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Should we use domain knowledge in the era of
deep learning?

An imaginary conversation...
• Bob: I love deep networks. They can learn anything given enough

labeled data.
• Alice: But what if we don’t have enough data?
• Bob: We get more.
• Alice: But what if that’s hard?
• Bob: We try harder.
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Should we use domain knowledge in the era of
deep learning?

The next day...
• Alice: Deep networks have so many hyperparameters and are so hard

to optimize. How do you decide on the number of layers, size of
layers, DNN vs. CNN vs. RNN, ResNet vs. FractalNet
vs. QuantumNet? SGD vs. AdaGrad vs. Adam vs. rmsprop?

• Bob: I don’t. I throw them all onto the GPUs and go read xkcd.
• Alice: But other people need the GPUs too...
• Bob: Yoav will buy more GPUs.
• Alice: But think about all the wasted cycles! Air conditioning! The

environment!
• Bob: Environment, schmenvironment. It won’t matter after the

singularity.
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Should we use domain knowledge in the era of
deep learning?

The following day...

• Vision Alice: What do I do with all this knowledge I have about
geometry, light diffusion, ...?

• Speech Alice: Phonemes, triphones, articulatory features, ...?
• NLP Alice: Syntax, morphology, X-bar theory, ...?
• Bob: Forget all that. Deep networks automatically learn it. Some of

that stuff is wrong anyway.
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Analyzing neural representations: Vision

• Different layers tend to specialize for different sub-tasks (e.g.,
[Mohamed+ 2012, Zeiler+ 2014])
• Lower layers focus on lower-level representations
• Higher layers focus on higher-level representations

Pixels

Edges Faces

Layer 1 Layer 2 Layer 3

Parts of face

[Figure from Lee+ 2009]
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Analyzing neural representations: Speech

In a speech recognizer [Belinkov & Glass 2017]

• Network activations are most useful for phonetic classification around
the 3rd-to-last layer

In a joint semantic model of speech and images [Chrupala+ 2017]

• The higher the layer, the better we get at homonym disambiguation
(e.g., “weather” vs. “whether”) and semantic similarity
• But phonetic classification accuracy peaks at an intermediate layer
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Fun with cross-domain research
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This talk: Focus on speech tasks

Input: Speech waveform

Output:
• What was said? (automatic speech recognition) (this talk)
• Does it contain the term “New Jersey”? (keyword spotting)
• What is it about? (topic ID)
• Is the speaker angry? (emotion ID)
• Was the pronunciation correct? (proficiency testing)
• How do you say it in German? (speech translation)
• ...
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Back to the imaginary conversation...

• Bob: I love deep networks. They can learn anything given enough
labeled data.
• ...

There are many settings where data is likely to remain scarce
• Most of the world’s ∼7000 languages are poorly (or not) documented
• Many atypical speech styles: accents, speech disorders, inebriation, ...
• Some kinds of data are unethical or illegal to collect
• Some kinds of data are easy to collect, but not to label
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Back to the imaginary conversation...

• Bob: OK, sometimes we won’t have enough data. And then it might
help to have some domain knowledge.
• Alice: But how do we get it into the deep networks? They are

opaque!
• Bob: And we don’t want to break their ability to learn their own

internal representations.
• Alice: On this we agree!

This talk: 2 ideas for using domain knowledge in neural speech recognition
• A hierarchical multitask learning approach (Toshniwal et al.)
• A multi-view representation learning approach (Tang, Wang, et al.)
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In the old days...

. . .

Feature

Extraction

Speech

Feature
 Vectors

Decoder

Acoustic Pronunciation

Dictionary

Language

Model Model

‘‘recognize speech’’

Words

[Figure courtesy Shubham Toshniwal]

• Traditional automatic speech recognition (ASR) systems are modular
• Components correspond to different levels of representation: words,

phonemes, sub-phonetic states, ...
• Components are trained separately
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Acoustic features
Traditionally, inspired by properties of the human auditory system

13 / 28



Sub-word units

Consider the word “batrachophagous”. How do we represent its
pronunciation?

• Phones/phonemes:
[ b ae t r ax k aa f ax g ax s ]
• Triphones (most common):

[ <s>+b-ae b+ae-t ae+t-r t+r-ax r+ax-k ax+k-aa k+aa-f
aa+f-ax f+ax-g ax+g-ax g+ax-s ax+s-<e> ]
• Syllables:

[ b-ae-t r-ax k-aa f-ax g-ax-s ]
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Sub-word models based on speech production
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Sub-word models based on speech production
Articulatory phonology considers articulatory gestures to be the sub-word
units
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Acoustic models

Hidden Markov models (HMMs) for acoustic modeling; typically one
HMM per triphone
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Language models

Typically some kind of Markov (n-gram) model:

p(w1 . . . wL) =
L∏

i=1
p(wi|w1 . . . wi−1)

=
L∏

i=1
p
(
wi|wi−1 . . . wi−(n−1)

)
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A complete HMM-based recognizer [Bilmes & Bartels 2007]

Represented as a graphical model
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An articulatory feature-based model [Livescu 2005]
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Fast forward: End-to-end neural speech recognition

Acoustic

Features
x1 x2 x3 xT

h3 hTh2h1

GO

recognize speech EOS

All parameters learned to optimize the same task-related loss (e.g., word
or character log loss)
• No need to fix inventory of intermediate units
• Impressive results (e.g., [Zweig+ 2016])
• Similar models for other tasks: Translation [Bahdanau+ 2014], parsing

[Vinyals+ 2015], image captioning [Xu+ 2015], ...
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But...

End-to-end models also have some drawbacks:
• Need a lot of data
• Optimization can be challenging
• Hard to use domain knowledge about intermediate representations
• Hard to interpret intermediate representations =⇒ hard to debug

22 / 28



Idea 1: A hierarchical multitask approach

Joint work with Shubham Toshniwal, Hao Tang, Liang Lu [Interspeech 2017]

• Can we learn better models by explicitly encouraging meaningful
intermediate representations?

• Idea: Combine final task-related loss with lower-level task losses
applied at lower layers
• Final task-related loss: word/character recognition
• Lower-level tasks: phonetic recognition, HMM state classification, ...

• Similar approach recently used by others for a variety of tasks
[Søgaard+ 2016, Hashimoto+ 2016, Weiss+ 2017, Rao+ 2017]
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Baseline encoder-decoder attention model [Chan+ 2015]

y1 y2

x1 x2 x3 x4 x5 x6 x7 x8 xT

GO

CharDec (Lc)

• Speech encoder: Pyramidal bidirectional RNN that
(i) Reads in spectral feature vectors x = (x1, . . . ,xT )

(ii) Outputs a sequence of high-level representation vectors (hidden states)
• Character decoder: Unidirectional RNN that

(i) Uses an attention model to summarize encoder states
(ii) Outputs a sequence of characters y = (y1, . . . , yK)

• Training: Optimizes character log loss Lc
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Adding phoneme-level supervision

$z_1$

$z_1$

$z_2$

     PhoneDec $(L_{p}^{Dec})$ 

   PhoneCTC $(L_{p}^{CTC})$ 

GO

y1 y2

x1 x2 x3 x4 x5 x6 x7 x8 xT

GO

CharDec (Lc)

• Phoneme sequences obtained from a pronunciation dictionary
• Two types of phoneme loss:

(a) Phoneme decoder log loss (LDec
p ),

(b) Softmax layer + CTC loss (LCTC
p )

• Overall training loss: L = 1
2(Lc + Lp).
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Adding state-level supervision

z1 z2

z1

PhoneDec (LDec
p )

State (Ls) s2s1 s3 s4 s5 s6 s7 s8 sT

PhoneCTC (LCTC
p )

y1 y2

x1 x2 x3 x4 x5 x6 x7 x8 xT

GO

CharDec (Lc)

GO

• Frame-level state labels from HMM-based alignments
• Softmax layer + state log loss
• Overall training loss: L = 1

3(Lc + Lp + Ls)

• At test time, only character decoder is used
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Conversational speech recognition results
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Why does multitask learning help?
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Idea 1 summary

• Multitask learning with low-level supervision “gently” reincorporates
domain knowledge into end-to-end neural learning

• Ongoing/future work
• Other lower-level supervision: syllables, articulatory variables, ...
• Higher-level (semantic/syntactic) tasks
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Idea 2: A multi-view approach

Joint work with Qingming Tang, Weiran Wang, Raman Arora, Galen
Andrew, Jeff Bilmes, ... [ICML 2013, ICML 2015, ICASSP 2015, Interspeech 2017]

Idea: Use some other data as a proxy for domain knowledge
• Suppose we can’t get more labeled speech, but we have access to

some data paired with another type of measurement (video,
physiological measurements, ...)
• The additional type of measurement (“view”) is closer to the

“knowledge” we seek
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Multi-view data for speech
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Multi-view representation learning
Training data consists of samples of a d-dimensional random vector that
has some natural split into two sub-vectors:[

x
y

]
, x ∈ Rdx , y ∈ Rdy , dx + dy = d

• Multi-view representation learning: Typically involves learning
representations of each view that are predictive of the other, or that are
common to both

• Intuition: If the noise/nuisance parameters in the two views are independent,
then the shared information must be signal!
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Our setup
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Canonical correlation analysis (CCA)
[Hotelling 1936]

• Given: data set of n paired vectors {(x1, y1), . . . , (xn, yn)}, which
are samples of random vectors X ∈ Rdx , Y ∈ Rdy

• Find: direction vectors v, w that maximize the correlation between
the projections vTX and wTY

• First pair of directions:

v1, w1 = arg max
v,w

corr(vTX,wTY )

= arg max
v,w

vTCxyw√
(vTCxxv)(wTCyyw)

• Subsequent direction vectors maximize the same correlation, subject
to being uncorrelated with the previous directions
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Canonical correlation analysis (CCA)

Solution can be found via an eigenproblem:

C−1
xx CxyC

−1
yy Cyxv = λ2v

w ∝ C−1
yy Cyxv

We use CCA for dimensionality reduction of View 1 (X):
• Compute first k CCA directions
• Project new data from View 1 onto those directions
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Canonical correlation analysis (CCA)

Alternative formulation: Given paired data matrices X and Y , find
V ∈ Rdx×k,W ∈ Rdy×k that

minimize : ||W TY − V TX||F
subject to : V TCxxV = W TCyyW = I
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Deep CCA [Andrew+ 2013]

• Nonlinear extension of CCA
• Each view’s representation is the output of a neural network
• All parameters learned jointly via backpropagation

𝑥 

𝑓 𝑥 = 𝑠(𝑉𝑑ℎ𝑑−1 + 𝑎𝑑) 

ℎ1 = 𝑠(𝑉1𝑥 + 𝑎1) 

ℎ2 = 𝑠(𝑉2ℎ1 + 𝑎2) 

. 

. 

. 

𝑦 

g 𝑦 = 𝑠(𝑊𝑑𝑙𝑑−1 + 𝑏𝑑) 

𝑙1 = 𝑠(𝑊1𝑦 + 𝑏1) 

𝑙2 = 𝑠(𝑊2𝑙1 + 𝑏2) 

. 

. 

. 

max tr(𝑈𝑇  𝑉12 )     
 

s.t.   𝑈𝑇  𝑉 = 𝐼 , 𝑉𝑇  𝑉22 = 𝐼11  
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Deep variational CCA [Wang+ 2016, Tang+ 2017]

• Inspired by generative interpretaion of CCA [Bach & Jordan 2005]

• Loosely, like a multi-view extension of variational autoencoders

y

x

z

hy

hx

p(z)

x y

yxx

p(hx) p(hy)

q(hx|x) q(z|x) q(hy|y)

p(y|z)p(x|z)
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Contrastive loss [Hermann & Blunsom 2014]

Alternative to CCA
• Try to bring paired examples closer together
• While keeping random unpaired examples farther apart by some

margin

min
f,g

1
N

N∑
i=1

max
(
0,m+ dist(f(x+

i ), g(y+
i ))− dist(f(x+

i ), g(y−
i ))

)
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Simulated example: Noisy MNIST digits
A simulated dataset that perfectly satisfies the uncorrelated noise
multi-view assumption
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Noisy MNIST visualization [Wang+ 2015, Wang+ 2016]

Visualization via t-SNE [van der Maaten & Hinton 2008]

CCA

VCCA
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Speech recognition experiments
U. Wisconsin X-ray Microbeam Database (XRMB) [Westbury+ 1994]
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Speech recognition experiments

• Acoustic view: MFCCs concatenated over W frames
• Articulatory view: on horizontal + vertical displacements of 8 pellets,

concatenated over W frames
• 35 speakers for representation learning, 12 for recognition experiments
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Speech recognition results [Tang+ 2017]
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Idea 2 summary

• Multi-view representation learning uses another data view as a proxy
for domain knowledge

• Ongoing work
• Domain-independent multi-view representations
• Combining with the multitask approach: Multi-view representation loss

can be viewed as an additional low-level “task”
• (Aside: Similar methods apply to image+caption representations

[Wang+ 2016], multi-lingual word embeddings [Lu+ 2015])
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Discussion

Domain knowledge is less critical than it has been in the past for certain
data-rich tasks (this is good!)
• But it can help in low-data settings or when optimization is hard
• Two ideas:

• Multitask learning with low-level auxiliary tasks: Low-level tasks
encourage good intermediate representations

• Multi-view representation learning: 2nd view as a proxy for knowledge
Other important settings
• A little annotated data, a lot of unlabeled data −→ unsupervised and

semisupervised approaches
• Annotated data available, but for a different task −→ transfer learning
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