
Applied Deep Learning
for Sequences
Class 1 -- Intro

Yoav Goldberg
Bar Ilan University

Course Info
• Website: http://www.cs.biu.ac.il/~89-687

• Discussions: on moodle forums.

• Office hours: by appointment, after class.

• Requirements:

• Small "exercises" (must submit, not graded)

• Assignments (programming, math or both)

• Final Exam

http://www.cs.biu.ac.il/~89-687

Course Info
• Must pass exam to pass the course.

• Must pass all assignments to pass the course.

• Must submit all assignments on time.

• Each student has 10 "late days" that you can choose
how to allocate across all assignments. Beyond that,
you will get 10 reduced points for every late day.

• Do not copy, do not hand in other person's code.

• Assignments are non trivial, start on time.

Who are you?

• How many are undergraduate? graduate?

Who are you?

• Who did not take ML course?

Who are you?

• Who takes (or previously took) NLP?

• Background:

• Linear Algebra

• Calculus (differentiation)

• A little bit of probability

• Programming (python)

• Machine Learning

Course Info

Book

+ some newer  
 stuff.

• This is not an easy course.

• It is probably an important one.

Course Info

http://www.phontron.com/class/nn4nlp2018/schedule.html
Good other course

http://www.phontron.com/class/nn4nlp2021/schedule.html

What is Learning?

What is Learning?
• Making predictions

• Based on past observations

• finding patterns in data

• learning from data

• generalization...

Types of Learning
• Supervised

• Regression

• Classification

• Structured

• Unsupervised

• Semi-supervised

• Reinforcement

Machine Learning
• Learning a mathematical function from x to y.

• Need to represent objects in the world as
mathematical objects.

• Measurements / Features.

• Hypothesis class.

• Inductive bias.

What is Deep Learning

What is Deep Learning
• Specific class of learning algorithms

• Rich hypothesis class (can represent borel
measurable functions)

• Many "layers" of simple components.

• Find parameters with gradient-based methods (so
everything needs to be differentiable)

• Minimal feature engineering (learn a good
representation)

What are Sequences

• Sequential data is everywhere.

• Examples?

Types of Sequences

• Continuous / Numeric

• Discrete

Characteristics
of Sequential Data

Characteristics
of Sequential Data

• Sequential

• Items, "vocabulary", "alphabet"

• "time" dependence

• Locality

• Long-distance relations

Stretching the boundaries

• Are trees sequences?

Stretching the boundaries

• Are trees sequences?

• Can we think of trees as sequences?

• Pros? cons?

Stretching the boundaries

• Are graphs sequences?

• Can we think of graphs as sequences?

• Pros? cons?

Stretching the boundaries

• Are images sequences?

• Can we think of images as sequences?

• Pros? cons?

Kinds of Problems

Kinds of Problems
• Classification

• Of sequences

• Of items within sequences

• Similarity

• Of sequences

• Of items within sequences

• Segmentation

• Mapping

• Sequence to Sequence

• Predict next item ("language modeling")

• ...

This course
• Linear models

• Gradient-based learning, losses, regularization, feed-forward nets / MLP

• Representation learning

• Language models and word embeddings

• Multi-task learning

• 1D convolutions

• Recurrent Networks (plain, gated)

• Attention Networks (and self attention, transformers)

• Sequence to Sequence

• Adversarial Training, Contrastive Learning

• Pre-training, fine tuning.

This course
• Implementing neural networks

• By hand

• with a toolkit

• Efficiency

• GPU vs CPU

• Batching

This course
• How to model with neural networks?

• How to describe neural networks?

• What are the benefits of different architectures?

• What are the limitations of different architectures?

• What is hard to learn? what is easy to learn?

• What we don't know yet?

Learning 101

• Building blocks -- Linear Model -- Perceptron

Linear Model

Housing Data2.3. LINEAR MODELS 15

Figure 2.1: Housing data: rent price in USD vs. size in square ft. Data source: craigslist ads,

collected from June 7 to June 15 2015.

of the same size.4 The dataset is linearly separable: the two classes can be separated by a
straight line.

Each data-point (an apartment) can be represented as a 2-dimensional vector x where
x[0] is the apartment’s size and x[1] is its price. We then get the following linear model:

ŷ = sign(f(x)) = sign(x ·w + b)

= sign(size⇥ w1 + price⇥ w2 + b)

Where · is the dot-product operation, b and w = [w1, w2] are free parameters, and
we predict Fairfax if ŷ � 0 and Dupont Circle otherwise. The goal of learning is setting the
values of w1, w2 and b such that the predictions are correct for all data-points we observe.5

We will discuss learning in section 2.7 but for now consider that we expect the learning
procedure to set a high value to w1 and a low value to w2. Once the model is trained, we
can classify new data-points by feeding them into this equation.

4Note that looking at either size or price alone would not allow us to cleanly separate the two groups.
5Geometrically, for a given w the points x ·w + b = 0 define a hyperplane (which in 2 dimensions corresponds
to a line) that separates the plane into two regions. The goal of learning is then finding a hyperplane such that
the classification induced by it is correct.

(whiteboard)

Language Classification
• Astrophysicists use the term "metal" to collectively

describe all elements other than hydrogen and helium.
In that sense, the metallicity of an object is the
proportion of its matter made up of chemical elements
other than hydrogen and helium.

• Ein einzelnes Atom dieser Elemente hat keine
metallischen Eigenschaften; es ist kein Metall. Erst
wenn mehrere solcher Atome miteinander wechselwirken
und zwischen ihnen eine metallische Bindung besteht,
zeigen solche Atomgruppen (cluster) metallische
Eigenschaften.

Letter Bigrams

Letter Bigrams

2.3. LINEAR MODELS 17

We usually have many more than two features. Moving to a language setup, consider
the task of distinguishing documents written in English from documents written in Ger-
man. It turns out that letter frequencies make for quite good predictors (features) for this
task. Even more informative are counts of letter bigrams, i.e. pairs of consecutive letters.
Assuming we have an alphabet of 28 letters (a-z, space, and a special symbol for all other
characters including digits, punctuations, etc) we represent a document as a 28⇥ 28 di-
mensional vector x 2 R784, where each entry x[i] represents a count of a particular letter
combination in the document, normalized by the document’s length. For example, denoting
by xab the entry of x corresponding to the letter-bigram ab:

xab =
#ab

|D| (2.3)

where #ab is the number of times the bigram ab appears in the document, and |D| is the
total number of bigrams in the document (the document’s length).

Figure 2.2: Character-bigram histograms for documents in English (left, blue) and German

(right, green). Underscores denote spaces.

Figure 2.2 shows such bigram histograms for several German and English texts. For
readability, we only show the top frequent character-bigrams and not the entire feature

Letter Bigrams

2.3. LINEAR MODELS 17

We usually have many more than two features. Moving to a language setup, consider
the task of distinguishing documents written in English from documents written in Ger-
man. It turns out that letter frequencies make for quite good predictors (features) for this
task. Even more informative are counts of letter bigrams, i.e. pairs of consecutive letters.
Assuming we have an alphabet of 28 letters (a-z, space, and a special symbol for all other
characters including digits, punctuations, etc) we represent a document as a 28⇥ 28 di-
mensional vector x 2 R784, where each entry x[i] represents a count of a particular letter
combination in the document, normalized by the document’s length. For example, denoting
by xab the entry of x corresponding to the letter-bigram ab:

xab =
#ab

|D| (2.3)

where #ab is the number of times the bigram ab appears in the document, and |D| is the
total number of bigrams in the document (the document’s length).

Figure 2.2: Character-bigram histograms for documents in English (left, blue) and German

(right, green). Underscores denote spaces.

Figure 2.2 shows such bigram histograms for several German and English texts. For
readability, we only show the top frequent character-bigrams and not the entire feature

18 2. LEARNING BASICS AND LINEAR MODELS

vectors. On the left, we see the bigrams of the English texts, and on the right of the
German ones. There are clear patterns in the data, and, given a new item, such as:

you could probably tell that it is more similar to the German group than to the English one.
Note, however, that you couldn’t use a single definite rule such as “if it has th its English”
or “if it has ie its German”: while German texts have considerably less th than English,
the th may and does occur in German texts, and similarly the ie combination does occur
in English. The decision requires weighting di↵erent factors relative to each other. Let’s
formalize the problem in a machine-learning setup.

We can again use a linear model:

ŷ = sign(f(x)) = sign(x ·w + b)

= sign(xaa ⇥ waa + xab ⇥ wab + xac ⇥ wac... + b)
(2.4)

A document will be considered English if f(x) � 0 and as German otherwise. Intu-
itively, learning should assign large positive values to w entries associated with letter pairs
that are much more common in English than in German (i.e. th) negative values to letter
pairs that are much more common in German than in English (ie, en), and values around
zero to letter pairs that are either common or rare in both languages.

Note that unlike the 2-dimensional case of the housing data (price vs. size), here we
cannot easily visualize the points and the decision boundary, and the geometric intuition is
likely much less clear. In general, it is di�cult for most humans to think of the geometries
of spaces with more than three dimensions, and it is advisable to think of linear models in
terms of assigning weights to features, which is easier to imagine and reason about.

2.3.2 LOG-LINEAR BINARY CLASSIFICATION

The output f(x) is in the range [�1,1], and we map it to one of two classes {�1,+1}
using the sign function. Another option is to map instead to the range [0, 1]. This can be
done by pushing the output through a squashing function such as the sigmoid �(x) = 1

1+e�x ,
resulting in:

ŷ = �(f(x)) =
1

1 + e�(x·w+b)
(2.5)

Here, �(f(x)) is a log-linear function: if we take the log, we obtain a linear function:

log(�(f(x))) = log(1)� log(1)� log(exp(�f(x)) = f(x) = x ·w + b

(whiteboard)

Summarize

• Simple hypothesis class -- linear model, perceptron

• See exercise 1 online.

Learning as Optimization

Problem Setup
x1, ...,xn

y1, ...,yn

Data:
examples / instances / items
labels

Desired:

f(x)

Problem Setup
x1, ...,xn

y1, ...,yn

Data:
examples / instances / items
labels

Desired:

f(x)

y's are vectors. why/how?

Problem Setup
x1, ...,xn

y1, ...,yn

Data:
examples / instances / items
labels

Desired:

f✓(x)

Problem Setup
x1, ...,xn

y1, ...,yn

Data:
examples / instances / items
labels

Desired:

f✓(x) = wx+ b ✓ = w, b

learning: finding good values for ✓

Problem Setup
x1, ...,xn

y1, ...,yn

Data:
examples / instances / items
labels

Desired:

f✓(x) = wx+ b ✓ = w, b

learning: finding good values for ✓?

Objective Function
Y = y1, ...,yn

Ŷ✓ = f✓(x1), ..., f✓(xn)

L(Y, Ŷ✓)

Objective Function
Y = y1, ...,yn

Ŷ✓ = f✓(x1), ..., f✓(xn)

L(Y, Ŷ✓)
Ideally:

/
nX

i=1

`(yi, f✓(xi))

the objective decomposes over local losses

Objective Function
Y = y1, ...,yn

Ŷ✓ = f✓(x1), ..., f✓(xn)

L(Y, Ŷ✓)
Ideally:

/
nX

i=1

`(yi, f✓(xi))

the objective decomposes over local losses

Learning: argmin
✓

L(Y, Ŷ✓)

Loss Functions

• 0-1 Loss

`(y, ŷ)

(
0 y = ŷ

1 otherwise

Loss Functions

• Hinge (margin) loss

`(y, ŷ)

t = argmax
i

y[i]

p = argmax
i 6=t

ŷ[i]

`hinge = max(0, 1� (ŷ[t] � ŷ[p]))

correct score should be
higher than incorrect score
by at least 1

Loss Functions
• log-loss (also called cross-entropy)

`(y, ŷ)

if the output is a probability vector:ŷ

ŷ[k] = P (y = k|x)
X

k

ŷ[k] = 1

ŷ[k] � 0

`cross-ent = �
X

k

y[k] log ŷ[k]

Loss Functions
• log-loss (also called cross-entropy)

`(y, ŷ)

if the output is a probability vector:ŷ

ŷ[k] = P (y = k|x)
X

k

ŷ[k] = 1

ŷ[k] � 0

`cross-ent = � log ŷ[t]

`cross-ent = �
X

k

y[k] log ŷ[k]

for "hard" (0 or 1) labels:

Loss Functions
• log-loss (also called cross-entropy)

`(y, ŷ)

if the output is a probability vector:ŷ

ŷ[k] = P (y = k|x)
X

k

ŷ[k] = 1

ŷ[k] � 0

`cross-ent = � log ŷ[t]

`cross-ent = �
X

k

y[k] log ŷ[k]

for "hard" (0 or 1) labels:

probability output
• the softmax function:

softmax(v)[i] =
ev[i]

P
i0 e

v[i0]

the exponentiation makes positive.
the normalization make it sum to 1.

probability output
• the softmax function:

softmax(v)[i] =
ev[i]

P
i0 e

v[i0]

22 2. LEARNING BASICS AND LINEAR MODELS

y = x ·W

= (
1

|D|

|D|X

i=1

xD[i]) ·W

=
1

|D|

|D|X

i=1

(xD[i] ·W)

=
1

|D|

|D|X

i=1

WD[i]

(2.10)

In other words, the continuous-bag-of-words (CBOW) representation can be obtained
either by summing word-representation vectors or by multiplying a bag-of-words vector by
a matrix in which each row corresponds to a dense word representation (such matrices are
also called embedding matrices). We will return to this point in chapter 8 (in particular
section 8.3) when discussing feature representations in deep learning models for text.

2.6 LOG-LINEAR MULTICLASS CLASSIFICATION

In the binary case, we transformed the linear prediction into a probability estimate by
passing it through the sigmoid function, resulting in a log-linear model. The analogue for
the multiclass case is passing the score vector through the softmax function:

softmax(x)[i] =
e
x[i]

P
i e

x[i]
(2.11)

Resulting in:

ŷ = softmax(xW + b)

ŷ[i] =
e
(xW+b)[i]

P
i e

(xW+b)[i]

(2.12)

The softmax transformation forces the values in ŷ to be positive and sum to 1, making
them interpretable as a probability distribution

Log-linear model
 (aka "logistic regression")

Y = y1, ...,yn

Ŷ✓ = f✓(x1), ..., f✓(xn)

L(Y, Ŷ✓)
Ideally:

/
nX

i=1

`(yi, f✓(xi))

the objective decomposes over local losses

Learning: argmin
✓

L(Y, Ŷ✓)

training as optimization

training as optimization

• via gradient descent

• via stochastic gradient descent

• via batched stochastic gradient descent

When training, consider

• Regularization

• L2, L1

• Dropout

Multilayer Networks

Linear Classifier

f(x) = W · x+ b

Binary:

Multi class:

f(x) = w · x+ b �(w · x+ b)

sign(w · x+ b)

argmax
i

softmax(W · x+ b)[i]

Non-Linear Classifier

f✓(x) = wg(W0 · x+ b0) + b

Non-Linear Classifier

f✓(x)

44 4. FEED FORWARD NEURAL NETWORKS

NNMLP2(x) =y

h1 =g
1(xW1 + b1)

h2 =g
2(h1W2 + b2)

y =h2W3

When applying dropout training to MLP2, we randomly set some of the values of h1

and h2 to 0 at each training round:

NNMLP2(x) =y

h1 =g
1(xW1 + b1)

m1 ⇠Bernouli(r1)

h̃1 =m1 � h1

h2 =g
2(h̃1W2 + b2)

m2 ⇠Bernouli(r2)

h̃2 =m2 � h2

y =h̃2W3

(4.7)

Here, m1 and m2 are random masking vectors with the dimensions of h1 and h2 respec-
tively, and � is the element-wise multiplication operation. The values of the elements in
the masking vectors are either 0 or 1, and are drawn from a Bernouli distribution with
parameter r (usually r = 0.5). The values corresponding to zeros in the masking vectors
are then zeroed out, replacing the hidden layers h with h̃ before passing them on to the
next layer.

Work by Wager et al. [2013] establishes a strong connection between the dropout
method and L2 regularization. Another view links dropout to model averaging and ensemble
techniques.

The dropout technique is one of the key factors contributing to very strong results of
neural-network methods on image classification tasks [Krizhevsky et al., 2012], especially
when combined with ReLU activation units [Dahl et al., 2013]. The dropout technique is
e↵ective also in NLP applications of neural networks.

4.7 EMBEDDING LAYERS
As will be further discussed in chapter 8, when the input to the neural network contains
symbolic categorical features (e.g. features that take on of k distinct symbols, such as

=

Multi-layer Perceptron (MLP):

Non-Linear Classifier

f✓(x)

44 4. FEED FORWARD NEURAL NETWORKS

NNMLP2(x) =y

h1 =g
1(xW1 + b1)

h2 =g
2(h1W2 + b2)

y =h2W3

When applying dropout training to MLP2, we randomly set some of the values of h1

and h2 to 0 at each training round:

NNMLP2(x) =y

h1 =g
1(xW1 + b1)

m1 ⇠Bernouli(r1)

h̃1 =m1 � h1

h2 =g
2(h̃1W2 + b2)

m2 ⇠Bernouli(r2)

h̃2 =m2 � h2

y =h̃2W3

(4.7)

Here, m1 and m2 are random masking vectors with the dimensions of h1 and h2 respec-
tively, and � is the element-wise multiplication operation. The values of the elements in
the masking vectors are either 0 or 1, and are drawn from a Bernouli distribution with
parameter r (usually r = 0.5). The values corresponding to zeros in the masking vectors
are then zeroed out, replacing the hidden layers h with h̃ before passing them on to the
next layer.

Work by Wager et al. [2013] establishes a strong connection between the dropout
method and L2 regularization. Another view links dropout to model averaging and ensemble
techniques.

The dropout technique is one of the key factors contributing to very strong results of
neural-network methods on image classification tasks [Krizhevsky et al., 2012], especially
when combined with ReLU activation units [Dahl et al., 2013]. The dropout technique is
e↵ective also in NLP applications of neural networks.

4.7 EMBEDDING LAYERS
As will be further discussed in chapter 8, when the input to the neural network contains
symbolic categorical features (e.g. features that take on of k distinct symbols, such as

=

Multi-layer Perceptron (MLP):

Common Non-linearities
Sigmoid 4.6. REGULARIZATION AND DROPOUT 43

Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):

42 4. FEED FORWARD NEURAL NETWORKS

Sigmoid The sigmoid activation function �(x) = 1/(1 + e
�x), also called the logistic

function, is an S-shaped function, transforming each value x into the range [0, 1]. The
sigmoid was the canonical non-linearity for neural networks since their inception, but is
currently considered to be deprecated for use in internal layers of neural networks, as the
choices listed below prove to work much better empirically.

Hyperbolic tangent (tanh) The hyperbolic tangent tanh(x) = e2x�1

e2x+1
activation func-

tion is an S-shaped function, transforming the values x into the range [�1, 1].

Hard tanh The hard-tanh activation function is an approximation of the tanh function
which is faster to compute and take derivatives of:

hardtanh(x) =

8
><

>:

�1 x < �1

1 x > 1

x otherwise

(4.5)

Rectifier (ReLU) The Rectifier activation function [Glorot et al., 2011], also known as
the rectified linear unit is a very simple activation function that is easy to work with and
was shown many times to produce excellent results.6 The ReLU unit clips each value x < 0
at 0. Despite its simplicity, it performs well for many tasks, especially when combined with
the dropout regularization technique (see Section 4.6).

ReLU(x) = max(0, x) =

(
0 x < 0

x otherwise
(4.6)

As a rule of thumb, ReLU units work better than tanh, and tanh works better than
sigmoid.

Figure 4.3 show the shapes of the di↵erent activations functions, together with the
shapes of their derivatives.

4.5 LOSS FUNCTIONS

When training a neural network (more on training in chapter 5 below), much like when
training a linear classifier, one defines a loss function L(ŷ,y), stating the loss of predicting
ŷ when the true output is y. The training objective is then to minimize the loss across
the di↵erent training examples. The loss L(ŷ,y) assigns a numerical score (a scalar) to

6The technical advantages of the ReLU over the sigmoid and tanh activation functions is that it does not
involve expensive-to-compute functions, and more importantly that it does not saturate. The sigmoid and tanh
activation are capped at 1, and the gradients at this region of the functions are near zero, driving the entire
gradient near zero. The ReLU activation does not have this problem, making it especially suitable for networks
with multiple layers, which are susceptible to the vanishing gradients problem when trained with the saturating
units.

Common Non-linearities
tanh

42 4. FEED FORWARD NEURAL NETWORKS

Sigmoid The sigmoid activation function �(x) = 1/(1 + e
�x), also called the logistic

function, is an S-shaped function, transforming each value x into the range [0, 1]. The
sigmoid was the canonical non-linearity for neural networks since their inception, but is
currently considered to be deprecated for use in internal layers of neural networks, as the
choices listed below prove to work much better empirically.

Hyperbolic tangent (tanh) The hyperbolic tangent tanh(x) = e2x�1

e2x+1
activation func-

tion is an S-shaped function, transforming the values x into the range [�1, 1].

Hard tanh The hard-tanh activation function is an approximation of the tanh function
which is faster to compute and take derivatives of:

hardtanh(x) =

8
><

>:

�1 x < �1

1 x > 1

x otherwise

(4.5)

Rectifier (ReLU) The Rectifier activation function [Glorot et al., 2011], also known as
the rectified linear unit is a very simple activation function that is easy to work with and
was shown many times to produce excellent results.6 The ReLU unit clips each value x < 0
at 0. Despite its simplicity, it performs well for many tasks, especially when combined with
the dropout regularization technique (see Section 4.6).

ReLU(x) = max(0, x) =

(
0 x < 0

x otherwise
(4.6)

As a rule of thumb, ReLU units work better than tanh, and tanh works better than
sigmoid.

Figure 4.3 show the shapes of the di↵erent activations functions, together with the
shapes of their derivatives.

4.5 LOSS FUNCTIONS

When training a neural network (more on training in chapter 5 below), much like when
training a linear classifier, one defines a loss function L(ŷ,y), stating the loss of predicting
ŷ when the true output is y. The training objective is then to minimize the loss across
the di↵erent training examples. The loss L(ŷ,y) assigns a numerical score (a scalar) to

6The technical advantages of the ReLU over the sigmoid and tanh activation functions is that it does not
involve expensive-to-compute functions, and more importantly that it does not saturate. The sigmoid and tanh
activation are capped at 1, and the gradients at this region of the functions are near zero, driving the entire
gradient near zero. The ReLU activation does not have this problem, making it especially suitable for networks
with multiple layers, which are susceptible to the vanishing gradients problem when trained with the saturating
units.

4.6. REGULARIZATION AND DROPOUT 43

Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):

Common Non-linearities
hard-tanh 4.6. REGULARIZATION AND DROPOUT 43

Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):

42 4. FEED FORWARD NEURAL NETWORKS

Sigmoid The sigmoid activation function �(x) = 1/(1 + e
�x), also called the logistic

function, is an S-shaped function, transforming each value x into the range [0, 1]. The
sigmoid was the canonical non-linearity for neural networks since their inception, but is
currently considered to be deprecated for use in internal layers of neural networks, as the
choices listed below prove to work much better empirically.

Hyperbolic tangent (tanh) The hyperbolic tangent tanh(x) = e2x�1

e2x+1
activation func-

tion is an S-shaped function, transforming the values x into the range [�1, 1].

Hard tanh The hard-tanh activation function is an approximation of the tanh function
which is faster to compute and take derivatives of:

hardtanh(x) =

8
><

>:

�1 x < �1

1 x > 1

x otherwise

(4.5)

Rectifier (ReLU) The Rectifier activation function [Glorot et al., 2011], also known as
the rectified linear unit is a very simple activation function that is easy to work with and
was shown many times to produce excellent results.6 The ReLU unit clips each value x < 0
at 0. Despite its simplicity, it performs well for many tasks, especially when combined with
the dropout regularization technique (see Section 4.6).

ReLU(x) = max(0, x) =

(
0 x < 0

x otherwise
(4.6)

As a rule of thumb, ReLU units work better than tanh, and tanh works better than
sigmoid.

Figure 4.3 show the shapes of the di↵erent activations functions, together with the
shapes of their derivatives.

4.5 LOSS FUNCTIONS

When training a neural network (more on training in chapter 5 below), much like when
training a linear classifier, one defines a loss function L(ŷ,y), stating the loss of predicting
ŷ when the true output is y. The training objective is then to minimize the loss across
the di↵erent training examples. The loss L(ŷ,y) assigns a numerical score (a scalar) to

6The technical advantages of the ReLU over the sigmoid and tanh activation functions is that it does not
involve expensive-to-compute functions, and more importantly that it does not saturate. The sigmoid and tanh
activation are capped at 1, and the gradients at this region of the functions are near zero, driving the entire
gradient near zero. The ReLU activation does not have this problem, making it especially suitable for networks
with multiple layers, which are susceptible to the vanishing gradients problem when trained with the saturating
units.

Common Non-linearities
ReLU (rectifier, rectified linear unit)

42 4. FEED FORWARD NEURAL NETWORKS

Sigmoid The sigmoid activation function �(x) = 1/(1 + e
�x), also called the logistic

function, is an S-shaped function, transforming each value x into the range [0, 1]. The
sigmoid was the canonical non-linearity for neural networks since their inception, but is
currently considered to be deprecated for use in internal layers of neural networks, as the
choices listed below prove to work much better empirically.

Hyperbolic tangent (tanh) The hyperbolic tangent tanh(x) = e2x�1

e2x+1
activation func-

tion is an S-shaped function, transforming the values x into the range [�1, 1].

Hard tanh The hard-tanh activation function is an approximation of the tanh function
which is faster to compute and take derivatives of:

hardtanh(x) =

8
><

>:

�1 x < �1

1 x > 1

x otherwise

(4.5)

Rectifier (ReLU) The Rectifier activation function [Glorot et al., 2011], also known as
the rectified linear unit is a very simple activation function that is easy to work with and
was shown many times to produce excellent results.6 The ReLU unit clips each value x < 0
at 0. Despite its simplicity, it performs well for many tasks, especially when combined with
the dropout regularization technique (see Section 4.6).

ReLU(x) = max(0, x) =

(
0 x < 0

x otherwise
(4.6)

As a rule of thumb, ReLU units work better than tanh, and tanh works better than
sigmoid.

Figure 4.3 show the shapes of the di↵erent activations functions, together with the
shapes of their derivatives.

4.5 LOSS FUNCTIONS

When training a neural network (more on training in chapter 5 below), much like when
training a linear classifier, one defines a loss function L(ŷ,y), stating the loss of predicting
ŷ when the true output is y. The training objective is then to minimize the loss across
the di↵erent training examples. The loss L(ŷ,y) assigns a numerical score (a scalar) to

6The technical advantages of the ReLU over the sigmoid and tanh activation functions is that it does not
involve expensive-to-compute functions, and more importantly that it does not saturate. The sigmoid and tanh
activation are capped at 1, and the gradients at this region of the functions are near zero, driving the entire
gradient near zero. The ReLU activation does not have this problem, making it especially suitable for networks
with multiple layers, which are susceptible to the vanishing gradients problem when trained with the saturating
units.

4.6. REGULARIZATION AND DROPOUT 43

Figure 4.3: Activation functions (top) and their derivatives (bottom).

the network’s output ŷ given the true expected output y. The loss functions discussed for
linear models in 2.7.1 are relevant and widely used also for neural networks. For further
discussion on loss functions in the context of neural networks see [Bengio et al., 2016, LeCun
and Huang, 2005, LeCun et al., 2006].

4.6 REGULARIZATION AND DROPOUT

Multi-layer networks can be large and have many parameters, making them especially prone
to overfitting. Model regularization is just as important in deep neural networks as it is in
linear models, and perhaps even more so. The regularizers discussed in 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization,
also called weight decay is essential for achieving good generalization performance in many
cases, and tuning the regularization strength � is advisable.

Another e↵ective technique for preventing neural networks from overfitting the train-
ing data is dropout training [Hinton, 2014, Hinton et al., 2012]. The dropout method is
designed to prevent the network from learning to rely on specific weights. It works by ran-
domly dropping (setting to 0) half of the neurons in the network (or in a specific layer)
in each training example in the stochastic-gradient training. For example, consider the
multilayer perceptron with two hidden layers (MLP2):

Which non-linearity to use?

• No good rules.

• Use sigmoid when you want a 0-1 behavior.
Otherwise prefer not to use it.

• tanh and ReLU work well.

• There are also fancier ones (i.e. ELU, GELU, ...)

Representation Power

• For every borel-measurable function, there is a
multi-layer perceptron with one hidden layer that
can approximate it to any desired epsilon.

So why do we need deeper networks?

One hidden-layer is enough!

Benefit of Depth
• Deeper networks can express functions using

narrower layers.

• Depth-separation:
a line of research that shows functions that can be
approximated well with depth n networks with linear
width at each layer, but require exponential width in
n for bounded depth networks.

Nice proof
of the benefit of depth

How many layers to use?
And how wide should they be?
• No hard and fast rules.

• In vision, we see that "deeper is better".

• Not always the case in text / sequences (though with
transformers, we may be starting to see this).

• Can think of each layer as transforming the previous
layer (remember the xor example).

• Narrower layers "compress" the information in the
previous layer. Wider layers introduce redundancies.

Summarize

• Linear separation.

• Formal learning problem setup.

• Loss functions.

• Learning as optimization.

