
Exercise 3 – Hello Computation Graph

Yoav Goldberg

In this exercise you will stop computing gradients by hand, and will move on
to using a software library that provides automatic differentiation capabilities
through the computation-graph abstraction.

We will be using computation-graph based software in the following assign-
ments. The purpose of this exercise is to get you a gentle start when the next
assignment arrives.

Part 0 – Choosing a neural network toolkit and making it work
on your computer

Choose a toolkit from the following, install it, read the documentation, and try
to implement something in it.

• DyNet (https://dynet.io/)
This is the software we use for most of the work in the NLP lab. It provides
very good speed on the CPU, decent GPU support, and is very convenient
to work in. We used it to produce several strong publications. This is also
the package which I (Yoav) know best, so I can provide the best low-level
support for.

It may be a bit hard to get to work on Windows (there are windows
installation instructions, but these were never tested, and are not officially
supported. If you are brave you can try it.) But you shouldn’t be using
windows anyway.

You can follow the tutorial here: https://github.com/clab/dynet/blob/
master/examples/python/tutorials/tutorial-1-xor.ipynb

and/or here: https://github.com/clab/dynet_tutorial_examples

• PyTorch (http://pytorch.org)
This is a package in similar spirit to DyNet, but much slower on the CPU,
and does not support automatic batching. On the positive side, it has
good documentation, it quite easy to install, and its backed by Facebook.
For vision stuff, it will be my go-to package. For text and sequences,
DyNet is still better until you start using Transformer-based models, in
which case the PyTorch support will be better.

• TensorFlow (https://www.tensorflow.org/)
This is the famous framework by Google. The webpage leads to a lot of

1

https://dynet.io/
https://github.com/clab/dynet/blob/master/examples/python/tutorials/tutorial-1-xor.ipynb
https://github.com/clab/dynet/blob/master/examples/python/tutorials/tutorial-1-xor.ipynb
https://github.com/clab/dynet_tutorial_examples
http://pytorch.org
https://www.tensorflow.org/

2

very good documentation / tutorials.

This framework is worth knowing because it is very popular in industry
and can produce very fast code on GPU (and OK-ish speed on CPU).
However, unlike the previous packages, it is static, in the sense that while
in the previous packages you create a graph for each example, here you
need to create a single graph at the beginning, and then feed it different
examples. Also, unlike the previous packages, graph creation is a bit more
cumbersome. Later in class, we’ll encounter some examples for networks
which are hard or even very hard to define using the static approach of
TensorFlow (and Theano).

Part 1 – The Language Classification Network

Implement the Log-linear classifier and the MLP1 classifier from Assignment 1
using the toolkit. You should be able to reach very similar accuracies (if not
better) than what you had in Assignment 1.

What to submit?

No need to submit anything. But make sure you manage to properly install and
use your software package of choice. The next assignment will come shortly, and
will assume you know how to write basic stuff in at least one of these libraries.

