Simple Probabilistic Modeling and PP Attachment
Ambiguity

- I saw the dog with the blue hat
- He talked to the girl in a harsh voice
- Graucho shot an elephant in his pajamas
- John gave Mary a sack of money
- He thought about filling the garden with flowers
- Collect the young children after school
- I saw a boy on the hill with a telescope
Ambiguity

- I saw the dog with the blue hat
- He talked to the girl in a harsh voice
- One morning, Graucho shot an elephant in his pajamas
- John found a sack of money
- He thought about filling the garden with flowers
- Collect the young children after school
- I saw a boy on the hill with a telescope

These are all the same (how?)
Ambiguity

- I saw the dog with the blue hat
- He talked to the girl in a harsh voice
- Graucho shot an elephant in his pajamas
- John found a sack of money
- He thought about filling the garden with flowers
- Collect the young children after school
- I saw a boy on the hill with a telescope

These are all the same (how?)
These are all the same (how?)
Ambiguity

- I saw the dog with the blue hat
- He talked to the girl in a harsh voice
- Graucho shot an elephant in his pajamas
- John found a sack of money
- He thought about filling the garden with flowers
- Collect the young children after school
- I saw a boy on the hill with a telescope
Ambiguity

verb NP(1) preposition NP(2)

verb NP(1) preposition NP(2)
Ambiguity

- **verb** **NP(1)** **preposition** **NP(2)**
- ate pizza with olives
- ate pizza with my hands
The N-V PP attachment problem

• You get a 4-tuple: (verb, NP1, prep, NP2)
 – talked the girl in a harsh voice
 – shot an elephant in his pajamas
 – found a sack of money
 – filling the garden with flowers

• Need to decide: V or N
 – V means a V-PREP relation (ate with my hands)
 – N means a N-PREP relation (pizza with olives)

• A binary classification task
The N-V PP attachment problem

- You get a 4-tuple: (verb, NP1, prep, NP2)
 - talked the girl in a harsh voice
 - shot an elephant in his pajamas
 - found a sack of money
 - filling the garden with flowers

- Need to decide: V or N
 - V means a V-PREP relation (ate with my hands)
 - N means a N-PREP relation (pizza with olives)

- A binary classification task
One morning I shot an elephant in my pajamas. How he got into my pajamas I'll never know.

- Graucho Marx

Sometimes, must use discourse...
Ambiguity

- I saw the dog with the blue hat
- He talked to the girl in a harsh voice
- Graucho shot an elephant in his pajamas
- John found a sack of money
- He thought about filling the garden with flowers
- Collect the young children after school
- I saw a boy on the hill with a telescope

verb NP(1) preposition NP(2)
Ambiguity

- I saw the *dog* with the blue *hat*
- He *talked* to the *girl* in a harsh *voice*
- Graucho *shot* an *elephant* in his *pajamas*
- John *found* a *sack of money*
- He thought about *filling* the *garden* with *flowers*
- Collect the young *children* after *school*
- I saw a *boy* on the *hill* with a *telescope*
Ambiguity

- I saw the dog with the blue hat
- He talked to the girl in a harsh voice
- Graucho shot an elephant in his pajamas
- John found a sack of money
- He thought about filling the garden with flowers
- Collect the young children after school
- I saw a boy on the hill with a telescope

verb noun(1) preposition noun(2)
Modeling choice:
consider only the head ("main") words

Is this a reasonable thing to do?
why?
why not?
(what do we gain? what do we lose?)

- Graucho shot an elephant in his pajamas
- John found a sack of money
- He thought about filling the garden with flowers
- Collect the young children after school
- I saw a boy on the hill with a telescope
The N-V PP attachment problem

• You get a 4-tuple: (verb, noun1, prep, noun2)
 – talked girl in voice
 – shot elephant in pajamas
 – found sack of money
 – filling garden with flowers

• Need to decide: V or N
 – V means a V-PREP relation (ate with hands)
 – N means a N-PREP relation (pizza with olives)

• A binary classification task
How do we solve it?

• Assume supervised classification:
 – You get 4000 (or 40,000, or 400,000) tuples with their correct answer.
 • talked girl in voice → V
 • shot elephant in pajamas → V
 • found sack of money → N
 • filling garden with flowers → V
 • ...
 – Someone hands new a new tuple. Need to decide based on previous observation.
Step 1 (always) → Look at the data
Step 1 (always) → Look at the data
Step 2 (always) → Define accuracy measure
Step 1 (always) → Look at the data
Step 2 (always) → Define accuracy measure

\[\text{acc} = \frac{\text{correct}}{\text{correct} + \text{incorrect}} \]
How do we solve it?

• Conditional probability:

\[
\text{if } P(V \mid \text{verb, noun1, prep, noun2}) > 0.5 \\
\quad \text{say V} \\
\text{else:} \\
\quad \text{say N}
\]

for example, \(P(V \mid \text{saw, boy, with, hat}) \)
Maximum Likelihood Estimation

$$P(V \mid \text{verb}, \text{noun1}, \text{prep}, \text{noun2}) =$$

$$\frac{\text{count}(V, \text{verb}, \text{noun1}, \text{prep}, \text{noun2})}{\text{count}(*, \text{verb}, \text{noun1}, \text{prep}, \text{noun2})}$$

$\text{count}(\ldots)$ is number of times we saw the event in the training data

- This is called MLE estimation. (maximum likelihood)
Maximum Likelihood Estimation

\[P(V \mid \text{verb, noun1, prep, noun2}) = \]

\[
\frac{\text{count}(V, \text{verb, noun1, prep, noun2})}{\text{count}(\ast, \text{verb, noun1, prep, noun2})}
\]

count(\ast\ldots) is number of times we saw the event
in the training data

Is this reasonable? Why?
Maximum Likelihood Estimation

\[P(V \mid \text{verb, noun1, prep, noun2}) = \]

\[
\frac{\text{count}(V,\text{verb, noun1, prep, noun2})}{\text{count}(\ast,\text{verb, noun1, prep, noun2})}
\]

\[\text{count(\ldots}) \text{ is number of times we saw the event}
\]
\[\text{in the training data} \]

Problem: data sparsity and overfitting
Another option (majority baseline)

\[P(V | \text{verb, noun1, prep, noun2}) \approx P(V) \]

Is this reasonable?

What score would you expect?
Another option

\[P(V | \text{verb, noun1, prep, noun2}) \approx P(V|\text{noun1}) \]

Is this reasonable?

What score would you expect?
Another option

\[P(V \mid \text{verb, noun1, prep, noun2}) \approx P(V\mid\text{prep}) \]

Is this reasonable?

What score would you expect?
Another option

\[P(V \mid \text{verb, noun1, prep, noun2}) \approx P(V\mid\text{prep}) \]

Is this reasonable?

What score would you expect?

This one is actually pretty good! (why?)
Another option

\[P(V \mid \text{verb, noun1, prep, noun2}) \approx P(V \mid \text{prep}) \]

Is this reasonable?

What score would you expect?

This one is actually pretty good! (why?)

Can we do better?
P(V| verb, prep) ?

P(V| noun1, prep) ?

P(V| noun1, noun2) ?

P(V| verb, noun1, noun2) ?

P(V| verb, noun1, prep) ?
How do we combine the different probabilities?

- Remember, for a function to be a probability function, we must have:
 - always positive
 - sum to one

- (do we care if our scoring function is a probability function? why?)
How do we combine the different probabilities?

- One way of combining probabilities to obtain a probability is **linear interpolation**

\[
P_{\text{interpolate}} = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3 + \ldots + \lambda_k P_k
\]

\[
\lambda_1 + \lambda_2 + \lambda_3 + \ldots + \lambda_k = 1
\]
Collins and Brooks' estimation

• Interpolate

\[P(V|v,n_1,p), P(V|v,p,n_2), P(V|n_1,p,n_2) \] into \(P_{\text{triplet}} \)

• Interpolate

\[P(V|v,p), P(V|n_1,p), P(V|p,n_2) \] into \(P_{\text{pair}} \)
Collins and Brooks' estimation

• Interpolate
 \[P(V|v,n1,p), P(V|v,p,n2), P(V|n1,p,n2) \] into \(P_{\text{triplet}} \)

• Interpolate
 \[P(V|v,p), P(V|n1,p), P(V|p,n2) \] into \(P_{\text{pair}} \)

Notice we always include \(p \) (the preposition).

We do not have \(P(V|n1,n2) \) for example.

Why?
Collins and Brooks' estimation

- Interpolate
 \[P(V|v,n1,p), P(V|v,p,n2), P(V|n1,p,n2) \] into \(P_{\text{triplet}} \)

- Interpolate
 \[P(V|v,p), P(V|n1,p), P(V|p,n2) \] into \(P_{\text{pair}} \)

\[P(V|v,n1,p) = \frac{\#(V, v, n1, p, *)}{\#(*, v, n1, p, *)} \]
Collins and Brooks' estimation

- Interpolate

\[P(V|v,n1,p), P(V|v,p,n2), P(V|n1,p,n2) \] into \(P_{\text{triplet}} \)

- Interpolate

\[P(V|v,p), P(V|n1,p), P(V|p,n2) \] into \(P_{\text{pair}} \)

\[
P(V|v,n1,p) = \frac{#(V, v, n1, p, *)}{#(*, v, n1, p, *)}
\]

\[
P(V|v, p) = \frac{#(V, v, *, p, *)}{#(*, v, *, p, *)}
\]
How do we combine the different probabilities?

- One way of combining probabilities to obtain a probability is \textbf{linear interpolation}

\[P_{\text{interpolate}} = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3 \ldots + \lambda_k P_k \]

\[\lambda_1 + \lambda_2 + \lambda_3 + \ldots + \lambda_k = 1 \]
Collins and Brooks' interpolation

\[\lambda_{v, n1, p} = \frac{\text{count}(v, n1, p)}{\text{count}(v, n1, p) + \text{count}(v, p, n2) + \text{count}(n1, p, n2)} \]

\[\lambda_{v, p, n2} = \frac{\text{count}(v, p, n2)}{\text{count}(v, n1, p) + \text{count}(v, p, n2) + \text{count}(n1, p, n2)} \]

\[\lambda_{n1, p, n2} = \frac{\text{count}(n1, p, n2)}{\text{count}(v, n1, p) + \text{count}(v, p, n2) + \text{count}(n1, p, n2)} \]
Collins and Brooks' interpolation

\[
\lambda_{v,n1,p} = \frac{\text{count}(v,n1,p)}{\text{count}(v,n1,p) + \text{count}(v,p,n2) + \text{count}(n1,p,n2)}
\]

\[
\lambda_{v,p,n2} = \frac{\text{count}(v,p,n2)}{\text{count}(v,n1,p) + \text{count}(v,p,n2) + \text{count}(n1,p,n2)}
\]

\[
\lambda_{n1,p,n2} = \frac{\text{count}(n1,p,n2)}{\text{count}(v,n1,p) + \text{count}(v,p,n2) + \text{count}(n1,p,n2)}
\]

Give more weight to events that occurred more times in the training data.
Collins and Brooks' estimation

\[P_3(V \mid v,n1,p,n2) = \frac{\text{count}(V,v,n1,p) + \text{count}(V,v,p,n2) + \text{count}(V,n1,p,n2)}{\text{count}(*,v,n1,p) + \text{count}(*,v,p,n2) + \text{count}(*,n1,p,n2)} \]
Collins and Brooks' estimation

\[P_3(V|v,n_1,p,n_2) = \frac{\text{count}(V,v,n_1,p) + \text{count}(V,v,p,n_2) + \text{count}(V,n_1,p,n_2)}{\text{count}(*,v,n_1,p) + \text{count}(*,v,p,n_2) + \text{count}(*,n_1,p,n_2)} \]

This follows from

\[P_3(V|v,n_1,p,n_2) = \lambda_{v,n_1,p} P(V|v,n_1,p) \\
+ \lambda_{n_1,p,n_2} P(V|n_1,p,n_2) \\
+ \lambda_{v,p,n_2} P(V|v,p,n_2) \]

\[P_{mle}(V|v,n_1,p) = \frac{\text{count}(V,v,n_1,p)}{\text{count}(*,v,n_1,p)} \]
Collins and Brooks' estimation

\[P_3(V|v,n1,p,n2) = \frac{\text{count}(V,v,n1,p) + \text{count}(V,v,p,n2) + \text{count}(V,n1,p,n2)}{\text{count}(*,v,n1,p) + \text{count}(*,v,p,n2) + \text{count}(*,n1,p,n2)} \]

\[P_2(V|v,n1,p,n2) = \frac{\text{count}(V,v,p) + \text{count}(V,n1,p) + \text{count}(V,p,n2)}{\text{count}(*,v,p) + \text{count}(*,n1,p) + \text{count}(*,p,n2)} \]
Collins and Brooks' estimation

\[P_3(V|v,n1,p,n2) = \frac{\text{count}(V,v,n1,p) + \text{count}(V,v,p,n2) + \text{count}(V,n1,p,n2)}{\text{count}(*,v,n1,p) + \text{count}(*,v,p,n2) + \text{count}(*,n1,p,n2)} \]

\[P_2(V|v,n1,p,n2) = \frac{\text{count}(V,v,p) + \text{count}(V,n1,p) + \text{count}(V,p,n2)}{\text{count}(*,v,p) + \text{count}(*,n1,p) + \text{count}(*,p,n2)} \]

\[P_1(V|v,n1,p,n2) = \frac{\text{count}(V,p)}{\text{count}(*,p)} \]
Collins and Brooks' estimation

\[P_3(V|v,n1,p,n2) = \frac{\text{count}(V,v,n1,p) + \text{count}(V,v,p,n2) + \text{count}(V,n1,p,n2)}{\text{count}(*,v,n1,p) + \text{count}(*,v,p,n2) + \text{count}(*,n1,p,n2)} \]

\[P_2(V|v,n1,p,n2) = \frac{\text{count}(V,v,p) + \text{count}(V,n1,p) + \text{count}(V,p,n2)}{\text{count}(*,v,p) + \text{count}(*,n1,p) + \text{count}(*,p,n2)} \]

\[P_1(V|v,n1,p,n2) = \frac{\text{count}(V,p)}{\text{count}(*,p)} \]

Combine using Backoff
Collins and Brooks' estimation - Back-off

\[P(V|v,n1,p,n2) = \]
\[
\quad \text{if } \text{count}(v,n1,p,n2) > 0 \\
\quad \quad \text{use } P_4 \\
\quad \text{else if } \text{count}(v,n1,p) + \text{count}(v,p,n2) + \text{count}(n1,p,n2) > 0 \\
\quad \quad \text{use } P_3 \\
\quad \text{else if } \text{count}(v,p) + \text{count}(n1,p) + \text{count}(p,n2, \ast) > 0 \\
\quad \quad \text{use } P_2 \\
\quad \text{else if } \text{count}(p) > 0 \\
\quad \quad \text{use } P_1 \\
\quad \text{else } \\
\quad \quad \text{use } P_0 = \text{count}(V) / \text{count}(V+N) \]
Collins and Brooks' estimation - Back-off

- Combination of probabilistic model and a heuristic
- Returns a well behaved probability score
 - but not really well motivated by probability theory
- Works well

→ heuristics can be good, if designed well
Collins and Brooks' estimation - Back-off

- Combination of probabilistic model and a heuristic
- Returns a well behaved probability score
 - but not really well motivated by probability theory
- Works well

→ heuristics can be good, if designed well

- Will be nice to have a method that allows to easily integrate many clues without resorting to heuristics.
Further improvements

• we've seen
 – (saw, John, with, dog)

• But not
 – (saw, Jack, with, dog)

Can we still say something about the second case?