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About the exam



Exam

• 3 hours (maybe not all of it will be needed)


• Open materials

everything said in class is fair game.
and also elaborations of the ideas in class.



Exam
• You need to be able to read and write ML models 

as precise mathematical formulas.


• You need to be able to suggest modification to 
models, and express them in writing / math.


• Calculate sizes of networks, rough estimate on 
runtime (which operations are expensive which are 
cheap), number of parameters of different models.



Exam

• "Will this network run faster on a CPU or a GPU?"


• Which changes to this network will make it work 
faster without sacrificing much power?



Exam
• You need to be able to give names to equation.  

- "this is a differentiable gate".  
- "this is an MLP".  
- "this is attention". 
- "this is regularization". 
...


• You need to be able to explain concepts ("what is 
dropout?")


• "here are the equations of an LSTM. Modify them to add 
regularization on the bias term of the input gate".



Exam

• What can and cannot be optimized with gradient 
descent?



Exam

• Think about loss functions


• Think about what a given architecture or 
representation can and cannot do


• "which of these systems produced this output"?



Exam

• Be able to think critically about design choices and 
their implications.



Exam
• Window vs RNN vs CNN vs Dilated CNN vs...


• Pre-trained embeddings, how to use them?


• How to represent words?


• LSTM Transducer vs Seq2Seq


• Attention vs. no Attention


• Softmax+cross-entropy vs margin loss 


• Different pre-training architectures / choices



Exam

• "someone suggested to take architecture X and 
replace equation number (4) with .... 
 
is it a good/bad idea? why? 
what will happen? 
do you need to do additional changes for this to 
work?"



Exam
• What do learning curves mean?


• How would you change a system to perform 
better? to do X?


• "Here is a system with some parameters. Here is a 
learning curve. Here is another learning curve. 
Which parameters did we change to get to the new 
curve?"



Embedding Projections



Motivation - Mikolov et al. 2013

• “Exploiting Similarities among 
Languages for Machine 
Translation” - Mikolov, Le & 
Sutskever, 2013


• Observed a similar structure in 
unsupervised embedding 
spaces of different languages, 
after rotation


• Learned a rotation matrix to 
translate words from one 
embedding space to another with 
some success


• Weakly supervised - requires a 
small dictionary (5000 entries)

(also, Haghighi and Klein, 2008)
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Motivation - Mikolov et al. 2013

• Learned a rotation matrix to translate words from one 
embedding space to another with some success

argmin
M

X

xi,yi2pairs

||Mxi � yi||22



Motivation - Mikolov et al. 2013

• Learned a rotation matrix to translate words from one 
embedding space to another with some success

argmin
M

X

xi,yi2pairs

||Mxi � yi||22

= argmin
M

||ME1 � E2||22



argmin
M

X

xi,yi2pairs

||Mxi � yi||22

= argmin
M

||ME1 � E2||22

• Artetxe, Labake & Agirre, ACL 2017:


• Use numbers as the initial pivot items.


• Do it an an iterative procedure.



argmin
M

X

xi,yi2pairs

||Mxi � yi||22

= argmin
M

||ME1 � E2||22

• Artetxe, Labake & Agirre, ACL 2017:


• Use numbers as the initial pivot items.


• Do it an an iterative procedure.

(also, can be solved exactly with SVD)



Beyond language-to-language

• Words from 1900 to words in 1990


• Words from young speakers to old speakers


• Words from left-wing to right-wing writers


• ....



Adversarial Examples
and now for something completely different



(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted
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the original training set all the time. We used weight decay, but no dropout for this network. For
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Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
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Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
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the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �
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of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy
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ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
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camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
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Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �
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w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy
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Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.
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Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �
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i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy
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Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.
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Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
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+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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EXPLAINING AND HARNESSING
ADVERSARIAL EXAMPLES

Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy
Google Inc., Mountain View, CA
{goodfellow,shlens,szegedy}@google.com

ABSTRACT

Several machine learning models, including neural networks, consistently mis-
classify adversarial examples—inputs formed by applying small but intentionally
worst-case perturbations to examples from the dataset, such that the perturbed in-
put results in the model outputting an incorrect answer with high confidence. Early
attempts at explaining this phenomenon focused on nonlinearity and overfitting.
We argue instead that the primary cause of neural networks’ vulnerability to ad-
versarial perturbation is their linear nature. This explanation is supported by new
quantitative results while giving the first explanation of the most intriguing fact
about them: their generalization across architectures and training sets. Moreover,
this view yields a simple and fast method of generating adversarial examples. Us-
ing this approach to provide examples for adversarial training, we reduce the test
set error of a maxout network on the MNIST dataset.

1 INTRODUCTION

Szegedy et al. (2014b) made an intriguing discovery: several machine learning models, including
state-of-the-art neural networks, are vulnerable to adversarial examples. That is, these machine
learning models misclassify examples that are only slightly different from correctly classified exam-
ples drawn from the data distribution. In many cases, a wide variety of models with different archi-
tectures trained on different subsets of the training data misclassify the same adversarial example.
This suggests that adversarial examples expose fundamental blind spots in our training algorithms.

The cause of these adversarial examples was a mystery, and speculative explanations have suggested
it is due to extreme nonlinearity of deep neural networks, perhaps combined with insufficient model
averaging and insufficient regularization of the purely supervised learning problem. We show that
these speculative hypotheses are unnecessary. Linear behavior in high-dimensional spaces is suf-
ficient to cause adversarial examples. This view enables us to design a fast method of generating
adversarial examples that makes adversarial training practical. We show that adversarial training can
provide an additional regularization benefit beyond that provided by using dropout (Srivastava et al.,
2014) alone. Generic regularization strategies such as dropout, pretraining, and model averaging do
not confer a significant reduction in a model’s vulnerability to adversarial examples, but changing
to nonlinear model families such as RBF networks can do so.

Our explanation suggests a fundamental tension between designing models that are easy to train due
to their linearity and designing models that use nonlinear effects to resist adversarial perturbation.
In the long run, it may be possible to escape this tradeoff by designing more powerful optimization
methods that can succesfully train more nonlinear models.

2 RELATED WORK

Szegedy et al. (2014b) demonstrated a variety of intriguing properties of neural networks and related
models. Those most relevant to this paper include:

• Box-constrained L-BFGS can reliably find adversarial examples.
• On some datasets, such as ImageNet (Deng et al., 2009), the adversarial examples were so

close to the original examples that the differences were indistinguishable to the human eye.
• The same adversarial example is often misclassified by a variety of classifiers with different

architectures or trained on different subsets of the training data.
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(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6



(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

all of the images

on the right 


are categorized as

"ostrich"



Visible Localized Noise



Visible Localized Noise

Quail (99.8%) ! Spiny Lobster (94.6%) Couch (99.4%) ! Go-Kart (98.09 %)

Figure 1: Images with visible localized noise. Noise was generated for a specific input and location.
Less than 2% of pixels are noised.

As a consequence, the resulting adversarial patches are relatively large (on a white-box setup, the
generated noise has to cover about 10% of the image to be effective in about 90% of the tested
conditions, and a disguised patch has to cover about 35% of the image for a similar result) and also
visually resemble the target class to some extent. We do not attempt to produce a physical attack,
and are more interested in investigating the blind-spots of state-of-the-art image classifiers, and the
noise that can cause them to misclassify.

We show that in a white-box setting, we can generate localized visible noise that can be transferred
to almost arbitrary images, covers only up to 2% of the image, looks like static noise to a person,
does not cover any part of the main object in the image, and yet manages to make the network
misclassify with very high confidence. By inspecting the gradients of the network over the noised
images, we show that the network has very little knowledge about the source of the attack, and does
not seem to associate the target class with the noise. This is in contrast to the hypothesis posed in [4],
in which the noise is said to be “much more salient” to the neural network than real-world objects.

The localized noises we generate are universal in the sense that they can be applied to many different
images and locations. However, they are specific to a model they were trained on (i.e., equivalent to
the white-box setups in [4]).

2 Localized noise for a single image and location

In the first setup, we explore generating a visible but localized adversarial noise that is specific to a
single image and location.

2.1 Setting and Method

Our method mostly follows that standard adversarial noise generation setup: we assume access to a
trained model M that assigns membership probabilities pM (y|x) to input images x 2 Rn=w⇥h⇥c.
We denote by ~y = pM (x) the vector of all class probabilities, and by y = argmaxy0 pM (y =
y0|x) the highest scoring class for input x (the classifier’s prediction). Let ysource be the classifier’s
prediction on input x (the source class). We seek an image x0 that is classified by the network as
ytarget (the target class). The image x0 is composed of the original image with an additive noise
e 2 Rn: x0 = x+ e.

This is cast an optimization problem, seeking a value e to to maximize pM (y = ytarget|x + e). The
noise e can be found using a stochastic gradient based algorithm.

We depart from this standard methodology by:

1. We want the noise e to be confined to a small area over the image x. This is achieved by
setting a mask m 2 {0, 1}n, and taking the noised image to be (1�m)�x�m�e, where
� is element-wise multiplication.

2. Instead of training the noise to maximizing the probability of the target class, or to minimize
the probability of any other class (including the source class), we use a loss that does

2



Visible Localized Noise

Bald Eagle Baseball Chain Saw Cock

Drumstick Fur Coat iPod Jaguar

Milk Can Mitten Monitor Muzzle

Printer Rock Beauty (Fish) Shih-Tzu (Dog) Tiger Cat

Tree Frog Volcano Vulture Whippet (Dog)

Table 1: Transferable noises for different target classes
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3.1 Method

We extend the localized noising process in Algorithm 1 by choosing, at each iteration, a random
image x from a “training set” of 100 images, and a random location. We adjust the noise vector
and the mask so that they correspond to the target location, apply the noise to the image, and take
a gradient step over the noise away from the source class of x and towards the shared target class
ytarget. Thus, at each iteration the same noise is applied on a random image and location YG: how are
the locations selected?DK: Randomly selected as mentioned. This is very similar to the algorithm
presented in [4], with a somewhat different loss function, as described above. We stopped the noise
generation process after the prediction model misclassifies with the desired confidence (i.e. Target
class probability � 0.9) for 30 consecutive iterations. Overall we generated trasferable noise patches
for 20 different targets, as presented in Table ??.

3.2 Experiments and Results

Mailbox (99.9%) ! Tiger Cat (91.8%) African-Elephant (92.8%) ! Baseball (90.7%) Sports Car (92.8%) ! Shih-Tzu (90.7%)

Daisy (95.6%) ! Tree Frog (96.4%) Brown Bear (87.9%) ! Tree Frog (82.7%) Minivan (90.7%) ! Tree Frog (86.4%)

Figure 2: Transferable localized noise. 4 different noise patches, any of them can work on different
images and locations. Notice that the same patch was used for all three images in the second row.

We first provide anecdotal results of applying a trained noise to unseen images. Figure 2 show some
examples of images with transferable noises. We used a separate test set for evaluating, consisting
100 images for the ImageNet data set, and placed each transferable noise patch on each image on
the bottom right corner. Though only 43% of the our attempts made the model predict the target
class with confidence � 0.9 and 89% as most likely one, in 100% of the cases the transferable noise
patches made the model predict anything but the source class (i.e eiher target or any other class).

We further evaluate the strength and impact of the transferable noises. This time we placed each
noise patch on every second pixel, assuming the noise can be placed there, in the every image in the
test set. We evaluated the model’s prediction using to two metrics: 1. probability for both the target
and the source classes. 2. argmax indication (i.e whether the class received the highest probability
among other class) for target, source and neither classes. Table 5 DK: Should be Table 3 and not 5
shows the network’s predictions when applying the noise to different unseen image locations.

The transferable noise was effective in 98% of the locations in average, and made the model not
predict the original-source class. In average, 82% of the possible locations the target class received
a score � 0.9.

4 How is the noise perceived by the network?

We managed to generate small transferable, localized noise that fools a state-of-the-art network into
misclassifying an example.

In [4], the authors suggest that the localized noise works because it is much more salient than natural
looking objects in the scene, capturing all of the network’s attention. To try and examine this claim,
we take some noised images and attempt to “fix” them.
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comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �
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i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy
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els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
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the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �
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i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
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the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �
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FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
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Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
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the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �
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i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy
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Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �
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i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy
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the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �
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FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
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the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �
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clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

how does one

find the misleading images?

neural network

training: 

gradient decent on parameters


to get correct predictions.

adversarial: 

parameters fixed.


gradient descent on input

to get desired prediction

y = f(x+ �, ✓)

find small delta  
to get desired y


for given params
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Interesting open problems

• How to train a network which is robust to 
adversarial attacks.


• How to identify adversarial examples?


• How to generate adversarial examples for 
sequences?
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Adversarial Examples: 
Interesting open problems

• How to train a network which is robust to 
adversarial attacks.


• How to identify adversarial examples?


• How to generate adversarial examples for 
discrete sequences?



Very brief intro: GANs



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

10
5

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Adversarial Feature 
Learning
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• Generative adversarial networks
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• Why adversaries over features? 
• Non-generative tasks 
• Continuous features easier than discrete outputs
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• Why adversaries over features? 
• Non-generative tasks 
• Continuous features easier than discrete outputs

Train h to not know something



Input

Network

(encoder)

task1 classifier

representation

x

h(x)

f(h(x))



Input

Network

(encoder)

task1 classifier

representation

adversary

(task 2)

x

h(x)

adv(h(x))f(h(x))



Adversarial Feature Learning

vs


Multi-task Learning

(discuss)



Learning Language-
invariant Representations

• Chen et al. (2016) learn language-invariant 
representations for text classification

• Also on multi-lingual machine translation (Xie et al. 
2017)



How do we train this in practice?
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f(h(x))

gradient reversal layer



Learning Domain-invariant 
Representations (Ganin et al. 2016)

• Learn features that cannot be distinguished by domain

• Interesting application to synthetically generated or stale 
data (Kim et al. 2017)



Another information 
removal method: INLP

• "Iterative Null-space Projection"


• Goal: a representation h' such that no linear 
classifier can predict Z from h'.


• Main idea:  
   train classifier c1.  
   find its null-space. 
   project rep representation to null-space. 
   train classifier c2 on result. 
   find its null-space...
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more stable than gradient reversal


less heuristic
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Another information 
removal method: INLP

• "Iterative Null-space Projection"


• Goal: a representation h' such that no linear 
classifier can predict Z from h'.


• Main idea:  
   train classifier c1.  
   find its null-space. 
   project rep representation to null-space. 
   train classifier c2 on result. 
   find its null-space...



Ethics
"think about what you create and how."



should we built this?
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user tracking for IDF?



should we built this?
"online gaming"?

user tracking for oppressive governments?

user tracking for ads?

user tracking for IDF? use your

own judgement









Who will gain from this?

Who will suffer from this?



Ethics
• Your system will operate in the real world.


• It's decisions will affect real people.


• The fact that something is automated/algorithmic/ 
learned does not mean it is objective/clean/
harmless/safe


• Someone designed the algorithm.  
Someone created the training data.



Ethics

algorithms are opinions embedded in code


ML models automate the status quo

- Cathy O'neil



Ethics

algorithms are opinions embedded in code


ML models automate the status quo

- Cathy O'neil



Ethics

some things are obvious, other are more subtle



Ethics

• The "Gorilla" case.



http://www.bbc.com/news/technology-33347866

http://www.bbc.com/news/technology-33347866


http://www.bbc.com/news/technology-33347866

http://www.bbc.com/news/technology-33347866




Why did it happen?  
How can we treat this?

• [discuss]



solution?
don't say anything is a gorilla

https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/

https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/


ML impacts millions of people everyday


And it also propagates biases in unknown ways






Real-world interactions



how will such a system interact with the real world?

feedback loops...

Real-world interactions



Real-world interactions
• "Predictive policing"


• Use ML to decide where to send police patrols


• ...based on previous crime statistics


• ...reported to the police, and handled by police


• What's the result of this?
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Real-world interactions
• "Predictive policing"


• Use ML to decide where to send police patrols


• ...based on previous crime statistics


• ...reported to the police, and handled by police


• What's the result of this?
feedback loops!


causality!arrests data != crime data
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• "Crowd-based Video recommendation"


• YouTube suggests what to watch next based 
on past user behavior.


• What are the implications?



Real-world interactions

• "Crowd-based Video recommendation"


• YouTube suggests what to watch next based 
on past user behavior.


• What are the implications?

- People watch more videos, metrics go up

- but which videos are we watching? 

- are we happy with this?



Real-world interactions
• "Teacher Assessment"


• Teacher is good if many students pass exam.


• What can happen?


• Teacher is good if many students pass standardized 
exams.
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Real-world interactions
• "Teacher Assessment"


• Teacher is good if many students pass exam.


• What can happen?


• Teacher is good if many students pass standardized 
exams.


• What can happen?

- factors beyond teacher affect scores

- influence on teacher's career

- influence on teacher's choices and the world



Meaning of a mistake

• What can happen if your system is 100% accurate?


• What can happen if your system is 90% accurate?


• Are the mistakes evenly distributed?



• A deep learning system that predicts IQ scores 
based on face images.


• What if it is 100% accurate?


• What if it is 90% accurate on females?


• ... and 60% accurate on blonde females 
aged < 25?

Meaning of a mistake



ML encodes bias

• What biases do you encode into your system?


• Intentionally


• Unintentionally


• Who will be affected?



Ethics
• Some possible sources of problems:


• Bias in training data


• In p(y)


• In p(x)


• In p(y|x)


• In p(x|y)


• Architecture, Features, Loss function


• Bias in outputs


• Feedback loops

bad data -> bad models


data is based on people...



Ethics in ML: 

Some resources

http://www.fatml.org/



Ethics in ML: 

Some resources

http://demo.clab.cs.cmu.edu/ethical_nlp/







Ethics
• Machine learning and Data Science gives great 

power.


• With great power comes great responsibility.


• Think about what you build and why.


• I hope you enjoyed the course.


