] · ci

↵
j 2 Nn

+
is the vector of attention weights for stage j, whose elements ↵

j
[i] are all positive

and sum to one.
The values ↵

j
[i] are produced in a two stage process: first, unnormalized attention

weights ↵̄
j
[i] are produced using a feed-forward network MLPatt taking into account the

3The description of the decoder part of the model di↵ers in some small aspects from that of Bahdanau et al.
[2014], and is more similar to that of Luong et al. [2015].

↵j
[1] ↵j

[2]
↵j
[3]

↵j
[4]

↵j
[5]

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

188 17. CONDITIONED GENERATION

RD,OD

concat

E[<s>]

c0

< s >

attend

s0

predict

y1

the

RD,OD

concat

E[the]

c1

the

attend

s1

predict

y2

black

RD,OD

concat

E[black]

c2

black

attend

s2

predict

y3

fox

RD,OD

concat

E[fox]

c3

fox

attend

s3

predict

y4

jumped

RD,OD

concat

E[jumped]

c4

jumped

attend

s4

predict

y5

< /s >

BIE

E[<s>]

< s >

BIE

E[a]

a

BIE

E[conditioning]

conditioning

BIE

E[sequence]

sequence

BIE

E[</s>]

< /s >

Figure 17.5: Sequence-to-Sequence RNN generator with Attention.

decoder state at time j and each of the vectors ci:

↵̄
j = ↵̄

j
[1]

, . . . , ↵̄
j
[n]

=

= MLPatt([sj; c1]), . . . ,MLPatt([sj; cn])
(17.8)

The unnormalized weights ↵̄
j are then normalized into a probability distribution using the

softmax function:

↵
j = softmax(↵̄j

[1]
, . . . , ↵̄

j
[n]

)

cj

sj

c1 c2 c3 c4 c5

• Input sequence x1,...,xn

• Query vector q

• Attention weights a [1,...,n] 
 = softmax(score(q,x1), ..., score(q,xn))

• Result vector v = sum ai*xi  
 = sum softmax(score(q,x1), ..., score(q,xn))[i]*xi

Attention More Abstractly

How to Attend?
• MLP:

• dot product:

• biaffine transform: 
 
 

ug(W1v +W2q)

v · q

v>Wq

v: attended vec, q: query vec

Scaled dot product:
v · q

/
p
dim(v)

<latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit><latexit sha1_base64="FDRtAkaKIOj+dYmUTNoIysIn3b4=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbmoigi6LblxWsA9oSplMJ+3QycOZm2IJWbrxV9y4UMStn+DOv3HSZqGtBy4czrmXe+9xI8EVWNa3UVhaXlldK66XNja3tnfM3b2mCmNJWYOGIpRtlygmeMAawEGwdiQZ8V3BWu7oOvNbYyYVD4M7mESs65NBwD1OCWipZx6eYkfdS0gcYA+Q9LmfVhyfwND1knF6kvbMslW1psCLxM5JGeWo98wvpx/S2GcBUEGU6thWBN2ESOBUsLTkxIpFhI7IgHU0DYjPVDeZPpLiY630sRdKXQHgqfp7IiG+UhPf1Z3ZjWrey8T/vE4M3mU34UEUAwvobJEXCwwhzlLBfS4ZBTHRhFDJ9a2YDokkFHR2JR2CPf/yImmeVW2rat+el2tXeRxFdICOUAXZ6ALV0A2qowai6BE9o1f0ZjwZL8a78TFrLRj5zD76A+PzB1oHmi4=</latexit>

Alternatives

• Soft vs. Hard attention

• Why use a biRNN encoder and not just the use
word-vectors (embeddings) directly?

• What if the sequences are mostly monotonic?

Attention vs. No Attention

• When would you use an Encoder-Decoder 
 without attention?

RNNs --> Transformers

Transformer

Transformer

• Main concepts to know:

• Self-attention

• Multi-head attention

• Also think about: why do this? what is the motivation?

replace RNN with attention-based mechanism

Transformer
Self attention

each token attends to all tokens in previous layer

Transformer
Self attention

each token attends to all tokens in previous layer

attxi = softmax(dot(xi, x1), dot(xi, x2), ..., dot(xi, xn))[i]xi
<latexit sha1_base64="KGd7nq7FQidP4T84QHcb4PhtVbg=">AAACN3icbVBLSwMxEM76tr6qHr0Ei9CCLLtF0IsgevEkFawV2mXJplkbmk2WZFZalv4rL/4Nb3rxoIhX/4Hp41CtA4HvMcNkvigV3IDnvThz8wuLS8srq4W19Y3NreL2zq1RmaasTpVQ+i4ihgkuWR04CHaXakaSSLBG1L0Y+o0Hpg1X8gb6KQsSci95zCkBK4XFKwIQ5r2QD/ApNiqGhPTKbQVlKx3iXuhXDvEUrVrquu4vTVYqYd7kwcDysFjyXG9UeBb4E1BCk6qFxedWW9EsYRKoIMY0fS+FICcaOBVsUGhlhqWEdsk9a1ooScJMkI/uHuADq7RxrLR9EvBInZ7ISWJMP4lsZ0KgY/56Q/E/r5lBfBLkXKYZMEnHi+JMYFB4GCJuc80oiL4FhGpu/4pph2hCwUZdsCH4f0+eBbdV1/dc//qodHY+iWMF7aF9VEY+OkZn6BLVUB1R9Ihe0Tv6cJ6cN+fT+Rq3zjmTmV30q5zvH59CqU8=</latexit><latexit sha1_base64="KGd7nq7FQidP4T84QHcb4PhtVbg=">AAACN3icbVBLSwMxEM76tr6qHr0Ei9CCLLtF0IsgevEkFawV2mXJplkbmk2WZFZalv4rL/4Nb3rxoIhX/4Hp41CtA4HvMcNkvigV3IDnvThz8wuLS8srq4W19Y3NreL2zq1RmaasTpVQ+i4ihgkuWR04CHaXakaSSLBG1L0Y+o0Hpg1X8gb6KQsSci95zCkBK4XFKwIQ5r2QD/ApNiqGhPTKbQVlKx3iXuhXDvEUrVrquu4vTVYqYd7kwcDysFjyXG9UeBb4E1BCk6qFxedWW9EsYRKoIMY0fS+FICcaOBVsUGhlhqWEdsk9a1ooScJMkI/uHuADq7RxrLR9EvBInZ7ISWJMP4lsZ0KgY/56Q/E/r5lBfBLkXKYZMEnHi+JMYFB4GCJuc80oiL4FhGpu/4pph2hCwUZdsCH4f0+eBbdV1/dc//qodHY+iWMF7aF9VEY+OkZn6BLVUB1R9Ihe0Tv6cJ6cN+fT+Rq3zjmTmV30q5zvH59CqU8=</latexit><latexit sha1_base64="KGd7nq7FQidP4T84QHcb4PhtVbg=">AAACN3icbVBLSwMxEM76tr6qHr0Ei9CCLLtF0IsgevEkFawV2mXJplkbmk2WZFZalv4rL/4Nb3rxoIhX/4Hp41CtA4HvMcNkvigV3IDnvThz8wuLS8srq4W19Y3NreL2zq1RmaasTpVQ+i4ihgkuWR04CHaXakaSSLBG1L0Y+o0Hpg1X8gb6KQsSci95zCkBK4XFKwIQ5r2QD/ApNiqGhPTKbQVlKx3iXuhXDvEUrVrquu4vTVYqYd7kwcDysFjyXG9UeBb4E1BCk6qFxedWW9EsYRKoIMY0fS+FICcaOBVsUGhlhqWEdsk9a1ooScJMkI/uHuADq7RxrLR9EvBInZ7ISWJMP4lsZ0KgY/56Q/E/r5lBfBLkXKYZMEnHi+JMYFB4GCJuc80oiL4FhGpu/4pph2hCwUZdsCH4f0+eBbdV1/dc//qodHY+iWMF7aF9VEY+OkZn6BLVUB1R9Ihe0Tv6cJ6cN+fT+Rq3zjmTmV30q5zvH59CqU8=</latexit><latexit sha1_base64="KGd7nq7FQidP4T84QHcb4PhtVbg=">AAACN3icbVBLSwMxEM76tr6qHr0Ei9CCLLtF0IsgevEkFawV2mXJplkbmk2WZFZalv4rL/4Nb3rxoIhX/4Hp41CtA4HvMcNkvigV3IDnvThz8wuLS8srq4W19Y3NreL2zq1RmaasTpVQ+i4ihgkuWR04CHaXakaSSLBG1L0Y+o0Hpg1X8gb6KQsSci95zCkBK4XFKwIQ5r2QD/ApNiqGhPTKbQVlKx3iXuhXDvEUrVrquu4vTVYqYd7kwcDysFjyXG9UeBb4E1BCk6qFxedWW9EsYRKoIMY0fS+FICcaOBVsUGhlhqWEdsk9a1ooScJMkI/uHuADq7RxrLR9EvBInZ7ISWJMP4lsZ0KgY/56Q/E/r5lBfBLkXKYZMEnHi+JMYFB4GCJuc80oiL4FhGpu/4pph2hCwUZdsCH4f0+eBbdV1/dc//qodHY+iWMF7aF9VEY+OkZn6BLVUB1R9Ihe0Tv6cJ6cN+fT+Rq3zjmTmV30q5zvH59CqU8=</latexit>

Transformer
Self attention

each token attends to all tokens in previous layer
transform x into Q, K, V

attxi = softmax(dot(WQxi,W
Kx1), dot(W

Qxi,W
Kx2), ..., dot(W

Qxi,W
Kxn))[i]W

V xi
<latexit sha1_base64="ssNovt1mvupi4X1xobQ78zB8zKE=">AAACTHicbZBLSwMxFIUz9VXrq+rSTbAILcgwI4JuBNGN4KaC7Qh1OmTSjAYzyZDckZahP9CNC3f+CjcuFBFMaxdqvRBy+M693OTEmeAGPO/ZKc3Mzs0vlBcrS8srq2vV9Y22UbmmrEWVUPoqJoYJLlkLOAh2lWlG0liwIL47HfnBPdOGK3kJg4yFKbmRPOGUgEVR1d4QFf2ID/ERNiqBlPTrPQX1oHth6S4Ouuf9yG/s4im4Z6Hruv84stGIig4Ph0G3bWlUrXmuNy48LfyJqKFJNaPq03VP0TxlEqggxnR8L4OwIBo4FWxYuc4Nywi9IzesY6UkKTNhMQ5jiHcs6eFEaXsk4DH9OVGQ1JhBGtvOlMCt+euN4H9eJ4fkMCy4zHJgkn4vSnKBQeFRsrjHNaMgBlYQqrl9K6a3RBMKNv+KDcH/++Vp0d5zfc/1L/ZrxyeTOMpoC22jOvLRATpGZ6iJWoiiB/SC3tC78+i8Oh/O53dryZnMbKJfVZr/AupUsD8=</latexit><latexit sha1_base64="ssNovt1mvupi4X1xobQ78zB8zKE=">AAACTHicbZBLSwMxFIUz9VXrq+rSTbAILcgwI4JuBNGN4KaC7Qh1OmTSjAYzyZDckZahP9CNC3f+CjcuFBFMaxdqvRBy+M693OTEmeAGPO/ZKc3Mzs0vlBcrS8srq2vV9Y22UbmmrEWVUPoqJoYJLlkLOAh2lWlG0liwIL47HfnBPdOGK3kJg4yFKbmRPOGUgEVR1d4QFf2ID/ERNiqBlPTrPQX1oHth6S4Ouuf9yG/s4im4Z6Hruv84stGIig4Ph0G3bWlUrXmuNy48LfyJqKFJNaPq03VP0TxlEqggxnR8L4OwIBo4FWxYuc4Nywi9IzesY6UkKTNhMQ5jiHcs6eFEaXsk4DH9OVGQ1JhBGtvOlMCt+euN4H9eJ4fkMCy4zHJgkn4vSnKBQeFRsrjHNaMgBlYQqrl9K6a3RBMKNv+KDcH/++Vp0d5zfc/1L/ZrxyeTOMpoC22jOvLRATpGZ6iJWoiiB/SC3tC78+i8Oh/O53dryZnMbKJfVZr/AupUsD8=</latexit><latexit sha1_base64="ssNovt1mvupi4X1xobQ78zB8zKE=">AAACTHicbZBLSwMxFIUz9VXrq+rSTbAILcgwI4JuBNGN4KaC7Qh1OmTSjAYzyZDckZahP9CNC3f+CjcuFBFMaxdqvRBy+M693OTEmeAGPO/ZKc3Mzs0vlBcrS8srq2vV9Y22UbmmrEWVUPoqJoYJLlkLOAh2lWlG0liwIL47HfnBPdOGK3kJg4yFKbmRPOGUgEVR1d4QFf2ID/ERNiqBlPTrPQX1oHth6S4Ouuf9yG/s4im4Z6Hruv84stGIig4Ph0G3bWlUrXmuNy48LfyJqKFJNaPq03VP0TxlEqggxnR8L4OwIBo4FWxYuc4Nywi9IzesY6UkKTNhMQ5jiHcs6eFEaXsk4DH9OVGQ1JhBGtvOlMCt+euN4H9eJ4fkMCy4zHJgkn4vSnKBQeFRsrjHNaMgBlYQqrl9K6a3RBMKNv+KDcH/++Vp0d5zfc/1L/ZrxyeTOMpoC22jOvLRATpGZ6iJWoiiB/SC3tC78+i8Oh/O53dryZnMbKJfVZr/AupUsD8=</latexit><latexit sha1_base64="ssNovt1mvupi4X1xobQ78zB8zKE=">AAACTHicbZBLSwMxFIUz9VXrq+rSTbAILcgwI4JuBNGN4KaC7Qh1OmTSjAYzyZDckZahP9CNC3f+CjcuFBFMaxdqvRBy+M693OTEmeAGPO/ZKc3Mzs0vlBcrS8srq2vV9Y22UbmmrEWVUPoqJoYJLlkLOAh2lWlG0liwIL47HfnBPdOGK3kJg4yFKbmRPOGUgEVR1d4QFf2ID/ERNiqBlPTrPQX1oHth6S4Ouuf9yG/s4im4Z6Hruv84stGIig4Ph0G3bWlUrXmuNy48LfyJqKFJNaPq03VP0TxlEqggxnR8L4OwIBo4FWxYuc4Nywi9IzesY6UkKTNhMQ5jiHcs6eFEaXsk4DH9OVGQ1JhBGtvOlMCt+euN4H9eJ4fkMCy4zHJgkn4vSnKBQeFRsrjHNaMgBlYQqrl9K6a3RBMKNv+KDcH/++Vp0d5zfc/1L/ZrxyeTOMpoC22jOvLRATpGZ6iJWoiiB/SC3tC78+i8Oh/O53dryZnMbKJfVZr/AupUsD8=</latexit>

Transformer
Self attention

each token attends to all tokens in previous layer
transform x into Q, K, V

attxi = softmax(dot(WQxi,W
Kx1), dot(W

Qxi,W
Kx2), ..., dot(W

Qxi,W
Kxn))[i]W

V xi
<latexit sha1_base64="ssNovt1mvupi4X1xobQ78zB8zKE=">AAACTHicbZBLSwMxFIUz9VXrq+rSTbAILcgwI4JuBNGN4KaC7Qh1OmTSjAYzyZDckZahP9CNC3f+CjcuFBFMaxdqvRBy+M693OTEmeAGPO/ZKc3Mzs0vlBcrS8srq2vV9Y22UbmmrEWVUPoqJoYJLlkLOAh2lWlG0liwIL47HfnBPdOGK3kJg4yFKbmRPOGUgEVR1d4QFf2ID/ERNiqBlPTrPQX1oHth6S4Ouuf9yG/s4im4Z6Hruv84stGIig4Ph0G3bWlUrXmuNy48LfyJqKFJNaPq03VP0TxlEqggxnR8L4OwIBo4FWxYuc4Nywi9IzesY6UkKTNhMQ5jiHcs6eFEaXsk4DH9OVGQ1JhBGtvOlMCt+euN4H9eJ4fkMCy4zHJgkn4vSnKBQeFRsrjHNaMgBlYQqrl9K6a3RBMKNv+KDcH/++Vp0d5zfc/1L/ZrxyeTOMpoC22jOvLRATpGZ6iJWoiiB/SC3tC78+i8Oh/O53dryZnMbKJfVZr/AupUsD8=</latexit><latexit sha1_base64="ssNovt1mvupi4X1xobQ78zB8zKE=">AAACTHicbZBLSwMxFIUz9VXrq+rSTbAILcgwI4JuBNGN4KaC7Qh1OmTSjAYzyZDckZahP9CNC3f+CjcuFBFMaxdqvRBy+M693OTEmeAGPO/ZKc3Mzs0vlBcrS8srq2vV9Y22UbmmrEWVUPoqJoYJLlkLOAh2lWlG0liwIL47HfnBPdOGK3kJg4yFKbmRPOGUgEVR1d4QFf2ID/ERNiqBlPTrPQX1oHth6S4Ouuf9yG/s4im4Z6Hruv84stGIig4Ph0G3bWlUrXmuNy48LfyJqKFJNaPq03VP0TxlEqggxnR8L4OwIBo4FWxYuc4Nywi9IzesY6UkKTNhMQ5jiHcs6eFEaXsk4DH9OVGQ1JhBGtvOlMCt+euN4H9eJ4fkMCy4zHJgkn4vSnKBQeFRsrjHNaMgBlYQqrl9K6a3RBMKNv+KDcH/++Vp0d5zfc/1L/ZrxyeTOMpoC22jOvLRATpGZ6iJWoiiB/SC3tC78+i8Oh/O53dryZnMbKJfVZr/AupUsD8=</latexit><latexit sha1_base64="ssNovt1mvupi4X1xobQ78zB8zKE=">AAACTHicbZBLSwMxFIUz9VXrq+rSTbAILcgwI4JuBNGN4KaC7Qh1OmTSjAYzyZDckZahP9CNC3f+CjcuFBFMaxdqvRBy+M693OTEmeAGPO/ZKc3Mzs0vlBcrS8srq2vV9Y22UbmmrEWVUPoqJoYJLlkLOAh2lWlG0liwIL47HfnBPdOGK3kJg4yFKbmRPOGUgEVR1d4QFf2ID/ERNiqBlPTrPQX1oHth6S4Ouuf9yG/s4im4Z6Hruv84stGIig4Ph0G3bWlUrXmuNy48LfyJqKFJNaPq03VP0TxlEqggxnR8L4OwIBo4FWxYuc4Nywi9IzesY6UkKTNhMQ5jiHcs6eFEaXsk4DH9OVGQ1JhBGtvOlMCt+euN4H9eJ4fkMCy4zHJgkn4vSnKBQeFRsrjHNaMgBlYQqrl9K6a3RBMKNv+KDcH/++Vp0d5zfc/1L/ZrxyeTOMpoC22jOvLRATpGZ6iJWoiiB/SC3tC78+i8Oh/O53dryZnMbKJfVZr/AupUsD8=</latexit><latexit sha1_base64="ssNovt1mvupi4X1xobQ78zB8zKE=">AAACTHicbZBLSwMxFIUz9VXrq+rSTbAILcgwI4JuBNGN4KaC7Qh1OmTSjAYzyZDckZahP9CNC3f+CjcuFBFMaxdqvRBy+M693OTEmeAGPO/ZKc3Mzs0vlBcrS8srq2vV9Y22UbmmrEWVUPoqJoYJLlkLOAh2lWlG0liwIL47HfnBPdOGK3kJg4yFKbmRPOGUgEVR1d4QFf2ID/ERNiqBlPTrPQX1oHth6S4Ouuf9yG/s4im4Z6Hruv84stGIig4Ph0G3bWlUrXmuNy48LfyJqKFJNaPq03VP0TxlEqggxnR8L4OwIBo4FWxYuc4Nywi9IzesY6UkKTNhMQ5jiHcs6eFEaXsk4DH9OVGQ1JhBGtvOlMCt+euN4H9eJ4fkMCy4zHJgkn4vSnKBQeFRsrjHNaMgBlYQqrl9K6a3RBMKNv+KDcH/++Vp0d5zfc/1L/ZrxyeTOMpoC22jOvLRATpGZ6iJWoiiB/SC3tC78+i8Oh/O53dryZnMbKJfVZr/AupUsD8=</latexit>

qi
<latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit><latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit><latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit><latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit>

k1
<latexit sha1_base64="7m0XAhFb0TMdl4vUEeGzQtrySLw=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpYdz3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB/fTjZM=</latexit><latexit sha1_base64="7m0XAhFb0TMdl4vUEeGzQtrySLw=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpYdz3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB/fTjZM=</latexit><latexit sha1_base64="7m0XAhFb0TMdl4vUEeGzQtrySLw=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpYdz3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB/fTjZM=</latexit><latexit sha1_base64="7m0XAhFb0TMdl4vUEeGzQtrySLw=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpYdz3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB/fTjZM=</latexit>

k2
<latexit sha1_base64="iR+qAF2Hj9H8E/BHBQzwz7ORs+k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpYTKoDcoVt+ouQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814bWfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwD5V42U</latexit><latexit sha1_base64="iR+qAF2Hj9H8E/BHBQzwz7ORs+k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpYTKoDcoVt+ouQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814bWfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwD5V42U</latexit><latexit sha1_base64="iR+qAF2Hj9H8E/BHBQzwz7ORs+k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpYTKoDcoVt+ouQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814bWfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwD5V42U</latexit><latexit sha1_base64="iR+qAF2Hj9H8E/BHBQzwz7ORs+k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpYTKoDcoVt+ouQNaJl5MK5GgOyl/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTazxanzsiFVYYkjJUtachC/T2R0UjraRTYzoiasV715uJ/Xi814bWfcZmkBiVbLgpTQUxM5n+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwD5V42U</latexit>

kn
<latexit sha1_base64="zcDpg5drRJ9+7NDMT1nqEdmSpkQ=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpYdxXfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5A1RWjdA=</latexit><latexit sha1_base64="zcDpg5drRJ9+7NDMT1nqEdmSpkQ=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpYdxXfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5A1RWjdA=</latexit><latexit sha1_base64="zcDpg5drRJ9+7NDMT1nqEdmSpkQ=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpYdxXfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5A1RWjdA=</latexit><latexit sha1_base64="zcDpg5drRJ9+7NDMT1nqEdmSpkQ=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpYdxXfbfq1bw5yCrxC1KFAo2++9UbJCyLuUImqTFd30sxyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c6L86787FoLTnFzDH8gfP5A1RWjdA=</latexit>

qi
<latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit><latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit><latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit><latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit>

qi
<latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit><latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit><latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit><latexit sha1_base64="nq9/izRrvvUBgIO7E6Y1/frjFEk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0s0l3J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6xEnC/YgOlAgFo2ilh3FP9MoVt+rOQVaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzyaambGp5QNqID3rFU0YgbP5ufOiVnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NrPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2nZEPwll9eJc2LqudWvfvLSu0mj6MIJ3AK5+DBFdTgDurQAAYDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1XmjdE=</latexit>

vi
<latexit sha1_base64="SZgEewXqPKGPrjDdSUmH9iyx/Q8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0lf9MsVt+ouQNaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyWamXGp5QNqZD3rVU0YgbP1ucOiMXVhmQMNa2FJKF+nsio5Ex0yiwnRHFkVn15uJ/XjfF8MbPhEpS5IotF4WpJBiT+d9kIDRnKKeWUKaFvZWwEdWUoU2nZEPwVl9eJ62rqudWvYfrSv02j6MIZ3AOl+BBDepwDw1oAoMhPMMrvDnSeXHenY9la8HJZ07hD5zPH12EjdY=</latexit><latexit sha1_base64="SZgEewXqPKGPrjDdSUmH9iyx/Q8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0lf9MsVt+ouQNaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyWamXGp5QNqZD3rVU0YgbP1ucOiMXVhmQMNa2FJKF+nsio5Ex0yiwnRHFkVn15uJ/XjfF8MbPhEpS5IotF4WpJBiT+d9kIDRnKKeWUKaFvZWwEdWUoU2nZEPwVl9eJ62rqudWvYfrSv02j6MIZ3AOl+BBDepwDw1oAoMhPMMrvDnSeXHenY9la8HJZ07hD5zPH12EjdY=</latexit><latexit sha1_base64="SZgEewXqPKGPrjDdSUmH9iyx/Q8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0lf9MsVt+ouQNaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyWamXGp5QNqZD3rVU0YgbP1ucOiMXVhmQMNa2FJKF+nsio5Ex0yiwnRHFkVn15uJ/XjfF8MbPhEpS5IotF4WpJBiT+d9kIDRnKKeWUKaFvZWwEdWUoU2nZEPwVl9eJ62rqudWvYfrSv02j6MIZ3AOl+BBDepwDw1oAoMhPMMrvDnSeXHenY9la8HJZ07hD5zPH12EjdY=</latexit><latexit sha1_base64="SZgEewXqPKGPrjDdSUmH9iyx/Q8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0lf9MsVt+ouQNaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyWamXGp5QNqZD3rVU0YgbP1ucOiMXVhmQMNa2FJKF+nsio5Ex0yiwnRHFkVn15uJ/XjfF8MbPhEpS5IotF4WpJBiT+d9kIDRnKKeWUKaFvZWwEdWUoU2nZEPwVl9eJ62rqudWvYfrSv02j6MIZ3AOl+BBDepwDw1oAoMhPMMrvDnSeXHenY9la8HJZ07hD5zPH12EjdY=</latexit>

Transformer
Self attention

Transformer
Self attention

matrix form:

Attention(Q,K, V) = softmax(QKT)V
<latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit><latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit><latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit><latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit>

Transformer
Self attention

matrix form + scaled attention:

Attention(Q,K, V) = softmax(QKT)V
<latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit><latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit><latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit><latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit>

Transformer
Self attention

matrix form + scaled attention:

Attention(Q,K, V) = softmax(QKT)V
<latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit><latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit><latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit><latexit sha1_base64="aJTBrueDPPnRcvqOipf5S88Kkt0=">AAACGHicbVDLSgMxFM3UV62vUZdugkVoodQZEXQjVN0I3bTQF7S1ZNJMG5p5kNyRlqGf4cZfceNCEbfd+Temj4W2Hggczrk3yTlOKLgCy/o2EmvrG5tbye3Uzu7e/oF5eFRTQSQpq9JABLLhEMUE91kVOAjWCCUjniNY3RncT/36E5OKB34FRiFre6Tnc5dTAlrqmOctYEOIbwGYP1XGmXKumKtl8Q2eOypwwSNDrRcfK9lax0xbeWsGvErsBUmjBUodc9LqBjTy9PVUEKWathVCOyYSOBVsnGpFioWEDkiPNTX1icdUO54FG+MzrXSxG0h9fMAz9fdGTDylRp6jJz0CfbXsTcX/vGYE7nU75n4Y6dx0/pAbCQwBnraEu1wyCmKkCaGS679i2ieSUNBdpnQJ9nLkVVK7yNtW3i5fpgt3izqS6ASdogyy0RUqoAdUQlVE0TN6Re/ow3gx3oxP42s+mjAWO8foD4zJD6Aen3g=</latexit>

Transformer
Self attention

Transformer

Norm

MLP

Each attention layer is followed by
Layer-norm and MLP

Transformer
multi-head attention

one attention pattern

Transformer
multi-head attention

another attention pattern

Transformer
multi-head attention

why chose if we can just have several?

Transformer
multi-head attention

why chose if we can just have several?

Transformer
multi-head attention

why chose if we can just have several?

Transformer
Skip connections

Cost vs Opportunity

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

Cost vs Opportunity

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

Cost vs Opportunity

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

Cost vs Opportunity

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

Cost vs Opportunity
RNN to Self-attention

Cost vs Opportunity
RNN to Self-attention

drop

time dependence

Cost vs Opportunity
RNN to Self-attention

add

attention

Cost vs Opportunity
RNN to Self-attention

can parallelize
across all sequence

Cost vs Opportunity
RNN to Self-attention

can parallelize
across all sequence

Transformer
Information flow

how do we pass information between the blue arrows?

Transformer
Information flow

how do we pass information between the blue arrows?

vs
RNN case

Transformer

Transformer
Positional information

Transformer
Positional information

"1" "2" "3" "4"
+ + + +

Transformer: more details
http://nlp.seas.harvard.edu/2018/04/03/attention.html

good explanations, have a look.

http://jalammar.github.io/illustrated-transformer/

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/

BiRNN -> Transformer

BI1

BI2

BI3

xthe

ythe

BI1

BI2

BI3

xbrown

ybrown

BI1

BI2

BI3

xfox

yfox

BI1

BI2

BI3

xjumped

yjumped

BI1

BI2

BI3

xover

yover

Deep biRNN

BI1

BI2

BI3

xthe

ythe

BI1

BI2

BI3

xbrown

ybrown

BI1

BI2

BI3

xfox

yfox

BI1

BI2

BI3

xjumped

yjumped

BI1

BI2

BI3

xover

yover

Transformer Layers

BiRNN -> Transformer

Transformer

• An alternative to RNN

• Replace recurrence with attention to all tokens.

• More computation. More parallelism.  
Shorter connections between data points.

To summarize
• RNNs are very capable learners of sequential data.

• n -> 1: RNN acceptor

• n -> n : biRNN (transducer)

• 1 -> m : conditioned generation (conditioned LM)

• n -> m : conditioned generation (encoder-decoder)

• n -> m : encoder-decoder with attention

