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Reminder:  
gradient based training

• Computing the gradients: 
• The network (and loss calculation) is a 

mathematical function. 

• Calculus rules apply. 
• (a bit hairy, but carefully follow the chain rule and 

you'll get there)

`(x, k) = �log(softmax(W3g2(W2g1(W1x+ b1)+b2) + b3)[k])

(chain rule - on whiteboard)



The Computation Graph 
(CG)

• a DAG. 

• Leafs are inputs (or parameters). 

• Nodes are operators (functions). 

• Edges are results (values). 

• Can be built for any function.

RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2014) are designed to
select the learning rate for each minibatch, sometimes on a per-coordinate basis, potentially
alleviating the need of fiddling with learning rate scheduling. For details of these algorithms,
see the original papers or (Bengio et al., 2015, Sections 8.3, 8.4). As many neural-network
software frameworks provide implementations of these algorithms, it is easy and sometimes
worthwhile to try out di↵erent variants.

6.2 The Computation Graph Abstraction

While one can compute the gradients of the various parameters of a network by hand and
implement them in code, this procedure is cumbersome and error prone. For most pur-
poses, it is preferable to use automatic tools for gradient computation (Bengio, 2012). The
computation-graph abstraction allows us to easily construct arbitrary networks, evaluate
their predictions for given inputs (forward pass), and compute gradients for their parameters
with respect to arbitrary scalar losses (backward pass).

A computation graph is a representation of an arbitrary mathematical computation as
a graph. It is a directed acyclic graph (DAG) in which nodes correspond to mathematical
operations or (bound) variables and edges correspond to the flow of intermediary values
between the nodes. The graph structure defines the order of the computation in terms of
the dependencies between the di↵erent components. The graph is a DAG and not a tree, as
the result of one operation can be the input of several continuations. Consider for example
a graph for the computation of (a ⇤ b+ 1) ⇤ (a ⇤ b+ 2):

a b1 2

*
++

*

The computation of a⇤b is shared. We restrict ourselves to the case where the computation
graph is connected.

Since a neural network is essentially a mathematical expression, it can be represented
as a computation graph.

For example, Figure 3a presents the computation graph for a 1-layer MLP with a soft-
max output transformation. In our notation, oval nodes represent mathematical operations
or functions, and shaded rectangle nodes represent parameters (bound variables). Network
inputs are treated as constants, and drawn without a surrounding node. Input and param-
eter nodes have no incoming arcs, and output nodes have no outgoing arcs. The output of
each node is a matrix, the dimensionality of which is indicated above the node.

This graph is incomplete: without specifying the inputs, we cannot compute an output.
Figure 3b shows a complete graph for an MLP that takes three words as inputs, and predicts
the distribution over part-of-speech tags for the third word. This graph can be used for
prediction, but not for training, as the output is a vector (not a scalar) and the graph does
not take into account the correct answer or the loss term. Finally, the graph in 3c shows the
computation graph for a specific training example, in which the inputs are the (embeddings
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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• Create a graph for each 
training example. 

• Once graph is built, we have 
two essential algorithms: 

• Forward:  
compute all values. 

• Backward (backprop): 
compute all gradients.
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Once the graph is built, it is straightforward to run either a forward computation (com-
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as we show below. Constructing the graphs may look daunting, but is actually very easy
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Computing the Gradients 
(backprop)

• Consider the chain-rule 
(example on blackboard) 

• Each node needs to know 
how to: 

• Compute forward. 

• Compute its local 
gradient.



CG Software Packages
• Theano  (Bengio's lab, python, low level, grandfather of CG, retired). 

• Torch  (Lua, wide support, Facebook backed, very fast on GPU, almost retired) 

• Tensor Flow   (Google, python / C++ hybrid) 

• Chainer (python) 

• PyTorch (python, dynamic, by Facebook) 

• DyNet (C++/Python, by Chris Dyer, Graham Neubig, and Yoav Goldberg)  

• Keras  (python, high level, theano/TF backends) 
best bet for out-of-the-box models

shines for dynamic graphs, 
recursive nets



The Python Neural Networks Toolkits 
Landscape (partial)



The Python Neural Networks Toolkits 
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high-level

low-level
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The Python Neural Networks Toolkits 
Landscape (partial)

high-level

static graphs
dynamic graphs

- fast also on CPU 
- automatic batching



The Python Neural Networks Toolkits 
Landscape (partial)

high-level

static graphs
dynamic graphs

- This is what the world is 
using today.



Network Training algorithm:

• For each training example 
(or mini-batch): 

• Create graph for computing loss. 

• Compute loss (forward). 

• Compute gradients (backwards). 

• Update model parameters.x
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DyNet Example
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of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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50 5. NEURAL NETWORKS TRAINING

the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

# model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn
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# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
# and stored in the corresponding
# parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

# model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn
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# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
# and stored in the corresponding
# parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

# model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn
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# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
# and stored in the corresponding
# parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

# model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn
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# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
# and stored in the corresponding
# parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,
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Figure 3: Computation Graph for MLP1. (a) Graph with unbound input. (b) Graph
with concrete input. (c) Graph with concrete input, expected output, and loss
node.

of) the words “the”, “black”, “dog”, and the expected output is “NOUN” (whose index is
5).

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients),
as we show below. Constructing the graphs may look daunting, but is actually very easy
using dedicated software libraries and APIs.

Forward Computation The forward pass computes the outputs of the nodes in the
graph. Since each node’s output depends only on itself and on its incoming edges, it is
trivial to compute the outputs of all nodes by traversing the nodes in a topological order and
computing the output of each node given the already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g. multiplication.
addition, . . . ). Let ⇡(i) be the parent nodes of node i, and ⇡

�1(i) = {j | i 2 ⇡(j)} the
children nodes of node i (these are the arguments of fi). Denote by v(i) the output of node
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the computation. Thus, the gradient of pick(x, 5) is a vector g with the dimensionality
of x where g[5] = 1 and g[i 6=5] = 0. Similarly, for the function max(0, x) the value of
the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic di↵erentiation see [Neidinger, 2010, Section
7], [Baydin et al., 2015]. For more in depth discussion of the backpropagation algorithm
and computation graphs (also called flow graphs) see [Bengio et al., 2016, Section 6.4],
[Bengio, 2012, LeCun et al., 1998b]. For a popular yet technical presentation, see Chris
Olah’s description at http://colah.github.io/posts/2015-08-Backprop/.

5.1.3 SOFTWARE

Several software packages implement the computation-graph model, including Theano1,
TensorFlow2, Chainer3, and CNN/pyCNN4. All these packages support all the essential
components (node types) for defining a wide range of neural network architectures, covering
the structures described in this book and more. Graph creation is made almost transparent
by use of operator overloading. The framework defines a type for representing graph nodes
(commonly called expressions), methods for constructing nodes for inputs and parameters,
and a set of functions and mathematical operations that take expressions as input and result
in more complex expressions. For example, the python code for creating the computation
graph from Figure (5.1c) using the pyCNN framework is:

from pycnn import *

# model initialization.
model = Model()

mW1 = model.add_parameters((20,150))

mb1 = model.add_parameters(20)

mW2 = model.add_parameters((17,20))

mb2 = model.add_parameters(17)

lookup = model.add_lookup_parameters((100, 50))

# Building the computation graph:
renew_cg() # create a new graph.
# Wrap the model parameters as graph-nodes.
W1 = parameter(mW1)

b1 = parameter(mb1)

W2 = parameter(mW2)

b2 = parameter(mb2)

def get_index(x): return 1

# Generate the embeddings layer.
vthe = lookup[get_index("the")]

vblack = lookup[get_index("black")]

vdog = lookup[get_index("dog")]

1
http://deeplearning.net/software/theano/

2
https://www.tensorflow.org/

3
http://chainer.org

4
https://github.com/clab/cnn
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# Connect the leaf nodes into a complete graph.
x = concatenate([vthe, vblack, vdog])

output = softmax(W2*(tanh(W1*x)+b1)+b2)

loss = -log(pick(output, 5))

loss_value = loss.forward()

loss.backward() # the gradient is computed
# and stored in the corresponding
# parameters.

Most of the code involves various initializations: the first block defines model parameters
that are be shared between di↵erent computation graphs (recall that each graph corresponds
to a specific training example). The second block turns the model parameters into the graph-
node (Expression) types. The third block retrieves the Expressions for the embeddings of the
input words. Finally, the fourth block is where the graph is created. Note how transparent
the graph creation is – there is an almost a one-to-one correspondence between creating
the graph and describing it mathematically. The last block shows a forward and backward
pass. The other software frameworks follow similar patterns.

Theano and TensorFlow involve an optimizing compiler for computation graphs,
which is both a blessing and a curse. On the one hand, once compiled, large graphs can be
run e�ciently on either the CPU or a GPU, making it ideal for large graphs with a fixed
structure, where only the inputs change between instances. However, the compilation step
itself can be costly, and it makes the interface a bit cumbersome to work with. In contrast,
the other packages focus on building large and dynamic computation graphs and execut-
ing them “on the fly” without a compilation step. While the execution speed may su↵er
with respect to Theano and TensorFlow’s optimized version, these packages are especially
convenient when working with the recurrent and recursive networks described in chapters
14 and 18 as well as in structured prediction settings as described in chapter 19. Finally,
packages such as Keras5 provide a higher level interface on top of packages such as Theano
and TensorFlow, allowing the definition and training of complex neural networks with even
fewer lines of code.

5.1.4 IMPLEMENTATION RECIPE

Using the computation graph abstraction, the pseudo-code for a network training algorithm
is given in Algorithm 5.

Here, build computation graph is a user-defined function that builds the computation
graph for the given input, output and network structure, returning a single loss node.
update parameters is an optimizer specific update rule. The recipe specifies that a new
graph is created for each training example. This accommodates cases in which the network
structure varies between training example, such as recurrent and recursive neural networks,

5
https://keras.io



Questions?


