Back-propagation and Computation Graph

Yoav Goldberg

Reminder: gradient based training

- Computing the gradients:
 - The network (and loss calculation) is a mathematical function.

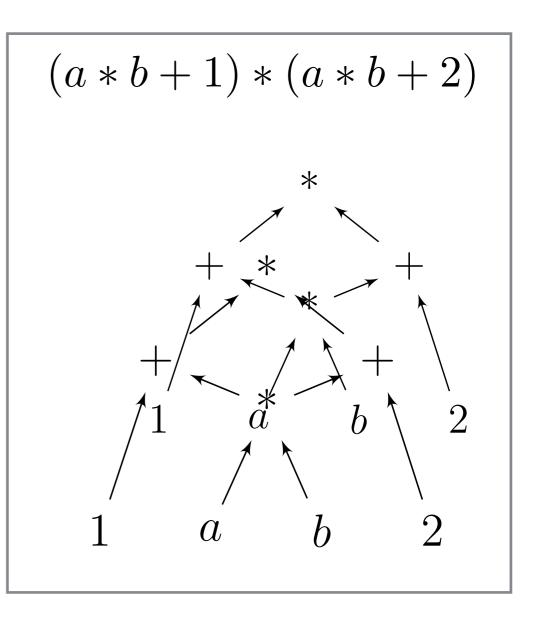
 $\ell(x,k) = -log(softmax(\mathbf{W}^3g^2(\mathbf{W}^2g^1(\mathbf{W}^1x + \mathbf{b}^1) + \mathbf{b}^2) + \mathbf{b}^3)[k])$

- Calculus rules apply.
- (a bit hairy, but carefully follow the chain rule and you'll get there)

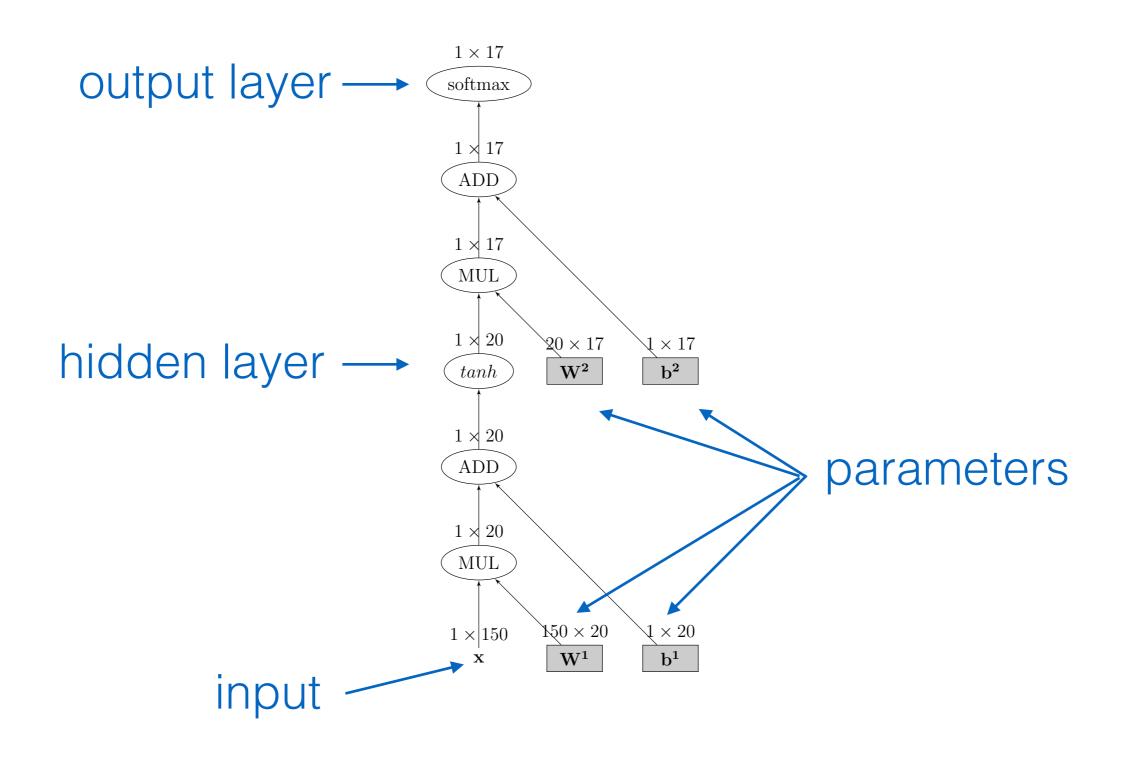
(chain rule - on whiteboard)

The Computation Graph (CG)

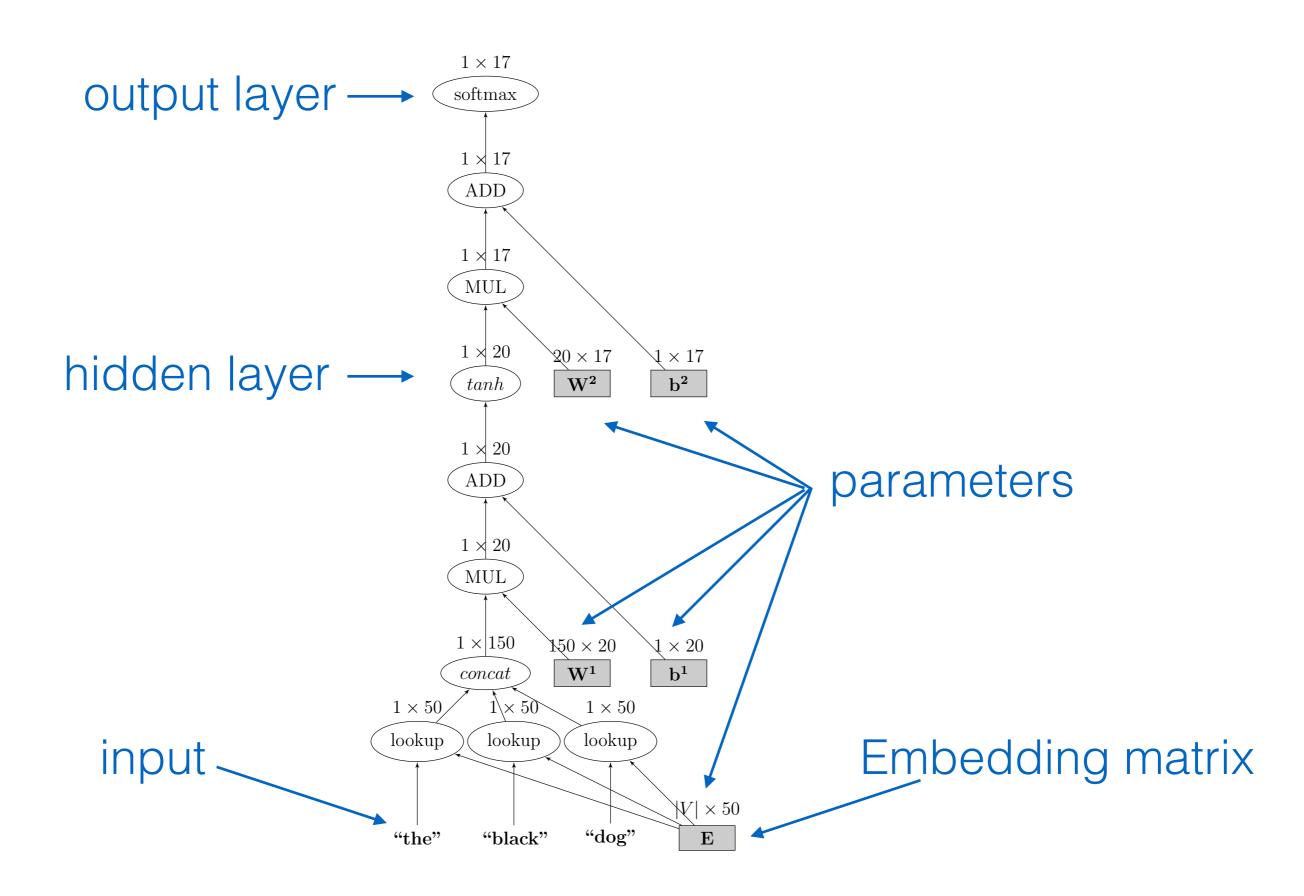
- a DAG.
- Leafs are inputs (or parameters).
- Nodes are operators (functions).
- Edges are results (values).
- Can be built for any function.

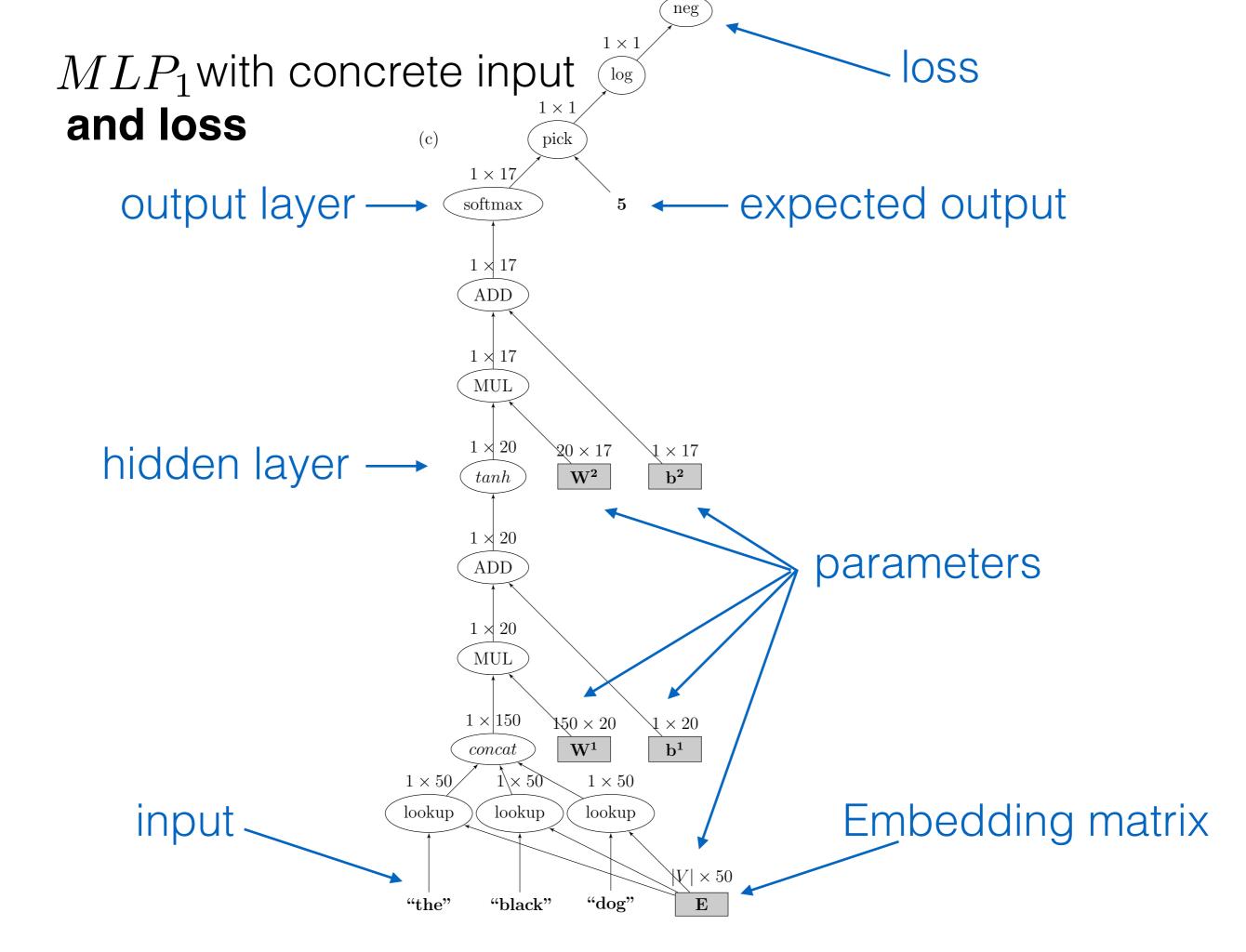


 MLP_1

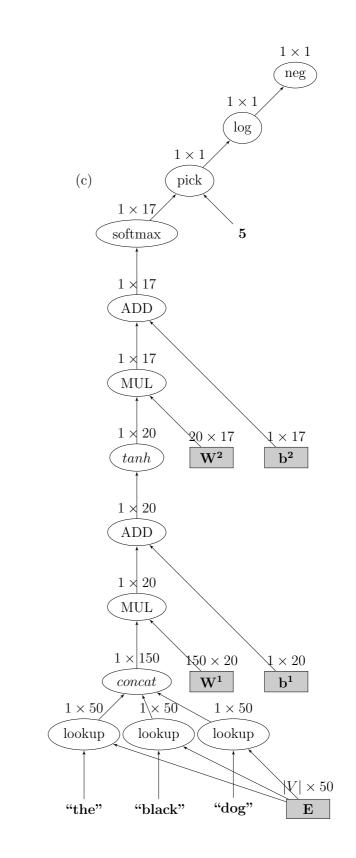


MLP_1 with concrete input



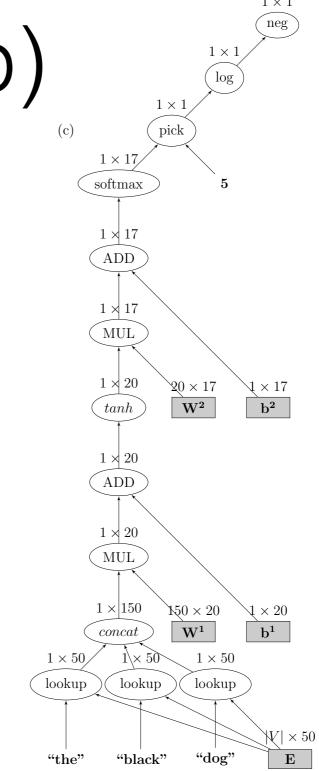


- Create a graph for each training example.
- Once graph is built, we have two essential algorithms:
 - Forward: compute all values.
 - Backward (backprop): compute all gradients.



Computing the Gradients (backprop)

- Consider the chain-rule (example on blackboard)
- Each node needs to know how to:
 - Compute forward.
 - Compute its **local** gradient.



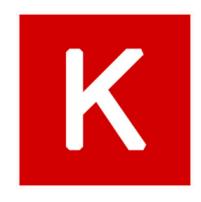
CG Software Packages

- Theano (Bengio's lab, python, low level, grandfather of CG, retired).
- Torch (Lua, wide support, Facebook backed, very fast on GPU, almost retired)
- Tensor Flow (Google, python / C++ hybrid)
- Chainer (python)
 shines for dynamic graphs,
- PyTorch (python, dynamic, by Facebook)
- DyNet (C++/Python, by Chris Dyer, Graham Neubig, and Yoav Goldberg)
- Keras (python, high level, theano/TF backends)

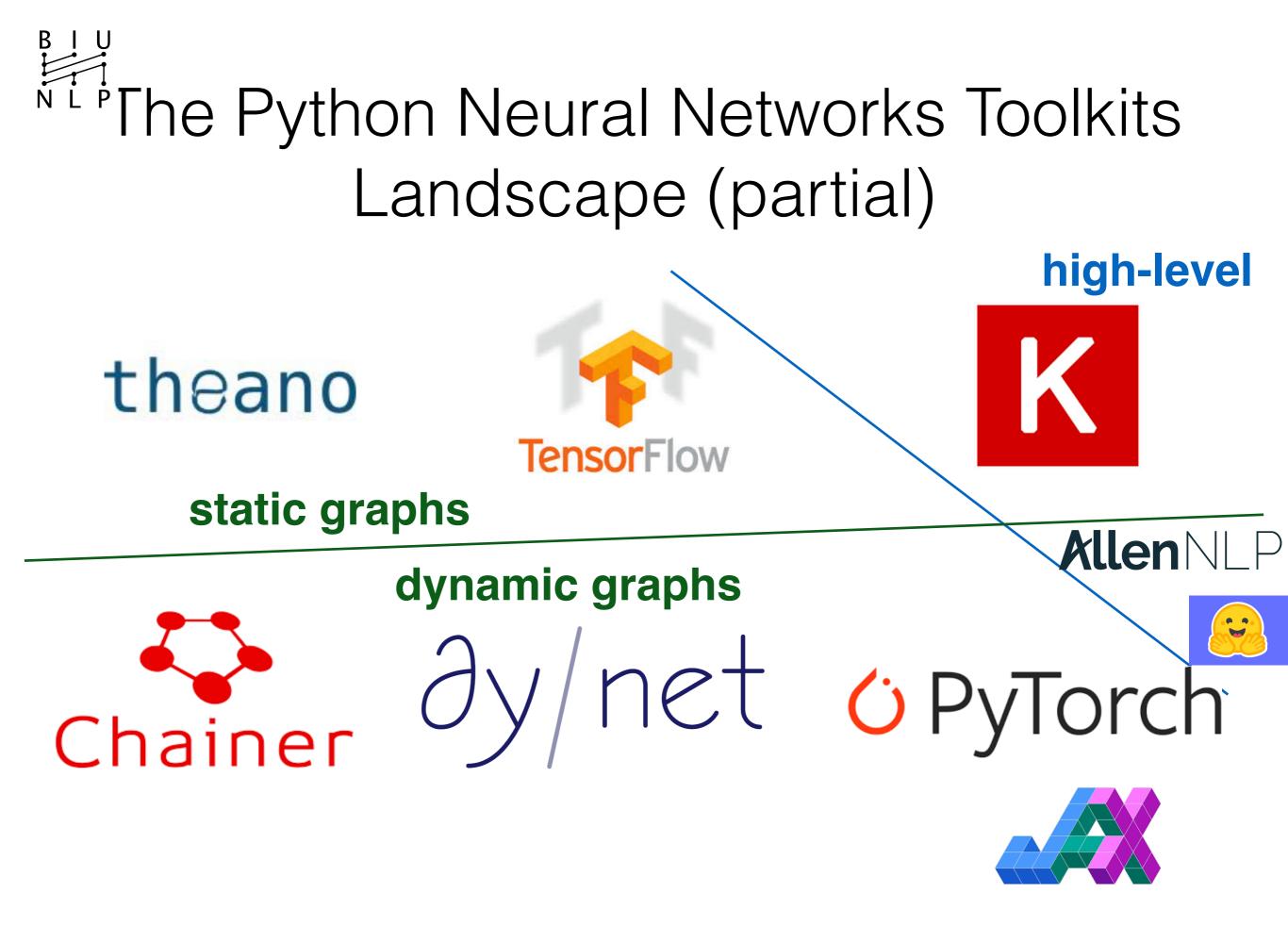
best bet for out-of-the-box models

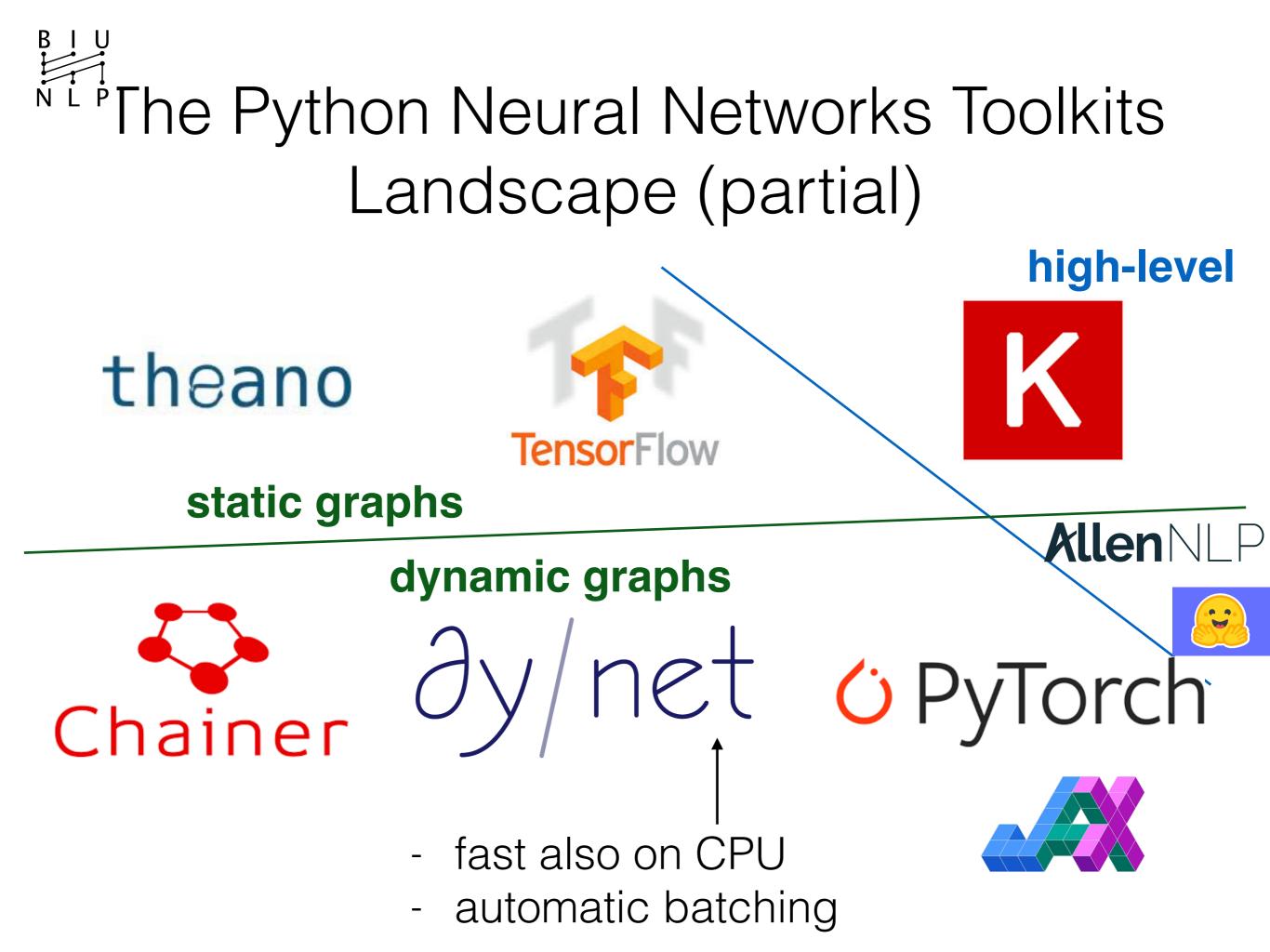
recursive nets

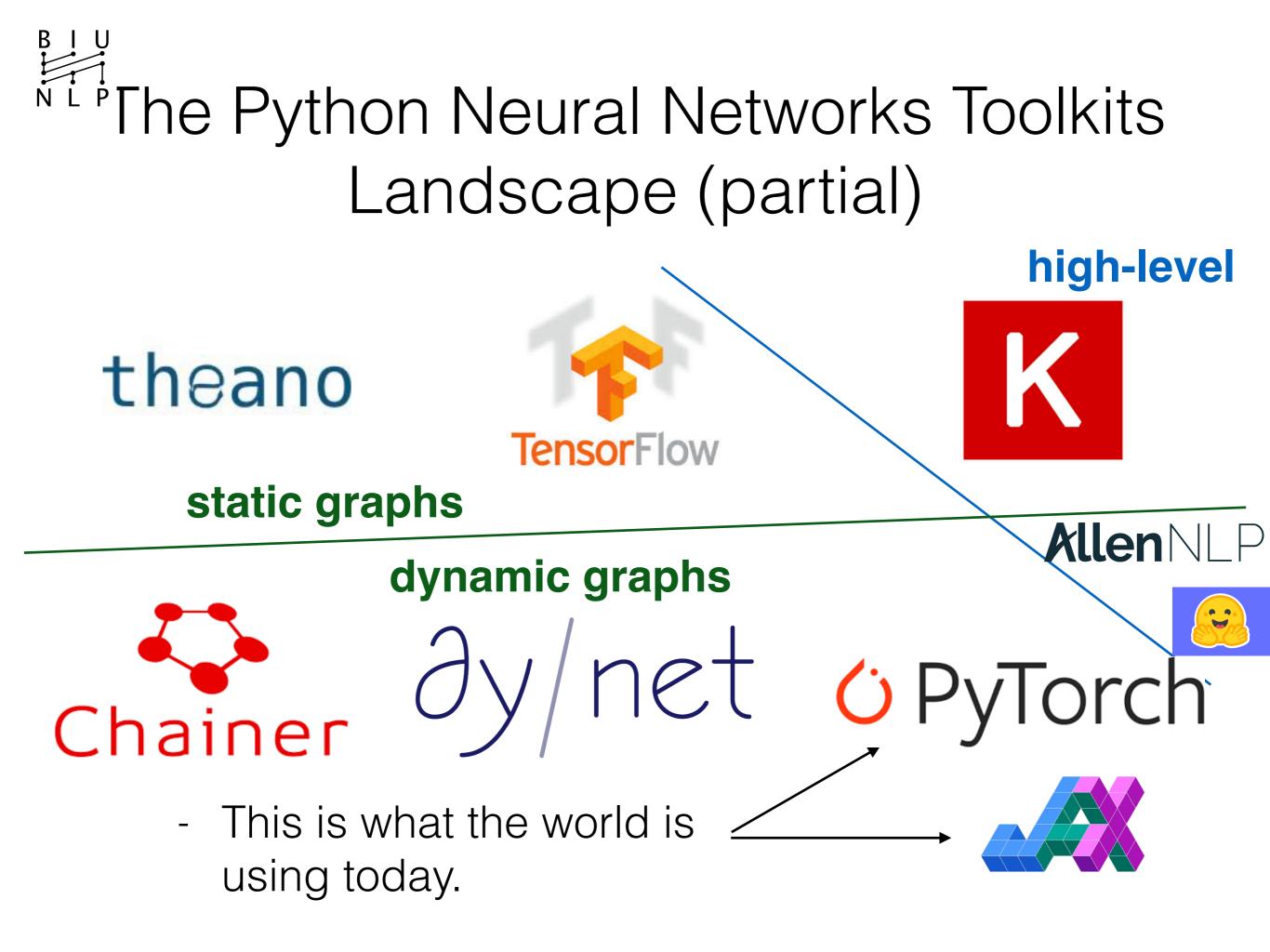
Landscape (partial)



[•]The Python Neural Networks Toolkits Landscape (partial) high-level theano **Tensor**Flow **low-level** AllenNLP dy/net OpyTorch Chainer

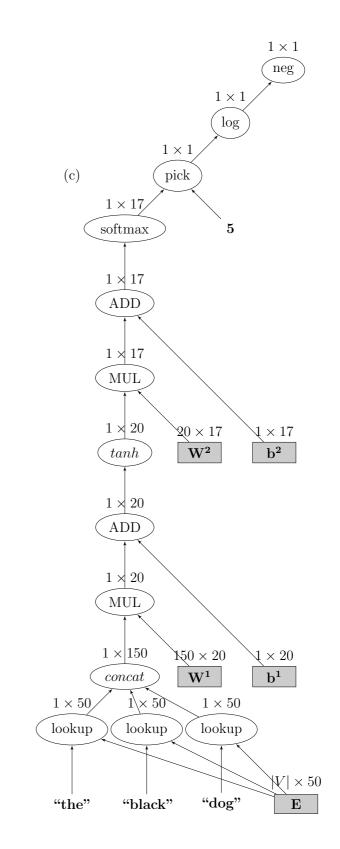


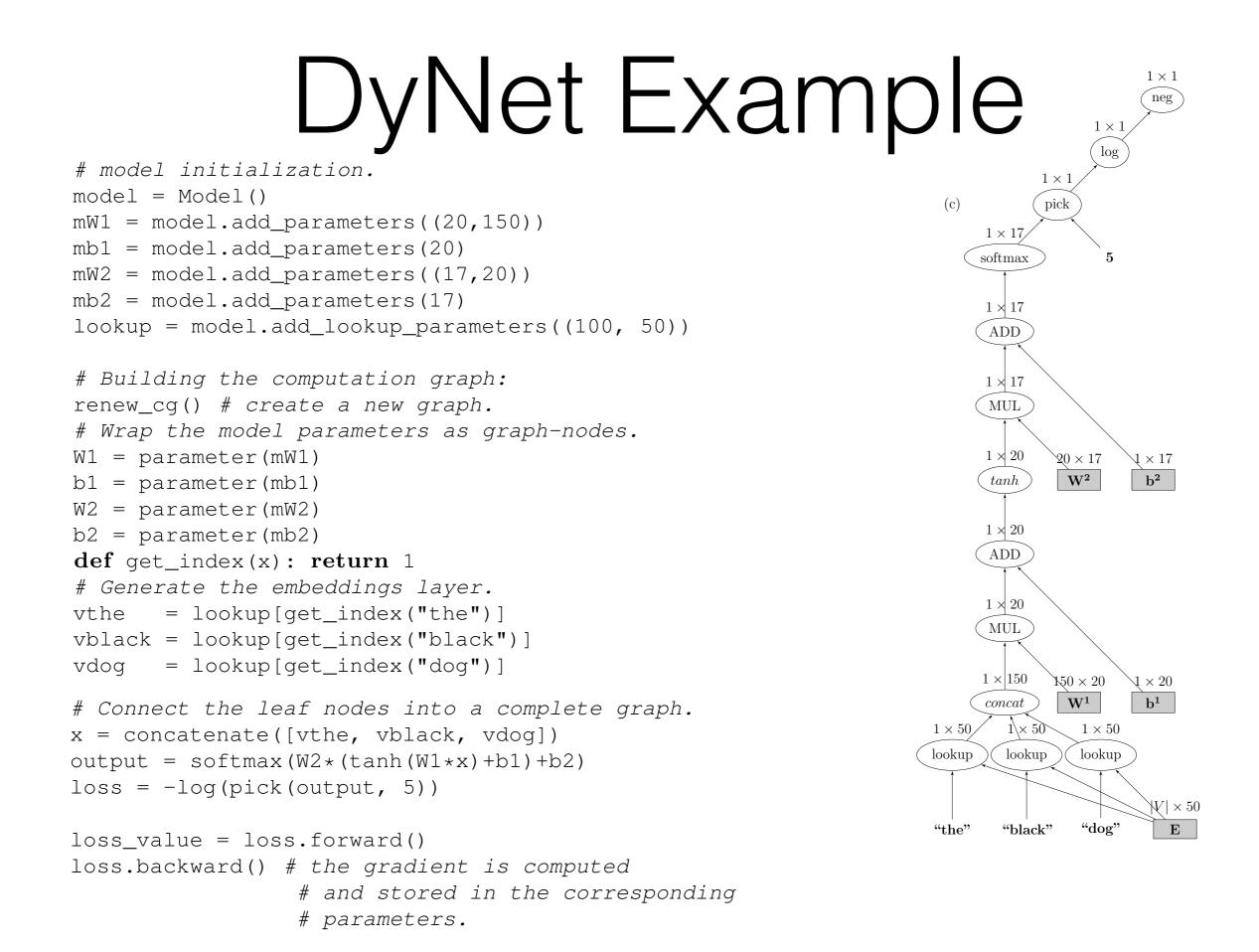


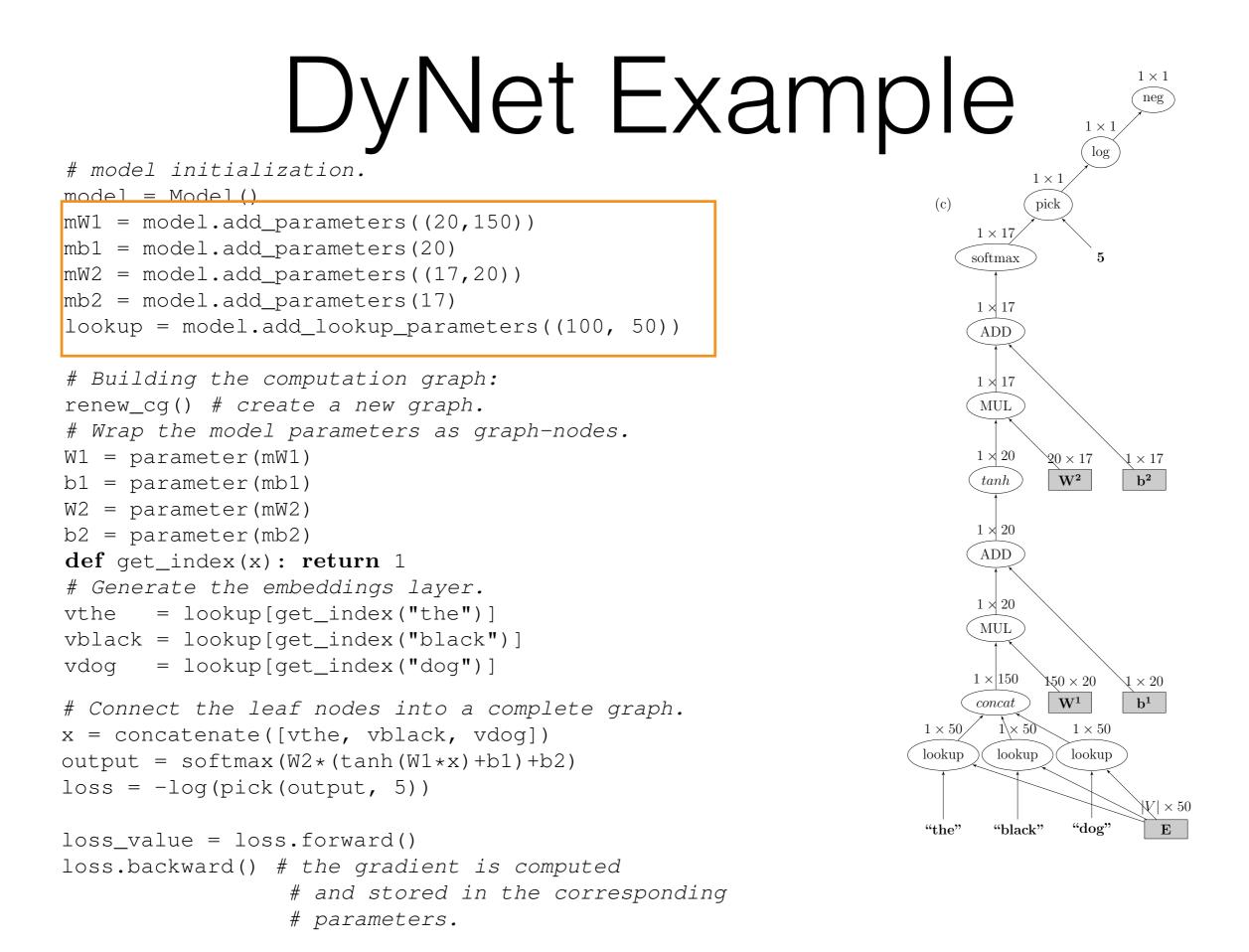


Network Training algorithm:

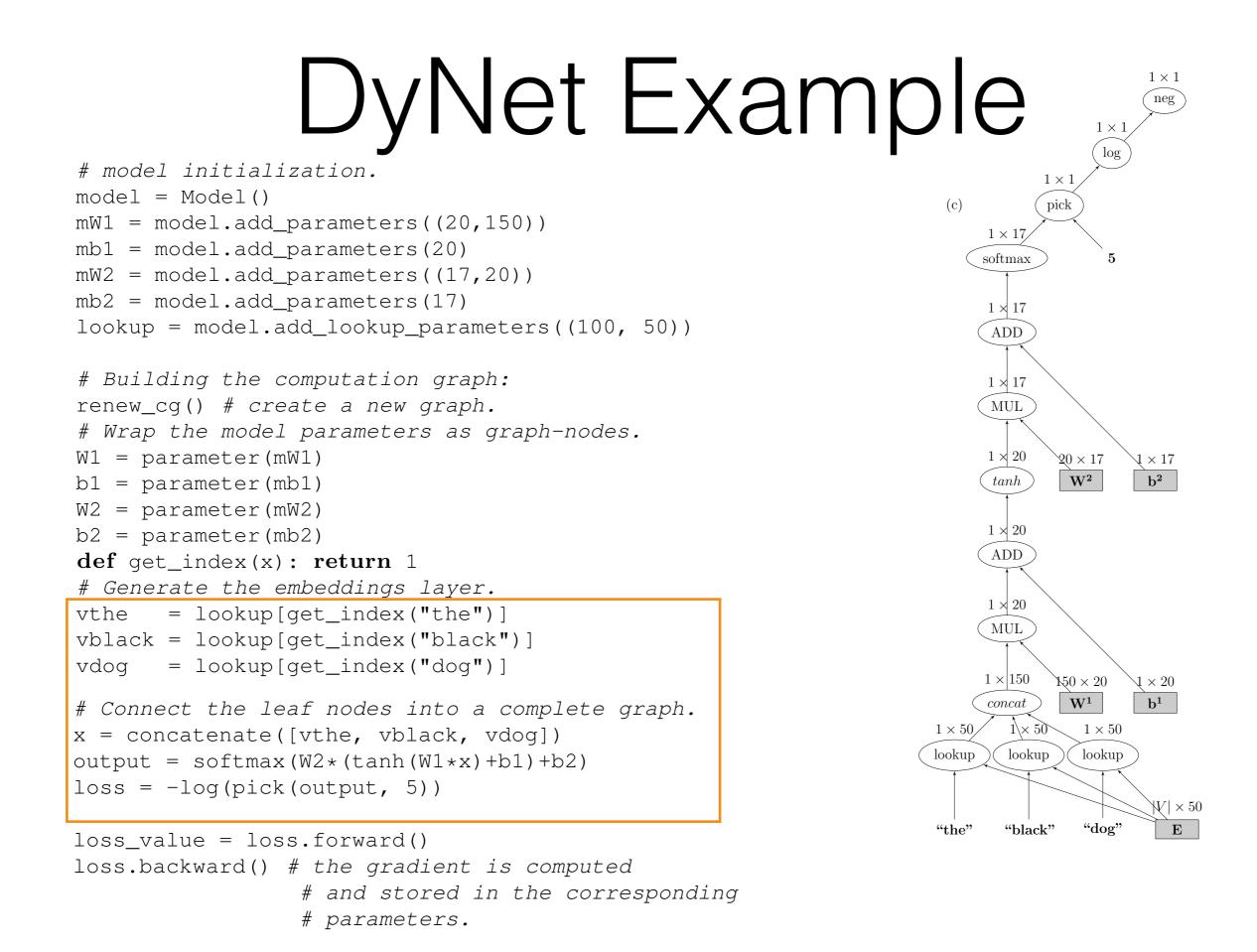
- For each training example (or mini-batch):
 - Create graph for computing loss.
 - Compute loss (forward).
 - Compute gradients (**backwards**).
 - Update model parameters.

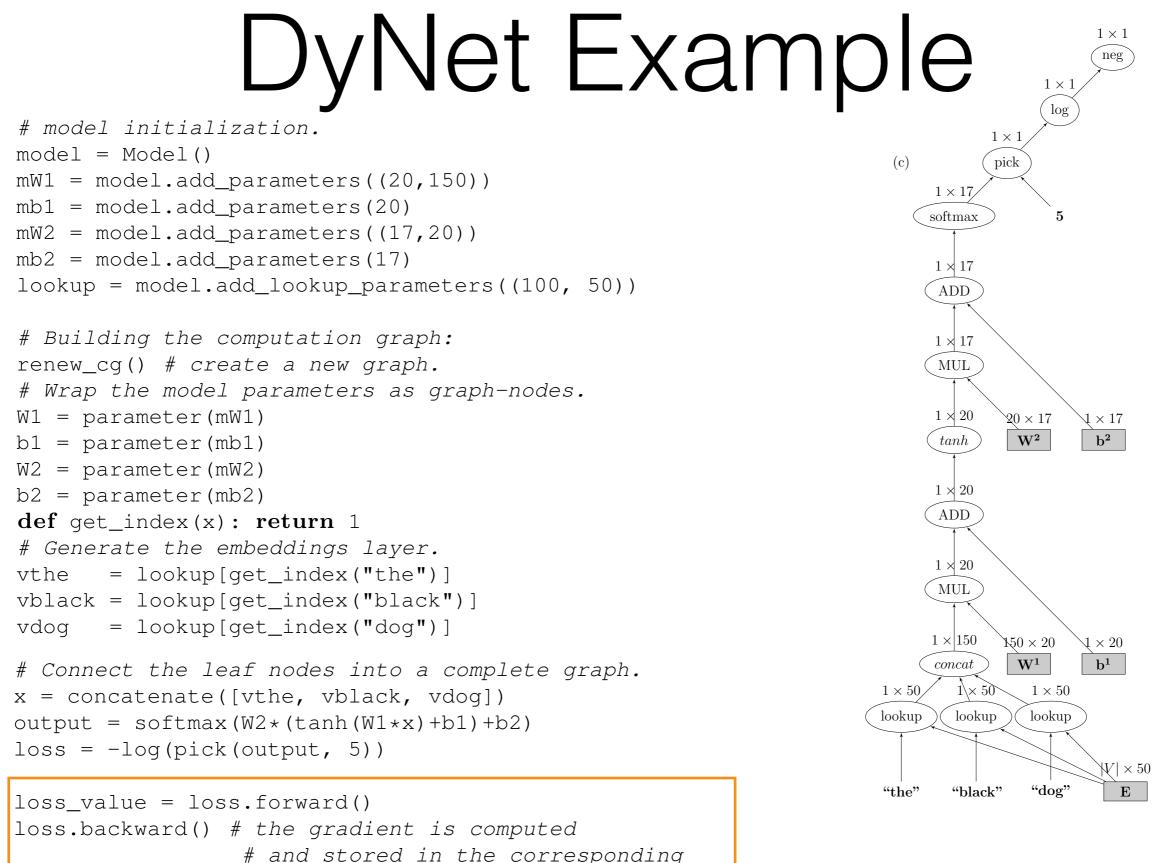






DyNet Example 1×1 neg 1×1 \log # model initialization. 1×1 model = Model() (c) pick mW1 = model.add parameters((20, 150)) $1 \times 17/$ mb1 = model.add_parameters(20) softmax $\mathbf{5}$ mW2 = model.add_parameters((17,20)) mb2 = model.add_parameters(17) 1×17 lookup = model.add_lookup_parameters((100, 50)) ADD # Building the computation graph: 1×17 renew_cq() # create a new graph. MUL # Wrap the model parameters as graph-nodes. W1 = parameter(mW1) 1×20 20×17 1×17 \mathbf{W}^2 $\mathbf{b^2}$ tanhb1 = parameter(mb1)W2 = parameter(mW2) 1×20 b2 = parameter(mb2)ADD **def** get_index(x): return 1 # Generate the embeddings layer. 1×20 = lookup[get_index("the")] vthe MUL vblack = lookup[get_index("black")] = lookup[get_index("dog")] vdoq $1 \times |150$ 150×20 1×20 \mathbf{W}^{1} $\mathbf{b^1}$ concat# Connect the leaf nodes into a complete graph. 1×50 1×50 1×50 x = concatenate([vthe, vblack, vdog]) lookup lookup lookup output = softmax($W2 \star (tanh(W1 \star x) + b1) + b2$) loss = -log(pick(output, 5)) $|V| \times 50$ "the" "black" "dog" \mathbf{E} loss value = loss.forward() loss.backward() # the gradient is computed # and stored in the corresponding # parameters.





parameters.

Questions?